Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electric Rates
2.2. Thermal Load Conversion to Heat Pump
2.3. Heat Pump Costs
2.4. Numerical Simulations
- ground mount fixed tilt PV-grid tied sized to match 100% of electric load in Sault Ste. Marie, MI;
- ground mount fixed tilt PV-grid tied sized to match 100% of electric load in Sault Ste. Marie, Ontario;
- air source heat pump to meet all thermal load with grid electricity in Sault Ste. Marie, MI;
- air source heat pump to meet all thermal load with grid electricity in Sault Ste. Marie, Ontario;
- ground mount fixed tilt PV-grid tied to match 100% of electric load and electrified thermal load assuming air source heat pump in Sault Ste. Marie, MI; and
- ground mount fixed tilt PV-grid tied to match 100% of electric load and electrified thermal load assuming air source heat pump in Sault Ste. Marie, Ontario.
3. Results
4. Discussion
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Feldman, D.; Barbose, G.; Margolis, R.; Wiser, R.; Darghouth, N.; Goodrich, A. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections; National Renewable Energy Laboratory: Golden, CO, USA, 2012.
- Barbose, G.L.; Darghouth, N.R.; Millstein, D.; La Commare, K.H.; Di Santi, N.; Widiss, R. Tracking the Sun X: The Installed Price of Residential and Non-Residential Photovoltaic Systems in the United States; Lawrence Berkley National Laboratory: Berkley, CA, USA, 2017.
- IEA. Trends in Photovoltaic Applications 2019 (T1-36:2019); IEA: Paris, France, 2019. [Google Scholar]
- Yu, C.F.; van Sark, W.G.J.H.M.; Alsema, E.A. Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects. Renew. Sustain. Energy Rev. 2011, 15, 324–337. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Chung, Y.; Woo, C. Scenario analysis for estimating the learning rate of photovoltaic power generation based on learning curve theory in South Korea. Energy 2015, 79, 80–89. [Google Scholar] [CrossRef]
- Mauleón, I. Photovoltaic learning rate estimation: Issues and implications. Renew. Sustain. Energy Rev. 2016, 65, 507–524. [Google Scholar] [CrossRef]
- Reuters. Solar Costs to Fall Further, Powering Global Demand—Irena. 2017. Available online: https://www.reuters.com/article/singapore-energy-solar-idUSL4N1MY2F8 (accessed on 7 April 2020).
- Lai, C.S.; McCulloch, M.D. Levelized cost of electricity for solar photovoltaic and electrical energy storage. Appl. Energy 2017, 190, 191–203. [Google Scholar] [CrossRef]
- Richard, C. New Wind and Solar Cheaper than Existing Coal and Gas 2018. Available online: http://www.windpowermonthly.com/article/1491146?utm_source=website&utm_medium=social (accessed on 7 April 2020).
- Dudley, D. Renewable Energy Will Be Consistently Cheaper Than Fossil Fuels By 2020, Report Claims. Forbes. 2018. Available online: https://www.forbes.com/sites/dominicdudley/2018/01/13/renewable-energy-cost-effective-fossil-fuels-2020/ (accessed on 7 April 2020).
- Hayibo, K.S.; Pearce, J.M. A review of the value of solar methodology with a case study of the US VOS. Renew. Sustain. Energy Rev. 2021, 137, 110599. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (version 56). Prog. Photovolt. Res. Appl. 2020, 28, 629–638. [Google Scholar] [CrossRef]
- Kroll, M.; Otto, M.; Käsebier, T.; Füchsel, K.; Wehrspohn, R.; Ernst-Bernhard, K.; TÜnnermann, A.; Pertsch, T. Black silicon for solar cell applications. In Photonics for Solar Energy Systems IV, Proceedings of the International Society for Optics and Photonics, Brussels, Belgium, 9–12 December 2012; OSA: Washington, DC, USA, 2012; Volume 8438. [Google Scholar] [CrossRef]
- Modanese, C.; Laine, H.; Pasanen, T.; Savin, H.; Pearce, J. Economic Advantages of Dry-Etched Black Silicon in Passivated Emitter Rear Cell (PERC) Photovoltaic Manufacturing. Energies 2018, 11, 2337. [Google Scholar] [CrossRef] [Green Version]
- Liang, T.S.; Pravettoni, M.; Deline, C.; Stein, J.S.; Kopecek, R.; Singh, J.P.; Luo, W.; Wang, Y.; Aberle, A.G.; Khoo, Y.S. A review of crystalline silicon bifacial photovoltaic performance characterisation and simulation. Energy Environ. Sci. 2019, 12, 116–148. [Google Scholar] [CrossRef]
- Burnham, L.; Riley, D.; Walker, B.; Pearce, J.M. Performance of bifacial photovoltaic modules on a dual-axis tracker in a high-latitude, high-albedo environment. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 1320–1327. [Google Scholar]
- Barron, A. Cost reduction in the solar industry. Mater. Today 2015, 18, 2–3. [Google Scholar] [CrossRef] [Green Version]
- Center for Climate and Energy Solutions (CECS). Renewable Energy. 2019. Available online: https://www.c2es.org/content/renewable-energy/ (accessed on 11 November 2020).
