PV Systems Control Using Fuzzy Logic Controller Employing Dynamic Safety Margin under Normal and Partial Shading Conditions
Abstract
:1. Introduction
2. Partial Shading Mode
3. The Proposed MPPT Algorithm
3.1. Fuzzy Logic Controller (FLC)
3.2. Dynamic Safety Margin (DSM) for PV
- (1)
- Determine the safe region of a single PV module offline from the datasheet of the PV manufacture as illustrated in Figure 6.
- (2)
- Determine its boundary as in the form of Equations (14)–(17).
- (3)
- Determine the overall safe region of all modules based on their parallel and series connections using (12) and (13).
- (4)
- Compute the online DSM by solving the optimization problem (10) subject to constraints (17). The solution of problem (10) with constraints (17) can be obtained by applying Equations (18) and (20).
- (5)
- Record the observed maximum point at normal conditions and update the safe region boundary of step 3 if necessary, to overcome the approximation in steps 1 and 2.
3.3. FLC Employing DSM
- (1)
- The measured voltage and current of the PV are manipulated as explained in Section 3.1 to obtain the FLC output.
- (2)
- The current state of the PV, x = [VPV PPV]T, is used to calculate the instantaneous value of the DSM, δ(.), based on the defined safe region, Φ, of the PV as explained in Section 3.2 and illustrated in Figure 6.
- (3)
- If the PV state, x = [VPV PPV]T ∈ Φ, then the system is normal, and standalone FLC is sufficient to track the global MPP. Otherwise, an abnormal situation has occurred either shading, malfunction, or fault.
- (4)
- The regulating criterion is considered so that if the PV state, x = [VPV PPV]T ∉ Φ, then the output of FLC is scaled depending on the value of δ(.) as indicated in the flow chart in Figure 8 according to the following equation:
- (5)
- During the adaptation, maximum operating points are recorded, and the DSM based FLC will adjust the converter to operate at the global maximum point.
4. Case Study
5. Simulation Results
5.1. FLC Configuration
5.2. DSM Computation
5.3. MPPT Algorithm Results
6. Practical Case Study
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, J.; Yan, L.; Li, Z. A Multi-Timescale Two-Stage Robust Grid-Friendly Dispatch Model for Microgrid Operation. IEEE Access 2020, 8, 74267–74279. [Google Scholar] [CrossRef]
- Bakkar, M.; El-Geliel, M.A.; Zied, M.A. Control of photovoltaic grid connected using different control strategies. In Proceedings of the 22nd Mediterranean Conference on Control and Automation, Palermo, Italy, 16–19 June 2014; pp. 710–715. [Google Scholar]
- Aquib, M.; Jain, S.; Agarwal, V. A Time-Based Global Maximum Power Point Tracking Technique for PV System. IEEE Trans. Power Electron. 2020, 35, 393–402. [Google Scholar] [CrossRef]
- Brito, M.A.G.d.; Galotto, L.; Sampaio, L.P.; Melo, G.d.A.e.; Canesin, C.A. Evaluation of the Main MPPT Techniques for Photovoltaic Applications. IEEE Trans. Electron. 2013, 60, 1156–1167. [Google Scholar] [CrossRef]
- Li, W.; Zhang, G.; Pan, T.; Zhang, Z.; Geng, Y.; Wang, J. A Lipschitz Optimization-Based MPPT Algorithm for Photovoltaic System Under Partial Shading Condition. IEEE Access 2019, 7, 126323–126333. [Google Scholar] [CrossRef]
- Hussan, R.; Sarwar, A. Maximum Power Point Tracking Techniques under Partial Shading Condition—A Review. In Proceedings of the 2018 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), New Delhi, India, 22–24 October 2018; pp. 293–298. [Google Scholar]
- Ali, A.; Almutairi, K.; Sanjeevikumar, P.; Tirth, V.; Algarni, S.; Irshad, K.; Islam, S.; Zahir, H.; Shafiullah; Malik, M.Z. Investigation of MPPT Techniques Under Uniform and Non-Uniform Solar Irradiation Condition–A Retrospection. IEEE Access 2020, 8, 127368–127392. [Google Scholar] [CrossRef]
- Ramli, M.Z.; Salam, Z. Analysis and experimental validation of partial shading mitigation in photovoltaic system using integrated dc–dc converter with maximum power point tracker. IET Renew. Power Gener. 2019, 13, 2356–2366. [Google Scholar] [CrossRef]
- Mahmoudian, S.M.M.S.; Rahmani, R.; Yusof, R.; Renani, E.T. Analytical modeling of partially shaded photovoltaic systems. Energies 2013, 6, 128–144. [Google Scholar] [CrossRef] [Green Version]
