Model Predictive Control for Microgrid Functionalities: Review and Future Challenges
Abstract
:1. Introduction
2. A Review of MPC-Based Control Methods for Microgrid Applications
2.1. Electrical Markets, Flexibility, and Ancillary Services
2.2. Resilience, Risk Management, and Fault Tolerant Control
2.2.1. Need for Fault-Tolerant Control in Building Systems and Microgrids
2.2.2. Fault Tolerant Control Techniques for Building Systems: State of the Art
2.2.3. New Challenges for Fault-Tolerant Control in Building Systems
2.3. Power Quality and Real-Time Control
2.3.1. MPC for Power Converters
2.3.2. MPC for Voltage and Frequency Regulation
2.4. Microgrid Connected Building Comfort Management Systems
2.5. Combined Cooling, Heating, and Power Microgrids
2.6. MPC for Interconnected Microgrids
3. Challenges and Future Perspectives
3.1. MPC Challenges in General Terms to Provide Solutions for Microgrids
3.2. MPC and the Introduction of Microgrids in Electric Markets
3.3. MPC and Fault-Tolerant Control in Microgrids
3.4. MPC and Power Quality for Microgrids
3.5. MPC and Networked Microgrids
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CCS | Continuous Control Set |
DER | Distributed Energy Resources |
DMPC | Distributed Model Predictive Control |
DSM | Demand Side Management |
DSO | Distribution System Operator |
DR | Demand Response |
ESS | Energy Storage System |
FCS | Finite Control State |
GPC | Generalized Predictive Control |
HVAC | Heating, Ventilation, and Air Conditioning |
MPC | Model Predictive Control |
MO | Market Operator |
nZEB | nearly Zero Energy Building |
PQR | Power Quality and Reliability |
RES | Renewable Energy System |
SHE | Selective Harmonic Elimination |
SMPC | Stochastic Model Predictive Control |
SP | Smith Predictor |
TSO | Transmission System Operator |
VSI | Voltage Source Inverter |
ZEB | Zero Energy Building |
References
- Marnay, C.; Chatzivasileiadis, S.; Abbey, C.; Iravani, R.; Joos, G.; Lombardi, P.; Mancarella, P.; von Appen, J. Microgrid evolution roadmap. In Proceedings of the 2015 International Symposium on Smart Electric Distribution Systems and technologies (EDST), Vienna, Austria, 8–11 September 2015; pp. 139–144. [Google Scholar]
- Morstyn, T.; Hredzak, B.; Agelidis, V.G. Control strategies for microgrids with distributed energy storage systems: An overview. IEEE Trans. Smart Grid 2016, 9, 3652–3666. [Google Scholar] [CrossRef] [Green Version]
- Minchala-Avila, L.I.; Garza-Castañón, L.E.; Vargas-Martínez, A.; Zhang, Y. A review of optimal control techniques applied to the energy management and control of microgrids. Procedia Comput. Sci. 2015, 52, 780–787. [Google Scholar] [CrossRef] [Green Version]
- Roslan, M.; Hannan, M.; Ker, P.J.; Uddin, M. Microgrid control methods toward achieving sustainable energy management. Appl. Energy 2019, 240, 583–607. [Google Scholar] [CrossRef]
- Han, Y.; Li, H.; Shen, P.; Coelho, E.A.A.; Guerrero, J.M. Review of active and reactive power sharing strategies in hierarchical controlled microgrids. IEEE Trans. Power Electron. 2016, 32, 2427–2451. [Google Scholar] [CrossRef] [Green Version]
- Nejabatkhah, F.; Li, Y.W.; Tian, H. Power quality control of smart hybrid AC/DC microgrids: An overview. IEEE Access 2019, 7, 52295–52318. [Google Scholar] [CrossRef]
- Ahmed, M.; Meegahapola, L.; Vahidnia, A.; Datta, M. Stability and Control Aspects of Microgrid Architectures—A Comprehensive Review. IEEE Access 2020, 8, 144730–144766. [Google Scholar] [CrossRef]
- Espín-Sarzosa, D.; Palma-Behnke, R.; Núñez-Mata, O. Energy management systems for microgrids: Main existing trends in centralized control architectures. Energies 2020, 13, 547. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Bui, V.H.; Kim, H.M. Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience. Appl. Energy 2019, 240, 56–72. [Google Scholar] [CrossRef]