- IEA. Snapshot of Global PV Markets 2020Report IEA-PVPS T1-37: 2020. Available online: https://iea-pvps.org/wp-content/uploads/2020/04/IEA_PVPS_Snapshot_2020.pdf (accessed on 11 November 2020).
- Gerbinet, S.; Belboom, S.; Léonard, A. Life Cycle Analysis (LCA) of photovoltaic panels: A review. Renew. Sustain. Energy Rev. 2014, 38, 747–753. [Google Scholar] [CrossRef]
- Pearce, J.M. Photovoltaics—A path to sustainable futures. Futures 2002, 34, 663–674. [Google Scholar] [CrossRef]
- Yuan, G. Improving grid reliability through integration of distributed PV and energy storage. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT) (1–2), Washington, DC, USA, 16–20 January 2012. [Google Scholar]
- Koh, L.H.; Peng, W.; Tseng, K.J.; ZhiYong, G. Reliability evaluation of electric power systems with solar photovoltaic & energy storage. In Proceedings of the 2014 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Durham, UK, 7–10 July 2014; pp. 1–5. [Google Scholar]
- Banerjee, B.; Islam, S.M. Reliability based optimum location of distributed generation. Int. J. Elec. Power Energy Syst. 2011, 33, 1470–1478. [Google Scholar] [CrossRef]
- Liu, L.; Bao, H.; Liu, H. Siting and sizing of distributed generation based on the minimum transmission losses cost. In Proceedings of the 2011 IEEE Power Engineering and Automation Conference, Wuhan, China, 8–9 September 2011; Volume 3, pp. 22–25. [Google Scholar] [CrossRef]
- Barker, P.P.; De Mello, R.W. Determining the impact of distributed generation on power systems. I. Radial distribution systems. In Proceedings of the 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134), Seattle, WA, USA, 16–20 July 2000; Volume 3, pp. 1645–1656. [Google Scholar] [CrossRef]
- Saad, N.M.; Sujod, M.Z.; Lee, H.M.; Abas, M.F.; Jadin, M.S.; Ishak, M.R.; Abdullah, N.R.H. Impacts of Photovoltaic Distributed Generation Location and Size on Distribution Power System Network. IJPEDS 2018, 9, 905. [Google Scholar] [CrossRef]
- Jäger-Waldau, A.; Kougias, I.; Taylor, N.; Thiel, C. How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030. Renew. Sustain. Energy Reviron. 2020, 126, 109836. [Google Scholar] [CrossRef]
- Hockstad, L.; Hanel, L. Inventory of US greenhouse gas emissions and sinks. In Environmental System Science Data Infrastructure for a Virtual Ecosystem; US Department of Energy: Washington, DC, USA, 2018. [Google Scholar]
- Weitzman, M.L. GHG targets as insurance against catastrophic climate damages. J. Public Econ. Theory 2012, 14, 221–244. [Google Scholar] [CrossRef] [Green Version]
- Lazzarin, R. Heat pumps and solar energy: A review with some insights in the future. Int. J. Refrig. 2020, 116, 146–160. [Google Scholar] [CrossRef]
- Poppi, S.; Sommerfeldt, N.; Bales, C.; Madani, H.; Lundqvist, P. Techno-economic review of solar heat pump systems for residential heating applications. Renew. Sustain. Energy Rev. 2018, 81, 22–32. [Google Scholar] [CrossRef]
- Buker, M.S.; Riffat, S.B. Solar assisted heat pump systems for low temperature water heating applications: A systematic review. Renew. Sustain. Energy Rev. 2016, 55, 399–413. [Google Scholar] [CrossRef]
- Mohanraj, M.; Belyayev, Y.; Jayaraj, S.; Kaltayev, A. Research and developments on solar assisted compression heat pump systems—A comprehensive review (Part-A: Modeling and modifications). Renew. Sustain. Energy Rev. 2018, 83, 90–123. [Google Scholar] [CrossRef]