- Mohapatra, A.; Nayaka, B.; Das, P.; Mohanty, K.B. A review on MPPT techniques of PV system under partial shading condition. Renew. Sustain. Energy Rev. 2017, 80, 854–867. [Google Scholar] [CrossRef]
- Kebir, G.; Larbes, C.; Ilinca, A.; Obeidi, T.; Kebir, S.T. Study of the Intelligent Behavior of a Maximum Photovoltaic Energy Tracking Fuzzy Controller. Energies 2018, 11, 3263. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, Y.; Fang, G.; Wen, B.Z.H.; Tang, H.; Fu, L.; Chen, X. An Advanced Maximum Power Point Tracking Method for Photovoltaic Systems by Using Variable Universe Fuzzy Logic Control Considering Temperature Variability. Electronics 2018, 7, 355. [Google Scholar] [CrossRef] [Green Version]
- Bouselhama, L.; Hajjia, M.; Hajji, B.; Boualia, H. A new MPPT-based ANN for photovoltaic system under partial shading conditions. Energy Procedia 2017, 111, 924–933. [Google Scholar] [CrossRef]
- Rudra Sankar Pal, V. Mukherjee Metaheuristic based comparative MPPT methods for photovoltaic technology under partial shading condition. Energy 2020, 212, 118592. [Google Scholar]
- Zhao, Z.; Cheng, R.; Yan, B.; Zhang, J.; Zhang, Z.; Zhang, M.; Lai, L.L. A dynamic particles MPPT method for photovoltaic systems under partial shading conditions. Energy Convers. Manag. 2020, 220, 113070. [Google Scholar] [CrossRef]
- Mansoor, M.; Mirza, A.F.; Ling, Q. Harris hawk optimization-based MPPT control for PV systems under partial shading conditions. J. Clean. Prod. 2020, 274, 122857. [Google Scholar] [CrossRef]
- Seyedmahmoudian, M.; Soon, T.K.; Jamei, E.; Thirunavukkarasu, G.S.; Horan, B.; Mekhilef, S.; Stojcevski, A. Maximum Power Point Tracking for Photovoltaic Systems under Partial Shading Conditions Using Bat Algorithm. Sustainability 2018, 10, 1347. [Google Scholar] [CrossRef] [Green Version]
- Gosumbonggot, J.; Fujita, G. Partial Shading Detection and Global Maximum Power Point Tracking Algorithm for Photovoltaic with the Variation of Irradiation and Temperature. Energies 2019, 12, 202. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Yan, F.; Wang, X.; Zhang, J. An efficient fuzzy logic control algorithm for photovoltaic maximum power point tracking under partial shading condition. J. Frankl. Inst. 2020, 357, 3135–3149. [Google Scholar] [CrossRef]
- Verma, P.; Garg, R.; Mahajan, P. symmetrical interval type-2 fuzzy logic control based MPPT tuning for PV system under partial shading condition. ISA Trans. 2020, 100, 251–263. [Google Scholar] [CrossRef]
- Hassan, H.; Geliel, M.A.; Abu-Zeid, M. A proposed fuzzy controller for MPPT of a photovoltaic system. In Proceedings of the 2014 IEEE Conference on Energy Conversion (CENCON), Johar Bahru, Malaysia, 13–14 October 2014; pp. 164–169. [Google Scholar]
- Abdel-Geliel, M.; Badredden, E.; Gambier, A. Application of Dynamic Safety Margin in robust fault detection and fault tolerant control. In Proceedings of the 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, Munich, Germany, 4–6 October 2006; pp. 337–342. [Google Scholar]
- Abdel-Geliel, M. Fault Diagnosis and Performance Recovery Based on Dynamic Safety Margin. Ph.D. Dissertation, Mannheim University, Mannheim, Germany, 2006. [Google Scholar]
- Ibrahim, M.I.H.E.A. Comparison Between Fuzzy and P&O Control for MPPT for Photovoltaic System Using Boost Converter. J. Energy Technol. Policy 2012, 2, 2224–3232. [Google Scholar]
- Panda, M.K.P.A.; Srivastava, S.P. Fuzzy Intelligent Controller for The Maximum Power Point Tracking of a Photovoltaic Module at Varying Atmospheric Conditions. J. Energy Technol. Policy 2011, 1, 18–27. [Google Scholar]
- Aherkar, A.; Deshpande, A. Fuzzy maximum power point tracking algorithm for photovoltaic system. In Proceedings of the 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 19–20 May 2017; pp. 1564–1567. [Google Scholar]
- Cardozo, D.O.; Pardo, M.; Algarín, C.R. Fuzzy Logic Controller for Maximum Power Point Tracking Based on Voltage Error Measurement in Isolated Photovoltaic Systems. In Proceedings of the 2018 IEEE ANDESCON, Santiago de Cali, Colombia, 22–24 August 2018; pp. 1–6. [Google Scholar]
- Chudamani, N.S.R.; Chudamani, R. Single-stage grid interactive PV system using novel fuzzy logic based MPPT with active and reactive power control. In Proceedings of the 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, 18–20 July 2012; pp. 1667–1672. [Google Scholar]