- Yamashita, D.Y.; Vechiu, I.; Gaubert, J.P. A review of hierarchical control for building microgrids. Renew. Sustain. Energy Rev. 2020, 118, 109523. [Google Scholar] [CrossRef]
- Villalón, A.; Rivera, M.; Salgueiro, Y.; Muñoz, J.; Dragičević, T.; Blaabjerg, F. Predictive Control for Microgrid Applications: A Review Study. Energies 2020, 13, 2454. [Google Scholar] [CrossRef]
- Bordons, C.; Garcia-Torres, F.; Ridao, M.A. Model Predictive Control of Microgrids; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Vasilakis, A.; Zafeiratou, I.; Lagos, D.; Hatziargyriou, N. The Evolution of Research in Microgrids Control. IEEE Open Access J. Power Energy 2020, 7. [Google Scholar] [CrossRef]
- Babayomi, O.; Li, Z.; Zhang, Z.; Sun, Y.; Dragicevic, T.; Rodriguez, J. The Role of Model Predictive Control in Microgrid Power Quality-A Survey. In Proceedings of the 2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Dubrovnik, Croatia, 28 September–1 October 2020; pp. 340–345. [Google Scholar]
- Camacho, E.F.; Bordons, C. Model Predictive Control; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Vasquez, J.C.; Guerrero, J.M.; Miret, J.; Castilla, M.; De Vicuna, L.G. Hierarchical control of intelligent microgrids. IEEE Ind. Electron. Mag. 2010, 4, 23–29. [Google Scholar] [CrossRef]
- Parliament, E. PE/55/2018/REV/1. OJ L 328, 21.12.2018, p. 1–77. (EUR-Lex-32018R1999-EN-EUR-Lex (europa.eu)). 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?toc=OJ:L:2018:328:TOC&uri=uriserv:OJ.L_.2018.328.01.0001.01.ENG (accessed on 23 December 2020).
- Holttinen, H.; Kiviluoma, J.; Flynn, D.; Smith, C.; Orths, A.; Eriksen, P.B.; Cutululis, N.A.; Soder, L.; Korpas, M.; Estanqueiro, A.; et al. System impact studies for near 100% renewable energy systems dominated by inverter based variable generation. IEEE Trans. Power Syst. 2020. [Google Scholar] [CrossRef]
- Hodge, B.M.S.; Jain, H.; Brancucci, C.; Seo, G.S.; Korpås, M.; Kiviluoma, J.; Holttinen, H.; Smith, J.C.; Orths, A.; Estanqueiro, A.; et al. Addressing technical challenges in 100% variable inverter-based renewable energy power systems. Wiley Interdiscip. Rev. Energy Environ. 2020, 9, e376. [Google Scholar] [CrossRef]
- Grunewald, P.; Diakonova, M. Flexibility, dynamism and diversity in energy supply and demand: A critical review. Energy Res. Soc. Sci. 2018, 38, 58–66. [Google Scholar] [CrossRef]
- Lannoye, E.; Flynn, D.; O’Malley, M. Evaluation of power system flexibility. IEEE Trans. Power Syst. 2012, 27, 922–931. [Google Scholar] [CrossRef]
- Heggarty, T.; Bourmaud, J.Y.; Girard, R.; Kariniotakis, G. Quantifying power system flexibility provision. Appl. Energy 2020, 279, 115852. [Google Scholar] [CrossRef]
- Lu, X.; Li, K.; Xu, H.; Wang, F.; Zhou, Z.; Zhang, Y. Fundamentals and business model for resource aggregator of demand response in electricity markets. Energy 2020, 204, 117885. [Google Scholar] [CrossRef]
- Pasetti, M.; Rinaldi, S.; Manerba, D. A virtual power plant architecture for the demand-side management of smart prosumers. Appl. Sci. 2018, 8, 432. [Google Scholar] [CrossRef] [Green Version]
- Majzoobi, A.; Khodaei, A. Application of microgrids in providing ancillary services to the utility grid. Energy 2017, 123, 555–563. [Google Scholar] [CrossRef]
- Mengelkamp, E.; Notheisen, B.; Beer, C.; Dauer, D.; Weinhardt, C. A blockchain-based smart grid: Towards sustainable local energy markets. Comput. Sci. Res. Dev. 2018, 33, 207–214. [Google Scholar] [CrossRef]
- Christidis, K.; Sikeridis, D.; Wang, Y.; Devetsikiotis, M. A framework for designing and evaluating realistic blockchain-based local energy markets. Appl. Energy 2021, 281, 115963. [Google Scholar] [CrossRef]
- Project, T. TradeRES—New Market Model for 100 % Renewable Power Systems. 2020. Available online: https://www.lneg.pt/en/project/traderesnew-markets-design-models-for-100-renewable-power-systems/ (accessed on 29 December 2020).