- Mohanraj, M.; Belyayev, Y.; Jayaraj, S.; Kaltayev, A. Research and developments on solar assisted compression heat pump systems—A comprehensive review (Part-B: Applications). Renew. Sustain. Energy Rev. 2018, 83, 124–155. [Google Scholar] [CrossRef]
- Andersson, M. Comparison of Solar Thermal and Photovoltaic Assisted Heat Pumps for Multi-Family Houses in Sweden. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2018. [Google Scholar]
- Williams, C.J.C.; Binder, J.O.; Kelm, T. Demand side management through heat pumps, thermal storage and battery storage to increase local self-consumption and grid compatibility of PV systems. IEEE PES Innov. Smart Grid Technol. Conf. Eur. 2012, 1–6. [Google Scholar] [CrossRef]
- Salpakari, J.; Lund, P. Optimal and rule-based control strategies for energy flexibility in buildings with PV. Appl. Energy 2016, 161, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Psimopoulos, E.; Bee, E.; Widén, J.; Bales, C. Techno-economic analysis of control algorithms for an exhaust air heat pump system for detached houses coupled to a photovoltaic system. Appl. Energy 2019, 249, 355–367. [Google Scholar] [CrossRef]
- Fischer, D.; Madani, H. On heat pumps in smart grids: A review. Renew. Sustain. Energy Rev. 2017, 70, 342–357. [Google Scholar] [CrossRef] [Green Version]
- Cloverland Electric Cooperative. Rates and Charges. Available online: https://www.cloverland.com/your-account/rates-charges/ (accessed on 2 November 2020).
- Sault Ste. Marie Public Utilities Commission. Rates. Available online: https://ssmpuc.com/electricity/rates/ (accessed on 2 November 2020).
- DTE Energy. Rates Effective for Gas Service. Available online: https://newlook.dteenergy.com/wps/wcm/connect/e862777b-ce94-4c81-8ef4-ff88298abce1/rateCard.pdf?MOD=AJPERES (accessed on 2 November 2020).
- Union Gas. Current Residential Rates. Available online: https://www.uniongas.com/residential/rates/current-rates/rate-01-north-west (accessed on 2 November 2020).
- Bloomberg. USD-CAD X-Rate. Available online: https://www.bloomberg.com/quote/USDCAD:CUR (accessed on 2 November 2020).
- U.S. Energy Information Administration. Household Energy Use in Michigan; U.S. Energy Information Administration: Washington, DC, USA, 2009.
- NOAA. National Centers for Environmental Information’s. Available online: https://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp (accessed on 2 November 2020).
- U.S. Department of Energy. Furnaces and Boilers. Available online: https://www.energy.gov/energysaver/home-heating-systems/furnaces-and-boilers (accessed on 2 November 2020).
- Kantamneni, A.; Winkler, R.; Gauchia, L.; Pearce, J.M. Emerging economic viability of grid defection in a northern climate using solar hybrid systems. Energy Policy 2016, 95, 378–389. [Google Scholar] [CrossRef] [Green Version]
- Fairey, P.; Parker, D.S.; Wilcox, B.; Lombardi, M. Lombardi, “Climate Impacts on Heating Seasonal Performance Factor (HSPF) and Seasonal Energy Efficiency Ratio (SEER) for Air Source Heat Pumps”. Ashrae Trans. 2004, 110, 178–188. [Google Scholar]
- ASHRAE. ASHRAE Climatic Design Conditions 2009/2013/2017; (WMO: 997268); ASHRAE: Sault Ste. Marie, MI, USA; Available online: http://ashrae-meteo.info/v2.0/ (accessed on 2 November 2020).