- Vadim, C.; Ilie, N. Photovoltaic system modeling with fuzzy logic based incrimental conductance tracking algorithm. In Proceedings of the 2017 International Conference on Modern Power Systems (MPS), Cluj-Napoca, Romania, 6–9 June 2017; pp. 1–7. [Google Scholar]
- Bakkar, M.A.M. Module Integrated Converter for Photovoltaic Applications with Different Control Strategies. presented at the 16th International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 23–25 December 2014. [Google Scholar]
- Bakkar, M.A.M.; Abozeed, M. Photovoltaic Maximum Power Point Grid Connected based on Power Conditioning Technique Employing Fuzzy Controller. Presented at the International Conference on Renewable Energies and Power Quality (ICREPQ’15), La Coruña, Spain, 25–27 March 2015. [Google Scholar]
- Hamad, M.S.; Fahmy, A.M.; Abdel-Geliel, M. Power Quality Improvement of a Single-Phase Grid-Connected PV System with Fuzzy MPPT Controller. In Proceedings of the 39th IEEE conference in Industrial electronics (IECON 2013), Viena, Austria, 10–13 November 2013; pp. 1839–1944. [Google Scholar]
- Agamy, H.; Abdelgeliel, M.; Mosleh, M.; Elserafi, K.; Abdelrahman, N. Neural Fuzzy Control of the Indoor Air Quality Onboard a RO–RO Ship Garage. Int. J. Fuzzy Syst. Springer 2020, 22, 1020–1035. [Google Scholar] [CrossRef]
- Raghuwanshi, S.S.; Khare, V. FLC based MPPT controller for optimal tracking photovoltaic system. In Proceedings of the 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC), Indore, India, 17–19 August 2017; pp. 1–6. [Google Scholar]
- Soufi, Y.; Bechouat, M.; Kahla, S.; Bouallegue, K. Maximum power point tracking using fuzzy logic control for photovoltaic system. In Proceedings of the 2014 International Conference on Renewable Energy Research and Application (ICRERA), Milwaukee, WI, USA, 19–24 October 2014; pp. 902–906. [Google Scholar]
- Pesce, C.; Riedemann, J.; Pena, R.; Jara, W.; Maury, C.; Villalobos, R. A Modified Step-Up DC-DC Flyback Converter with Active Snubber for Improved Efficiency. Energies 2019, 12, 2066. [Google Scholar] [CrossRef] [Green Version]
- Joisher, M.; Singh, D.; Taheri, S.; Espinoza-Trejo, D.R.; Pouresmaeil, E.; Taheri, H. A Hybrid Evolutionary-Based MPPT for Photovoltaic Systems Under Partial Shading Conditions. IEEE Access 2020, 8, 38481–38492. [Google Scholar] [CrossRef]
- Alajmi, B.N.; Ahmed, K.H.; Adam, G.P.; Williams, B.W. Single-Phase Single-Stage Transformer less Grid-Connected PV System. IEEE Trans. Power Electron. 2013, 28, 2664–2676. [Google Scholar] [CrossRef]
- Othman, A.M.; El-arini, M.M.M.; Ghitas, A.; Fathy, A. Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control. Nriag J. Astron. Geophys. 2012, 1, 186–194. [Google Scholar] [CrossRef] [Green Version]
CE/E | NB | NS | ZE | PS | PB |
---|---|---|---|---|---|
NB | ZE | ZE | PB | PB | PB |
NS | ZE | ZE | PS | PS | PS |
ZE | PS | ZE | ZE | ZE | NS |
PS | NS | NS | NS | ZE | ZE |
PB | NB | NB | NB | ZE | ZE |
Case | FLC | DSM Based FLC | ||
---|---|---|---|---|
PMPPT (W) | VMPPT (V) | PMPPT (W) | VMPPT (V) | |
1 PV module | 200 | 25 | 200 | 25 |
2 PV modules | 200 | 25 | 300 | 55 |
3 PV modules | 200 | 25 | 350 | 85 |
4 PV modules | 200 | 25 | 450 | 115 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakkar, M.; Aboelhassan, A.; Abdelgeliel, M.; Galea, M. PV Systems Control Using Fuzzy Logic Controller Employing Dynamic Safety Margin under Normal and Partial Shading Conditions. Energies 2021, 14, 841. https://doi.org/10.3390/en14040841
Bakkar M, Aboelhassan A, Abdelgeliel M, Galea M. PV Systems Control Using Fuzzy Logic Controller Employing Dynamic Safety Margin under Normal and Partial Shading Conditions. Energies. 2021; 14(4):841. https://doi.org/10.3390/en14040841
Chicago/Turabian StyleBakkar, Mostafa, Ahmed Aboelhassan, Mostafa Abdelgeliel, and Michael Galea. 2021. "PV Systems Control Using Fuzzy Logic Controller Employing Dynamic Safety Margin under Normal and Partial Shading Conditions" Energies 14, no. 4: 841. https://doi.org/10.3390/en14040841
APA StyleBakkar, M., Aboelhassan, A., Abdelgeliel, M., & Galea, M. (2021). PV Systems Control Using Fuzzy Logic Controller Employing Dynamic Safety Margin under Normal and Partial Shading Conditions. Energies, 14(4), 841. https://doi.org/10.3390/en14040841