- Shao, C.; Ding, Y.; Siano, P.; Lin, Z. A framework for incorporating demand response of smart buildings into the integrated heat and electricity energy system. IEEE Trans. Ind. Electron. 2017, 66, 1465–1475. [Google Scholar] [CrossRef]
- Jarrou, A. Diagnostic de Défauts et Commande Tolérante Aux Défauts des Systèmes à Énergie Renouvelable. Ph.D. Thesis, Université de Lorraine, Nancy, France, 2020. [Google Scholar]
- Thenozhi, S.; Yu, W. Stability analysis of active vibration control of building structures using PD/PID control. Eng. Struct. 2014, 81, 208–218. [Google Scholar] [CrossRef]
- Marrasso, E.; Roselli, C.; Sasso, M.; Tariello, F. Global and local environmental and energy advantages of a geothermal heat pump interacting with a low temperature thermal micro grid. Energy Convers. Manag. 2018, 172, 540–553. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y. Fault-tolerant control for outdoor ventilation air flow rate in buildings based on neural network. Build. Environ. 2002, 37, 691–704. [Google Scholar] [CrossRef]
- Olivares, D.E.; Mehrizi-Sani, A.; Etemadi, A.H.; Cañizares, C.A.; Iravani, R.; Kazerani, M.; Hajimiragha, A.H.; Gomis-Bellmunt, O.; Saeedifard, M.; Palma-Behnke, R.; et al. Trends in microgrid control. IEEE Trans. Smart Grid 2014, 5, 1905–1919. [Google Scholar] [CrossRef]
- Mahdavi, N.; Braslavsky, J.H.; Seron, M.M.; West, S.R. Model predictive control of distributed air-conditioning loads to compensate fluctuations in solar power. IEEE Trans. Smart Grid 2017, 8, 3055–3065. [Google Scholar] [CrossRef]
- Casado-Vara, R.; Vale, Z.; Prieto, J.; Corchado, J.M. Fault-tolerant temperature control algorithm for IoT networks in smart buildings. Energies 2018, 11, 3430. [Google Scholar] [CrossRef] [Green Version]
- Reppa, V.; Papadopoulos, P.; Polycarpou, M.M.; Panayiotou, C.G. A distributed virtual sensor scheme for smart buildings based on adaptive approximation. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6–11 July 2014; pp. 99–106. [Google Scholar]
- Papadopoulos, P.M.; Reppa, V.; Polycarpou, M.M.; Panayiotou, C.G. Distributed adaptive sensor fault tolerant control for smart buildings. In Proceedings of the 2015 54th IEEE Conference on Decision and Control (CDC), IEEE, Osaka, Japan, 15–18 December 2015; pp. 3143–3148. [Google Scholar]
- Casado-Vara, R.; Sittón-Candanedo, I.; De la Prieta, F.; Rodríguez, S.; Calvo-Rolle, J.L.; Venayagamoorthy, G.K.; Vega, P.; Prieto, J. Edge Computing and Adaptive Fault-Tolerant Tracking Control Algorithm for Smart Buildings: A Case Study. Cybern. Syst. 2020, 51, 685–697. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, J. Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 2008, 32, 229–252. [Google Scholar] [CrossRef]
- Dong, J.; Yang, G.H. Reliable state feedback control of T–S fuzzy systems with sensor faults. IEEE Trans. Fuzzy Syst. 2014, 23, 421–433. [Google Scholar] [CrossRef]
- Ettouil, R.; Chabir, K.; Sauter, D.; Abdelkrim, M.N. Resilient synergetic control for fault tolerant control system. IFAC PapersOnLine 2018, 51, 908–913. [Google Scholar] [CrossRef]
- Talukdar, A.; Patra, A. Dynamic model-based fault tolerant control of variable air volume air conditioning system. HVAC Res. 2010, 16, 233–254. [Google Scholar] [CrossRef]
- Liu, X.F.; Dexter, A. Fault-tolerant supervisory control of VAV air-conditioning systems. Energy Build. 2001, 33, 379–389. [Google Scholar] [CrossRef]
- Fernandez, N.; Brambley, M.R.; Katipamula, S. Self-Correcting Hvac Controls: Algorithms for Sensors and Dampers in Air-Handling Units; Technical Report; Pacific Northwest National Lab. (PNNL): Richland, WA, USA, 2009. [Google Scholar]
- Zhang, Y.; Jiang, J. Design of restructurable active fault-tolerant control systems. IFAC Proc. Vol. 2002, 35, 101–106. [Google Scholar] [CrossRef]
- Najeh, H.; Singh, M.P.; Ploix, S.; Chabir, K.; Abdelkrim, M.N. Automatic thresholding for sensor data gap detection using statistical approach. In Sustainability in Energy and Buildings; Springer: Cham, Switzerland, 2020; pp. 455–467. [Google Scholar]