- Office of Energy Efficiency and Renewable Energy. Commercial and Residential Hourly Load Profiles for All TMY3 Locations in the United States. Available online: https://openei.org/datasets/files/961/pub/RESIDENTIAL_LOAD_DATA_E_PLUS_OUTPUT/BASE/ (accessed on 2 November 2020).
- System Advisor Model Version 2020.2.29 (SAM 2020.2.291); National Renewable Energy Laboratory: Golden, CO, USA, 2020.
- Sengupta, M.; Habte, A.; Buster, G.; Rossol, M.; Xie, Y.; Foster, M. A Status Update on the National Solar Radiation Data Base (NSRDB); PVPMC Webinar on Solar Resource Assessment; PV Performance Modelling Collaborative; National Renewable Energy Laboratory: Golden, CO, USA, 2020.
- Andrews, R.W.; Pearce, J.M. Prediction of Energy Effects on Photovoltaic Systems Due to Snowfall Events. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012; pp. 003386–003391. [Google Scholar]
- Andrews, R.W.; Pollard, A.; Pearce, J.M. The Effects of Snowfall on Solar Photovoltaic Performance. Sol. Energy 2013, 92, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Cheery, L.; White, B. Green Tech Media. “SolarEdge and Enphase Now Control 80% of the US Residential Solar Inverter Market”. Available online: https://www.greentechmedia.com/articles/read/solaredge-technologies-and-enphase-control-80-of-us-residential-solar-marke#disqus_thread (accessed on 12 November 2020).
- Cramer, D. Solar Up. Personal Communication, 12 November 2020. [Google Scholar]
- Federal Reserve Board—Survey of Consumer Finances (SCF). Available online: https://www.federalreserve.gov/econres/scfindex.htm (accessed on 13 January 2021).
- Statistics Canada, Government of Canada. The Daily—Distributions of Household Economic Accounts for Income, Consumption, Saving and Wealth of Canadian Households. 2018. Available online: https://www150.statcan.gc.ca/n1/daily-quotidien/190327/dq190327b-eng.htm (accessed on 13 January 2021).
- Ontario Energy Board. Frequently Asked Question about Green Energy Initiatives. Available online: https://www.oeb.ca/industry/tools-resources-and-links/information-renewable-generators/frequently-asked-questions (accessed on 2 November 2020).
- Cloverland Electric Cooperative. Renewable Generation. Available online: https://www.cloverland.com/wp-content/uploads/Net-Metering-Application-and-Interconnection-Parallel-Operating-Agreement-Cat-1-2018-07-10-with-Diagrams.pdf (accessed on 2 November 2020).
- Spees, K.; Lave, L. Impacts of responsive load in PJM: Load shifting and real time pricing. Energy J. 2008, 29. [Google Scholar] [CrossRef]
- Chippewa County Credit Union. Savings Rates. Available online: https://chippewacountycu.com/savings-rates/ (accessed on 12 December 2020).
- Northern Credit Union. Rates. Available online: https://www.northerncu.com/personal/rates/accounts/ (accessed on 13 December 2020).
- Shirazi, E.; Jadid, S. Cost Reduction and Peak Shaving through Domestic Load Shifting and DERs. Energy 2017, 124, 146–159. [Google Scholar] [CrossRef]
- Prehoda, E.; Pearce, J.M.; Schelly, C. Policies to Overcome Barriers for Renewable Energy Distributed Generation: A Case Study of Utility Structure and Regulatory Regimes in Michigan. Energies 2019, 12, 674. [Google Scholar] [CrossRef] [Green Version]
- U.S. Energy Information Agency. 2015 Residential Energy Consumption Survey—CE4.1. Available online: https://www.eia.gov/consumption/residential/data/2015/ (accessed on 12 October 2020).
- Trudeau, J. Prime Minister Announces Canada’s Strengthened Climate Plan to Protect the Environment, Create Jobs, and Support Communities. Available online: https://pm.gc.ca/en/news/news-releases/2020/12/11/prime-minister-announces-canadas-strengthened-climate-plan-protect (accessed on 12 December 2020).
- Termo Plus. What Is the Life Expectancy of Heat Pumps? Available online: https://termo-plus.com/blog/life-expectancy-of-heat-pumps/ (accessed on 12 December 2020).
- Wee, S. The effect of residential solar photovoltaic systems on home value: A case study of Hawai ‘i. Renew. Energy 2016, 91, 282–292. [Google Scholar] [CrossRef]
- Jordan, D.C.; Kurtz, S.R.; VanSant, K.; Newmiller, J. Compendium of photovoltaic degradation rates. Prog. Photovolt. Res. Appl. 2016, 24, 978–989. [Google Scholar] [CrossRef]
- Jordan, D.C.; Kurtz, S.R. Photovoltaic Degradation Rates—An Analytical Review. Prog. Photovolt. Res. Appl. 2013, 21, 12–29. [Google Scholar] [CrossRef] [Green Version]
- Sow, A.; Mehrtash, M.; Rousse, D.R.; Haillot, D. Economic Analysis of Residential Solar Photovoltaic Electricity Production in Canada. Sustain. Energy Technol. Assess. 2019, 33, 83–94. [Google Scholar] [CrossRef]
- Baxter, V.D.; Groll, E.; Sikes, K. (Eds.) IEA HPT Annex 41 Cold Climate Heat Pumps—Final Report (HPT-AN41-1); IEA Heat Pump Centre: London, UK, 2017; ISBN 9789188349897. [Google Scholar]
- Zhang, L.; Jiang, Y.; Dong, J.; Yao, Y. Advances in vapor compression air source heat pump system in cold regions: A review. Renew. Sustain. Energy Rev. 2018, 81, 353–365. [Google Scholar] [CrossRef]
- Hansen, J.; Kharecha, P.; Sato, M.; Masson-Delmotte, V.; Ackerman, F.; Beerling, D.J.; Hearty, P.J.; Hoegh-Guldberg, O.; Hsu, S.-L.; Parmesan, C.; et al. Assessing Dangerous Climate Change: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature. PLoS ONE 2013, 8, e81648. [Google Scholar] [CrossRef] [Green Version]
- Ripple, W.J.; Wolf, C.; Newsome, T.M.; Galetti, M.; Alamgir, M.; Crist, E.; Mahmoud, M.I.; Laurance, W.F. World Scientists’ Warning to Humanity: A Second Notice. BioScience 2017, 67, 1026–1028. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. ISBN 978/92/9169/143/2. [Google Scholar]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Irfan, U.; Barclay, E.; Sukumar, K. America Is Warming Fast. See How Your City’s Weather Will Be Different by 2050. Available online: https://www.vox.com/a/weather-climate-change-us-cities-global-warming (accessed on 12 December 2020).
- Brown, A.; Bunyan, J. Valuation of Distributed Solar: A Qualitative View. Electr. J. 2014, 27, 27–48. [Google Scholar] [CrossRef]
- Revesz, R.L.; Unel, B. Managing the Future of the Electricity Grid: Distributed Generation and Net Metering. Harvard Environ. Law Rev. 2017, 41, 43–108. [Google Scholar] [CrossRef]
- Luthander, R.; Widén, J.; Nilsson, D.; Palm, J. Photovoltaic self-consumption in buildings: A review. Appl. Energy 2015, 142, 80–94. [Google Scholar] [CrossRef] [Green Version]
- Costello, K.W.; Hemphill, R.C. Electric utilities’ “death spiral”: Hyperbole or reality? Electr. J. 2014, 27, 7–26. [Google Scholar] [CrossRef]
- Felder, F.A.; Athawale, R. The life and death of the utility death spiral. Electr. J. 2014, 27, 9–16. [Google Scholar] [CrossRef]
- Solano, J.C.; Brito, M.C.; Caamaño-Martín, E. Impact of fixed charges on the viability of self-consumption photovoltaics. Energy Policy 2018, 122, 322–331. [Google Scholar] [CrossRef]
- Johnson, E.; Beppler, R.; Blackburn, C.; Staver, B.; Brown, M.; Matisoff, D. Peak shifting and cross-class subsidization: The impacts of solar PV on changes in electricity costs. Energy Policy 2017, 106, 436–444. [Google Scholar] [CrossRef]
- Chesser, M.; Hanly, J.; Cassells, D.; Apergis, N. The positive feedback cycle in the electricity market: Residential solar PV adoption, electricity demand and prices. Energy Policy 2018, 122, 36–44. [Google Scholar] [CrossRef]
- Simshauser, P. Distribution network prices and solar PV: Resolving rate instability and wealth transfers through demand tariffs. Energy Econ. 2016, 54, 108–122. [Google Scholar] [CrossRef]
- Peffley, T.B.; Pearce, J.M. The Potential for Grid Defection of Small and Medium Sized Enterprises Using Solar Photovoltaic, Battery and Generator Hybrid Systems. Renew. Energy 2020, 148, 193–204. [Google Scholar] [CrossRef]