- Roth, K.W.; Westphalen, D.; Feng, M.Y.; Llana, P.; Quartararo, L. Energy Impact of Commercial Building Controls and Performance Diagnostics: Market Characterization, Energy Impact of Building Faults and Energy Savings Potential; Prepared by TAIX LLC for the US Department of Energy. November. (Table 2–1); US Department of Energy: Washington, DC, USA, 2005; 412p. [Google Scholar]
- Najeh, H.; Singh, M.P.; Ploix, S.; Chabir, K.; Abdelkrim, M.N. Diagnosis in buildings: New trends illustrated by an application. In Proceedings of the 2019 International Conference on Control, Automation and Diagnosis (ICCAD), IEEE, Paris, France, 7–9 October 2019; pp. 1–6. [Google Scholar]
- Blanke, M.; Kinnaert, M.; Lunze, J.; Staroswiecki, M.; Schröder, J. Diagnosis and Fault-Tolerant Control; Springer: Cham, Switzerland, 2006; Volume 2. [Google Scholar]
- Wu, N.E. Coverage in fault-tolerant control. Automatica 2004, 40, 537–548. [Google Scholar] [CrossRef]
- Staroswiecki, M. On reconfigurability with respect to actuator failures. IFAC Proc. Vol. 2002, 35, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Ploix, S.; Désinde, M.; Touaf, S. Automatic design of detection tests in complex dynamic systems. IFAC Proc. Vol. 2005, 38, 478–483. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Kien, N.T.; Najeh, H.; Ploix, S.; Caucheteux, A. Advancing Building Fault Diagnosis Using the Concept of Contextual and Heterogeneous Test. Energies 2019, 12, 2510. [Google Scholar] [CrossRef] [Green Version]
- Bollen, M.; Zhong, J.; Zavoda, F.; Meyer, J.; McEachern, A.; Lopez, F.C. Power quality aspects of smart grids. In Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ’10), Granada, Spain, 23–25 March 2010. [Google Scholar]
- Rodriguez, J.; Pontt, J.; Silva, C.A.; Correa, P.; Lezana, P.; Cortés, P.; Ammann, U. Predictive current control of a voltage source inverter. IEEE Trans. Ind. Electron. 2007, 54, 495–503. [Google Scholar] [CrossRef]
- Vazquez, S.; Montero, C.; Bordons, C.; Franquelo, L.G. Design and experimental validation of a model predictive control strategy for a VSI with long prediction horizon. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 5788–5793. [Google Scholar]
- Acuna, P.; Moran, L.; Rivera, M.; Dixon, J.; Rodriguez, J. Improved active power filter performance for renewable power generation systems. IEEE Trans. Power Electron. 2013, 29, 687–694. [Google Scholar] [CrossRef]
- Antoniewicz, K.; Jasinski, M.; Kazmierkowski, M.P.; Malinowski, M. Model predictive control for three-level four-leg flying capacitor converter operating as shunt active power filter. IEEE Trans. Ind. Electron. 2016, 63, 5255–5262. [Google Scholar]
- Liu, X.; Wang, D.; Peng, Z. Cascade-free fuzzy finite-control-set model predictive control for nested neutral point-clamped converters with low switching frequency. IEEE Trans. Control Syst. Technol. 2018, 27, 2237–2244. [Google Scholar] [CrossRef]
- Mohapatra, S.R.; Agarwal, V. Model Predictive Control for Flexible Reduction of Active Power Oscillation in Grid-tied Multilevel Inverters under Unbalanced and Distorted Microgrid Conditions. IEEE Trans. Ind. Appl. 2019, 56, 1107–1115. [Google Scholar] [CrossRef]
- Wu, M.; Tian, H.; Li, Y.W.; Konstantinou, G.; Yang, K. A composite selective harmonic elimination model predictive control for seven-level hybrid-clamped inverters with optimal switching patterns. IEEE Trans. Power Electron. 2020, 36, 274–284. [Google Scholar] [CrossRef]
- Aguilera, R.P.; Acuna, P.; Lezana, P.; Konstantinou, G.; Wu, B.; Bernet, S.; Agelidis, V.G. Selective harmonic elimination model predictive control for multilevel power converters. IEEE Trans. Power Electron. 2016, 32, 2416–2426. [Google Scholar] [CrossRef] [Green Version]
- Shan, Y.; Hu, J.; Li, Z.; Guerrero, J.M. A model predictive control for renewable energy based ac microgrids without any pid regulators. IEEE Trans. Power Electron. 2018, 33, 9122–9126. [Google Scholar] [CrossRef] [Green Version]