- Mundada, A.S.; Shah, K.K.; Pearce, J.M. Levelized Cost of Electricity for Solar Photovoltaic, Battery and Cogen Hybrid Systems. Renew. Sustain. Energy Rev. 2016, 57, 692–703. [Google Scholar] [CrossRef] [Green Version]
- Shah, K.K.; Mundada, A.S.; Pearce, J.M. Performance of U.S. Hybrid Distributed Energy Systems: Solar Photovoltaic, Battery and Combined Heat and Power. Energy Convers. Manag. 2015, 105, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Brenn, J.; Soltic, P.; Bach, C. Comparison of natural gas driven heat pumps and electrically driven heat pumps with conventional systems for building heating purposes. Energy Build. 2010, 42, 904–908. [Google Scholar] [CrossRef]
- Baig, A.A.; Kimiaghalam, F.; Kumar, R.; Ma, J.L.; Fung, A.S. Natural gas engine driven heat pump system–a case study of an office building. Int. J. Green Energy 2020, 17, 476–487. [Google Scholar] [CrossRef]
- Luthander, R.; Widén, J.; Munkhammar, J.; Lingfors, D. Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment. Energy 2016, 112, 221–231. [Google Scholar] [CrossRef]
- Kästel, P.; Gilroy-Scott, B. Economics of Pooling Small Local Electricity Prosumers—Prosumer vs Business as Usual Approach. Energy Power Eng. 2018, 10, 226–252. [Google Scholar] [CrossRef] [Green Version]
- Burger, S.P.; Luke, M. Business models for distributed energy resources: A review and empirical analysis. Energy Policy 2017, 109, 230–248. [Google Scholar] [CrossRef]
- Arnaudo, M.; Topel, M.; Laumert, B. Techno-economic analysis of demand side flexibility to enable the integration of distributed heat pumps within a Swedish neighborhood. Energy 2020, 195. [Google Scholar] [CrossRef]
- Razmara, M.; Bharati, G.R.; Hanover, D.; Shahbakhti, M.; Paudyal, S.; Robinett, R.D. Building-to-grid predictive power flow control for demand response and demand flexibility programs. Appl. Energy 2017, 203, 128–141. [Google Scholar] [CrossRef]
- Lawrence, T.M.; Boudreau, M.C.; Helsen, L.; Henze, G.; Mohammadpour, J.; Noonan, D.; Patteeuw, D.; Pless, S.; Watson, R.T. Ten questions concerning integrating smart buildings into the smart grid. Build. Environ. 2016, 108, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Schelly, C.; Louie, E.P.; Pearce, J.M. Examining interconnection and net metering policy for distributed generation in the United States. Renew. Energy Focus 2017, 22–23, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Padovani, F.; Longobardi, F.; Sommerfeldt, N.; Pearce, J.M. Decarbonizing rural residential buildings in cold climates: A techno-economic analysis of heating electrification. (To be published).
- Rad, F.M.; Fung, A.S. Solar community heating and cooling system with borehole thermal energy storage—Review of systems. Renew. Sustain. Energy Rev. 2016, 60, 1550–1561. [Google Scholar] [CrossRef]
- Hirvonen, J.; ur Rehman, H.; Sirén, K. Techno-economic optimization and analysis of a high latitude solar district heating system with seasonal storage, considering different community sizes. Sol. Energy 2018, 162, 472–488. [Google Scholar] [CrossRef] [Green Version]
- Shreve, D. Deep Decarbonisation: The Multi-Trillion Dollar Question. Available online: https://www.woodmac.com/news/feature/deep-decarbonisation-the-multi-trillion-dollar-question/ (accessed on 13 December 2020).
- Pearce, J.M.; Prehoda, E. Could 79 People Solarize the U.S. Electric Grid? Societies 2019, 9, 26. [Google Scholar] [CrossRef] [Green Version]
- IER. Cost of Transitioning to 100-Percent Renewable Energy. 2019. Available online: https://www.instituteforenergyresearch.org/renewable/cost-of-transitioning-to-100-percent-renewable-energy/ (accessed on 13 December 2020).
- Marcacci, S. Plunging Renewable Energy Prices Mean, U.S. Can Hit 90% Clean Electricity By 2035—At No Extra Cost. Available online: https://www.forbes.com/sites/energyinnovation/2020/06/09/plunging-renewable-energy-prices-mean-us-can-hit-90-clean-electricity-by-2035at-no-extra-cost/ (accessed on 13 December 2020).
- McMahon, J. How the Clean Energy Transition Could Save More than It Costs. Available online: https://www.forbes.com/sites/jeffmcmahon/2019/08/05/how-the-clean-energy-transition-could-save-more-than-it-costs/ (accessed on 13 December 2020).
Electric | Location | Flat/Off-Peak | Mid-Peak | Peak | Customer Charge Per Month | ||
---|---|---|---|---|---|---|---|
Cloverland Electric Coop [41] | MI | $0.093 | $23.75 | ||||
PUC, Time of Use [42] | ONT | $0.090 | $0.124 | $0.174 | $21.88 | ||
First 1000 kWh Oct-Apr First 600 kWh May-Sept | Balance | ||||||
PUC, Tiered [42] | ONT | $0.100 | $0.115 | $21.88 | |||
Gas | Location | $/100 Ccf | |||||
DTE [43] | MI | $0.667 | $12.25 | ||||
$/m3 first 100 m3 | 100–200 | 200–500 | 500–1000 | Over 1000 | |||
Union Gas [44] | ONT | $0.248 | $0.246 | $0.243 | $0.240 | $0.238 | $16.98 |
Utility | Unit | Weighted Price Per Unit | BTU Content Per Unit | Heating Type | Type of Efficiency Rating | Efficiency Rating | Cost Per Million BTU | Cost Per Year |
---|---|---|---|---|---|---|---|---|
Cloverland, MI | kWh | $0.093 | 3412 | Heat Pump | HSPF | 5.9 (1.73) | $15.85 | $1072.00 |
PUC, ONT TOU | kWh | $0.111 | 3412 | Heat Pump | HSPF | 5.9 (1.73) | $18.81 | $1271.00 |
PUC, ONT Tiered | kWh | $0.107 | 3412 | Heat Pump | HSPF | 5.9 (1.73) | $18.19 | $1365.00 |
DTE, MI | Ccf | $0.667 | 102,800 | Furnace | AFUE | 0.95 | $6.83 | $609.04 |
Union, ONT | M3 | $0.246 | 35,078 | Furnace | AFUE | 0.95 | $7.38 | $703.18 |
Parameters | Input | Source | |
---|---|---|---|
Location and Resources | Solar Resource Library | Sault Ste. Marie MI, Station ID 971207 | NSRDB [54] |
Global horizontal | 3.83 kWh/m2/day | NSRDB [54] | |
System Design | System nameplate capacity (kWdc) | 6.9,20.6 | Sized to meet load |
Module type | Standard | Default | |
DC to AC ratio | 1.1 | Default | |
Inverter efficiency | 96% | Default | |
Array type | Fixed open rack | Default | |
Inclination | 31° | Optimal for annual generation for location | |
Azimuth | 180° | Default | |
Losses | Soiling | 2% | Default |
Shading | 0% | Unshaded | |
Snow | 3% | Southern Ontario [55,56] | |
Mismatch | 0% | Assuming optimizer or microinveter [57] | |
Wiring | 2% | Default | |
Connections | 0.5% | Default | |
Light-induced degradation | 1.5% | Default | |
Nameplate | 0% | Assuming positive power tolerance [58] | |
Age | 0% | Default | |
Availability | 3% | Default | |
Total system losses | 11.44% | Default | |
Lifetime and Degradation | Annual AC degradation rate | 0.50% | Default |
Financial Parameters | Analysis Period | 25 years | Default |
Inflation Rate | 2.5% | Default | |
Sales Tax, % of total direct cost | 6% MI, 13% ONT | Local rate | |
Insurance rate (annual) | 0% | Included under personal property on most insurance, 0.5% default [58] | |