- Ahumada, C.; Cárdenas, R.; Saez, D.; Guerrero, J.M. Secondary control strategies for frequency restoration in islanded microgrids with consideration of communication delays. IEEE Trans. Smart Grid 2015, 7, 1430–1441. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Torres, F.; Valverde, L.; Bordons, C. Optimal load sharing of hydrogen-based microgrids with hybrid storage using model-predictive control. IEEE Trans. Ind. Electron. 2016, 63, 4919–4928. [Google Scholar] [CrossRef]
- Kayalvizhi, S.; Kumar, D.V. Load frequency control of an isolated micro grid using fuzzy adaptive model predictive control. IEEE Access 2017, 5, 16241–16251. [Google Scholar] [CrossRef]
- Lou, G.; Gu, W.; Xu, Y.; Cheng, M.; Liu, W. Distributed MPC-based secondary voltage control scheme for autonomous droop-controlled microgrids. IEEE Trans. Sustain. Energy 2016, 8, 792–804. [Google Scholar] [CrossRef]
- Kerdphol, T.; Rahman, F.S.; Mitani, Y.; Hongesombut, K.; Küfeoğlu, S. Virtual inertia control-based model predictive control for microgrid frequency stabilization considering high renewable energy integration. Sustainability 2017, 9, 773. [Google Scholar] [CrossRef] [Green Version]
- Gómez, J.S.; Sáez, D.; Simpson-Porco, J.W.; Cárdenas, R. Distributed predictive control for frequency and voltage regulation in microgrids. IEEE Trans. Smart Grid 2019, 11, 1319–1329. [Google Scholar] [CrossRef]
- D’Agostino, D.; Mazzarella, L. What is a Nearly zero energy building? Overview, implementation and comparison of definitions. J. Build. Eng. 2019, 21, 200–212. [Google Scholar] [CrossRef]
- Fontenot, H.; Dong, B. Modeling and control of building-integrated microgrids for optimal energy management—A review. Appl. Energy 2019, 254, 113689. [Google Scholar] [CrossRef]
- Bartolucci, L.; Cordiner, S.; Mulone, V.; Rocco, V.; Rossi, J.L. Renewable source penetration and microgrids: Effects of MILP-Based control strategies. Energy 2018, 152, 416–426. [Google Scholar] [CrossRef]
- Lešić, V.; Martinčević, A.; Vašak, M. Modular energy cost optimization for buildings with integrated microgrid. Appl. Energy 2017, 197, 14–28. [Google Scholar] [CrossRef]
- Bruni, G.; Cordiner, S.; Mulone, V.; Sinisi, V.; Spagnolo, F. Energy management in a domestic microgrid by means of model predictive controllers. Energy 2016, 108, 119–131. [Google Scholar] [CrossRef]
- Korkas, C.D.; Baldi, S.; Michailidis, I.; Kosmatopoulos, E.B. Occupancy-based demand response and thermal comfort optimization in microgrids with renewable energy sources and energy storage. Appl. Energy 2016, 163, 93–104. [Google Scholar] [CrossRef]
- Jin, X.; Jiang, T.; Mu, Y.; Long, C.; Li, X.; Jia, H.; Li, Z. Scheduling distributed energy resources and smart buildings of a microgrid via multi-time scale and model predictive control method. IET Renew. Power Gener. 2018, 13, 816–833. [Google Scholar] [CrossRef]
- Venkat, A.N.; Hiskens, I.A.; Rawlings, J.B.; Wright, S.J. Distributed MPC strategies with application to power system automatic generation control. IEEE Trans. Control Syst. Technol. 2008, 16, 1192–1206. [Google Scholar] [CrossRef]
- Bruni, G.; Cordiner, S.; Mulone, V.; Rocco, V.; Spagnolo, F. A study on the energy management in domestic microgrids based on model predictive control strategies. Energy Convers. Manag. 2015, 102, 50–58. [Google Scholar] [CrossRef]
- Baldi, S.; Karagevrekis, A.; Michailidis, I.T.; Kosmatopoulos, E.B. Joint energy demand and thermal comfort optimization in photovoltaic-equipped interconnected microgrids. Energy Convers. Manag. 2015, 101, 352–363. [Google Scholar] [CrossRef] [Green Version]
- Touretzky, C.R.; Baldea, M. Integrating scheduling and control for economic MPC of buildings with energy storage. J. Process Control 2014, 24, 1292–1300. [Google Scholar] [CrossRef]
- Al Faruque, M.A.; Ahourai, F. GridMat: Matlab toolbox for GridLAB-D to analyze grid impact and validate residential microgrid level energy management algorithms. In Proceedings of the ISGT 2014, IEEE, Kuala Lumpur, Malaysia, 20–23 May 2014; pp. 1–5. [Google Scholar]
- Liu, K.; Liu, T.; Tang, Z.; Hill, D.J. Distributed MPC-based frequency control in networked microgrids with voltage constraints. IEEE Trans. Smart Grid 2019, 10, 6343–6354. [Google Scholar] [CrossRef]
- Khalilnejad, A.; French, R.H.; Abramson, A.R. Data-driven evaluation of HVAC operation and savings in commercial buildings. Appl. Energy 2020, 278, 115505. [Google Scholar] [CrossRef]
- Ouammi, A.; Achour, Y.; Dagdougui, H.; Zejli, D. Optimal operation scheduling for a smart greenhouse integrated microgrid. Energy Sustain. Dev. 2020, 58, 129–137. [Google Scholar] [CrossRef]
- Lešić, V.; Vašak, M.; Martinčević, A.; Novak, H. Nonlinear hierarchical building zone and microgrid control based on sensitivity analysis. In Proceedings of the 2017 21st International Conference on Process Control (PC), Strbske Pleso, Slovakia, 6–9 June 2017; pp. 321–326. [Google Scholar]
- Vasilj, J.; Gros, S.; Jakus, D.; Zanon, M. Day-ahead scheduling and real-time Economic MPC of CHP unit in Microgrid with Smart buildings. IEEE Trans. Smart Grid 2017, 10, 1992–2001. [Google Scholar] [CrossRef]
- Sharma, I.; Dong, J.; Malikopoulos, A.A.; Street, M.; Ostrowski, J.; Kuruganti, T.; Jackson, R. A modeling framework for optimal energy management of a residential building. Energy Build. 2016, 130, 55–63. [Google Scholar] [CrossRef]
- Carli, R.; Dotoli, M.; Jantzen, J.; Kristensen, M.; Othman, S.B. Energy scheduling of a smart microgrid with shared photovoltaic panels and storage: The case of the Ballen marina in Samsø. Energy 2020, 198, 117188. [Google Scholar] [CrossRef]
- Rigaut, T.; Nassiopoulos, A.; Bourquin, F.; Giroux, P.; Pény, A. Model predictive control for energy and climate management of a subway station thermo-electrical microgrid. Transp. Res. Procedia 2016, 14, 926–935. [Google Scholar] [CrossRef] [Green Version]
- Pombeiro, H.; Machado, M.J.; Silva, C. Dynamic programming and genetic algorithms to control an HVAC system: Maximizing thermal comfort and minimizing cost with PV production and storage. Sustain. Cities Soc. 2017, 34, 228–238. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, Y.; Yan, C.; Wang, S. MPC-based optimal scheduling of grid-connected low energy buildings with thermal energy storages. Energy Build. 2015, 86, 415–426. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, F.; Wang, R.; Kazemtabrizi, B.; Shi, J. Uncertainty-resistant stochastic MPC approach for optimal operation of CHP microgrid. Energy 2019, 179, 1265–1278. [Google Scholar] [CrossRef]
- Verrilli, F.; Srinivasan, S.; Gambino, G.; Canelli, M.; Himanka, M.; Del Vecchio, C.; Sasso, M.; Glielmo, L. Model predictive control-based optimal operations of district heating system with thermal energy storage and flexible loads. IEEE Trans. Autom. Sci. Eng. 2016, 14, 547–557. [Google Scholar] [CrossRef]
- Pombeiro, H.; Santos, R.; Carreira, P.; Silva, C.; Sousa, J.M. Comparative assessment of low-complexity models to predict electricity consumption in an institutional building: Linear regression vs. fuzzy modeling vs. neural networks. Energy Build. 2017, 146, 141–151. [Google Scholar] [CrossRef]
- Hidalgo-Rodríguez, D.I.; Myrzik, J. Optimal Operation of Interconnected Home-Microgrids with Flexible Thermal Loads: A Comparison of Decentralized, Centralized, and Hierarchical-Distributed Model Predictive Control. In Proceedings of the 2018 Power Systems Computation Conference (PSCC), Dublin, Ireland, 11–15 June 2018; pp. 1–7. [Google Scholar]
- Hajar, K.; Hably, A.; Bacha, S.; Elrafhi, A.; Obeid, Z. An application of a centralized model predictive control on microgrids. In Proceedings of the Power Energy Conference (EPEC 2016), Ottawa, ON, Canada, 12–14 October 2016. [Google Scholar]
- Garcia-Torres, F.; Bordons, C.; Tobajas, J.; Márquez, J.J.; Garrido-Zafra, J.; Moreno-Muñoz, A. Optimal Schedule for Networked Microgrids Under Deregulated Power Market Environment Using Model Predictive Control. IEEE Trans. Smart Grid 2021, 12, 182–191. [Google Scholar] [CrossRef]
- Gan, L.K.; Zhang, P.; Lee, J.; Osborne, M.A.; Howey, D.A. Data-Driven Energy Management System With Gaussian Process Forecasting and MPC for Interconnected Microgrids. IEEE Trans. Sustain. Energy 2021, 12, 695–704. [Google Scholar] [CrossRef]
- del Real, A.J.; Arce, A.; Bordons, C. An Integrated Framework for Distributed Model Predictive Control of Large-Scale Power Networks. IEEE Trans. Ind. Inform. 2014, 10, 197–209. [Google Scholar] [CrossRef]