Property tax | 0% | Default |
System Costs | MI | ONT | MI+HP | ONT+HP | ||||
---|---|---|---|---|---|---|---|---|
$ | $/W | $ | $/W | $ | $/W | $ | $/W | |
Module | 3795 | 0.55 | 3795 | 0.55 | 8580 | 0.55 | 8580 | 0.55 |
Inverter | 2760 | 0.40 | 2760 | 0.40 | 5460 | 0.35 | 5460 | 0.35 |
Ground mount and BOS | 4140 | 0.60 | 4140 | 0.60 | 9360 | 0.60 | 9360 | 0.60 |
Labor | 5950 | 0.86 | 5950 | 0.86 | 10,020 | 0.64 | 10,020 | 0.64 |
Installer margin and overhead | 3450 | 0.50 | 3450 | 0.50 | 7800 | 0.50 | 7800 | 0.50 |
Grid interconnection | 100 | 0.01 | 754 | 0.11 | 100 | 0.01 | 3775 | 0.24 |
Shipping | 552 | 0.08 | 552 | 0.08 | 1248 | 0.08 | 1248 | 0.08 |
Sales tax | 627 | 0.09 | 1358 | 0.20 | 1286 | 0.08 | 2786 | 0.18 |
Total gross cost | 21,374 | 3.10 | 22,759 | 3.30 | 43,854 | 2.81 | 49,029 | 3.14 |
System Summary | MI, ITC | MI, No ITC | ONT TOU | ONT Tiered | MI+HP ITC | MI+HP No ITC | ONT+HP TOU | ONT+ HP Tiered |
---|---|---|---|---|---|---|---|---|
Estimated PV cost | $21,373 | $21,373 | $22,759 | $22,759 | $43,854 | $43,854 | $49,029 | $49,029 |
22% Federal income tax credit | $4700 | $9650 | ||||||
Net PV cost | $16,673 | $34,204 | ||||||
HP cost | $6500 | $6500 | $6500 | $6500 | ||||
Total System cost | $16,673 | $21,373 | $22,759 | $22,759 | $40,704 | $50,354 | $55,529 | $55,529 |
System Summary | MI, ITC | MI, No ITC | ONT TOU | ONT Tiered | MI+HP ITC | MI+HP No ITC | ONT+HP TOU | ONT+HP Tiered |
---|---|---|---|---|---|---|---|---|
Electricity bill w/o PV | $1141 | $1141 | $1365 | $1277 | $2213 | $2213 | $2636 | $2592 |
Electricity bill w/ PV | $288 | $288 | $94 | $352 | $287 | $287 | ($236) | $236 |
Electricity savings | $853 | $853 | $1271 | $925 | $1926 | $1926 | $2872 | $2356 |
Natural gas cost | $609 | $609 | $703 | $703 | $0 | $0 | $0 | $0 |
Electricity w/o PV + gas w/o HP | $1750 | $1750 | $2068 | $1980 | $1750 | $1750 | $2068 | $1980 |
Combined utilities w/ PV, w/o HP | $897 | $897 | $797 | $1055 | N/A | N/A | N/A | N/A |
Combined utilities w/ PV, w/ HP | N/A | N/A | N/A | N/A | $287 | $287 | ($236) | $236 |
Net savings | $853 | $853 | $1271 | $925 | $1463 | $1463 | $2304 | $1744 |
Year one ROI | 5.1% | 4.0% | 5.6% | 4.1% | 3.6% | 2.9% | 4.1% | 3.1% |
Simple payback (years) | 16.7 | 20.5 | 15.5 | 20.2 | 19.7 | 24.1 | 18.1 | 23.2 |
IRR | 3.4% | 1.6% | 4.1% | 1.7% | 1.9% | 0.3% | 2.7% | 0.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pearce, J.M.; Sommerfeldt, N. Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada. Energies 2021, 14, 834. https://doi.org/10.3390/en14040834
Pearce JM, Sommerfeldt N. Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada. Energies. 2021; 14(4):834. https://doi.org/10.3390/en14040834
Chicago/Turabian StylePearce, Joshua M., and Nelson Sommerfeldt. 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada" Energies 14, no. 4: 834. https://doi.org/10.3390/en14040834
APA StylePearce, J. M., & Sommerfeldt, N. (2021). Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada. Energies, 14(4), 834. https://doi.org/10.3390/en14040834