- Xing, X.; Xie, L.; Meng, H. Cooperative energy management optimization based on distributed MPC in grid-connected microgrids community. Int. J. Electr. Power Energy Syst. 2019, 107, 186–199. [Google Scholar] [CrossRef]
- Ananduta, W.; Maestre, J.M.; Ocampo-Martinez, C.; Ishii, H. Resilient distributed model predictive control for energy management of interconnected microgrids. Optim. Control Appl. Methods 2020, 41, 146–169. [Google Scholar] [CrossRef] [Green Version]
- Parisio, A.; Wiezorek, C.; Kyntäjä, T.; Elo, J.; Strunz, K.; Johansson, K.H. Cooperative MPC-Based Energy Management for Networked Microgrids. IEEE Trans. Smart Grid 2017, 8, 3066–3074. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536. [Google Scholar] [CrossRef] [Green Version]
- Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; McCallum, P.; Peacock, A. Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renew. Sustain. Energy Rev. 2019, 100, 143–174. [Google Scholar] [CrossRef]
- Swan, M. Blockchain: Blueprint for a New Economy; O’Reilly Media Inc.: Newton, MA, USA, 2015. [Google Scholar]
- Shafie-khah, M. Blockchain-Based Smart Grids; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Novo, O. Blockchain meets IoT: An architecture for scalable access management in IoT. IEEE Internet Things J. 2018, 5, 1184–1195. [Google Scholar] [CrossRef]
- Dorri, A.; Kanhere, S.S.; Jurdak, R. Towards an optimized blockchain for IoT. In Proceedings of the 2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI), Pittsburgh, PA, USA, 18–21 April 2017; pp. 173–178. [Google Scholar]
- Wang, Y.; Su, Z.; Zhang, N. BSIS: Blockchain-Based Secure Incentive Scheme for Energy Delivery in Vehicular Energy Network. IEEE Trans. Ind. Inform. 2019, 15, 3620–3631. [Google Scholar] [CrossRef]
Method | Objective | Validation | Main Contributions | Limitations | Ref |
---|---|---|---|---|---|
FCS MPC | Active power filter with harmonics | Laboratory Test Bench | The use of a four-leg voltage inverter allows the compensation of current harmonic components and unbalanced current in the microgrid | Steady state error if the model is not accurate | [58,59,60,61] |
SHE MPC | Voltage control with nonlinear and unbalanced loads | Laboratory Test Bench | Composite strategy that combines SHE-PWM and MPC, which uses the SHE-PWM in the modulation part to generate the real-time output voltage level, capacitor voltage balancing and switching frequency control | Complexity of the power inverter topology. Transition between islanded and connected mode | [62] |
FCS MPC SHE | To track the converter output current reference in transients, while preserving the SHE voltage pattern in steady-state | Laboratory Test Bench | A fast dynamic response is obtained throughout transients, while a predefined voltage and current spectrum with a low switching frequency is achieved in steady-state | Transition between islanded and grid-connected mode | [63] |
GPC+SP | To restore frequency in islanded mode | Simulation | Faster speed with fewer oscillations | Slower dynamic performance | [65] |
Hybrid MPC | Active Power Sharing in Grid-Connected Mode | Laboratory Test Bench | Including economic operation of a hybrid ESS | Reactive Power Balance is not included | [66] |
Fuzzy Adaptive MPC | Load frequency for an isolated microgrid | Simulation | Faster response with damped oscillations | Stability of the controller is not guaranteed | [67] |
DMPC | Secondary Voltage Control | Simulation | Distributed Voltage and Frequency Restoration in Autonomous Microgrids | Transient response subject to proportional integral terms | [68] |
Fuzzy MPC | Microgrid Frequency Stabilization | Simulation | Stabilization of the microgrid frequency through the incorporation of a virtual inertia system based on MPC | Instability owing to fuzzy component of the controller | [69] |
DMPC | Voltage and Frequency Regulation | Laboratory Test Bench | Compensation of the communication issues. Consensus as to the active and reactive shared power | Slower Dynamic owing to inclusion of communication | [70] |
Configuration | Main Contributions | Limitations | Ref |
---|---|---|---|
Island system with PV, batteries and residential buildings | Considers nonlinearity of the system dynamics, ensures the smooth operation of the storage system | Computational complexity may increase exponentially | [80] [79] |
PV, Utility grid and building infrastructure | Variety of infrastructure options have been explored, integration with the main utility grid and consideration of prices and tariffs | Limited in the configuration as only PV system is considered | [65] |
PV, wind turbines, electric battery and buildings | Demand management to smooth the battery operation and utmost energy saving, consideration of occupancy schedule | Occupant activity may also affect thermal comfort, weather data are presumed and curtailed to specific season | [76] |
PV, electric battery, and buildings | Weather forecast error is considered in the dynamics of PV operation | Dedicated robust MPC techniques may aid weather consideration in the building dynamics and controller dynamics as well | [88] |
PV, chiller, electric battery, and buildings | Hierarchical control architecture is explored, local optimization at the building level eliminated the need of the data transfer and resulting further data protection | Coupling in the local optimization problems is ignored and may not cater for a global optimal solution | [81] |
Combined heat production (CHP), electric storage and buildings | Solution for day-ahead real-time scheduling, price forecasting through stochastic optimization | Occupancy behavior and weather forecast errors are ignored, the proposed architecture may be complex for a large number of building infrastructures | [87] |
Fuel cell, Diesel generator, electric storage, and buildings | Multi-scale MPC: i) day-ahead scheduling for building energy management ii) inter-hour MPC to smoothen DER fluctuations | Short term forecasting may affect the scheduling drastically, as two optimization problems are solved simultaneously and data are exchanged, the process delays can affect the performance | [77] |
Method | Controller Validation | Main Contributions | Limitations | Ref |
---|---|---|---|---|
Comparison | Simulation | Decentralized, Centralized and Distributed approaches. | Trade-off among local balancing and storage losses and scalability | [96] |
Centralized | ||||
MPC | Simulation | Nonlinear optimization. | [97] | |
Economic MPC | Simulation | Flexible formulation, Integer programming, Fault accommodation. | [98] | |
Stochastic MPC | Laboratory-scaled | Use of Gaussian Processes to improve the forecasting of renewable resources. | Computationally expensive | [99] |
Distributed | ||||
Lagrange Multipliers DMPC | Simulation | Setting of a framework to model large-scale microgrids. | Scalability | [100] |
Cooperative logarithmic-barrier method | Experimental | Optimal results in an iterative method. | Iterative Computational load | [101] |
Stochastic DMPC | Simulation | Resilient approach and fault accommodation. | [102] | |
Hierarchical DMPC | Simulation | Hierarchical approach using MILP. | Number of integer variables | [103] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Torres, F.; Zafra-Cabeza, A.; Silva, C.; Grieu, S.; Darure, T.; Estanqueiro, A. Model Predictive Control for Microgrid Functionalities: Review and Future Challenges. Energies 2021, 14, 1296. https://doi.org/10.3390/en14051296
Garcia-Torres F, Zafra-Cabeza A, Silva C, Grieu S, Darure T, Estanqueiro A. Model Predictive Control for Microgrid Functionalities: Review and Future Challenges. Energies. 2021; 14(5):1296. https://doi.org/10.3390/en14051296
Chicago/Turabian StyleGarcia-Torres, Felix, Ascension Zafra-Cabeza, Carlos Silva, Stephane Grieu, Tejaswinee Darure, and Ana Estanqueiro. 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges" Energies 14, no. 5: 1296. https://doi.org/10.3390/en14051296
APA StyleGarcia-Torres, F., Zafra-Cabeza, A., Silva, C., Grieu, S., Darure, T., & Estanqueiro, A. (2021). Model Predictive Control for Microgrid Functionalities: Review and Future Challenges. Energies, 14(5), 1296. https://doi.org/10.3390/en14051296