The Impact of Weather Factors on Quotations of Energy Sector Companies on Warsaw Stock Exchange
Abstract
:1. Introduction
2. Literature Review
- Cognitive evaluations inducing emotional reactions–documented by psychologists’ researches [21].
- Emotions informing cognitive evaluations–optimistic mood tends to make optimistic judgements and negative–negative judgements [22].
- Feelings affecting individual’s behavior–the problem was raised in Damasio’s study [23], where it was climbed that emotions play a key-role in the making decision process in terms of uncertainty and risk.
3. Materials and Methods
- −
- logarithmic rates of return;
- −
- logarithmic changes of trading volume;
- −
- logarithmic changes of trading volume value.
- −
- logarithmic rates of return (normal and lagged);
- −
- average temperature;
- −
- Sum of falls (mm)
- −
- Sunshine duration (hours)
- −
- Time of rain fall (hours)
- −
- Time of snow fall (hours)
- −
- Time of sleety rain falls (hours)
- −
- Average daily cloudiness (octants)
- −
- Average daily wind speed (meters per second)
- −
- Average daily humidity (%)
- −
- Average daily pressure (hPa)
4. Results
5. Discussion
6. Conclusions
- The best approximation for such kind of variables gave the (G)ARCH-type models.
- The weather factors could be significant for the trading factors’ regression.
- The variables connected to time of falls have the weakest influence on stock exchange parameters.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clemmons, L. Introduction to Weather Risk Management, Weather Risk Management. In Markets, Products and Applications; Banks, E., Ed.; Palgrave: New York, NY, USA, 2002; p. 3. [Google Scholar]
- Pres, J. Measuring Non-Catastrophic Weather Risks for Businesses. Geneva Pap. Risk Insur. Issues Pract. 2009, 34, 425–439. [Google Scholar] [CrossRef] [Green Version]
- Bilan, Y.; Mentel, G.; Streimikiene, D.; Szetela, B. Weather Risk Management in the Weather-VaR Approach. Assumptions of Value-at-Risk Modeling. Econ. Comput. Econ. Cybern. Stud. Res. 2020, 54, 31–48. [Google Scholar] [CrossRef]
- Colacito, R.; Hoffmann, B.; Phan, T. Temperature and Growth: A Panel Analysis of the United States. J. Money Crédit. Bank. 2018, 51, 313–368. [Google Scholar] [CrossRef]
- Moore, F.C.; Diaz, D.B. Temperature impacts on economic growth warrant stringent mitigation policy. Nat. Clim. Chang. 2015, 5, 127–131. [Google Scholar] [CrossRef]
- Moore, F.; Lobell, D. Adaptation potential of European agriculture in response to climate change. Nat. Clim. Chang. 2014, 4, 610–614. [Google Scholar] [CrossRef]
- Lu, S.; Bai, X.; Zhang, X.; Li, W.; Tang, Y. The impact of climate change on the sustainable development of regional economy. J. Clean. Prod. 2019, 233, 1387–1395. [Google Scholar] [CrossRef]
- Cunningham, M.R. Weather, mood, and helping behavior: Quasi experiments with the sunshine samaritan. J. Personal. Soc. Psychol. 1979, 37, 1947–1956. [Google Scholar] [CrossRef]
- Shim, H.; Kim, H.; Kim, J.; Ryu, D. Weather and stock market volatility: The case of a leading emerging market. Appl. Econ. Lett. 2014, 22, 987–992. [Google Scholar] [CrossRef]
- Sariannidis, N.; Giannaraki, G.; Partalidou, X. The Effect of Weather on the European Stock Market: The Case of Dow Jones Sustainability Europe Index. Int. J. Soc. Econ. 2016, 43, 943–958. [Google Scholar] [CrossRef]
- Sheikh, M.F.; Shah, S.Z.A.; Mahmood, S. Weather Effects on Stock Returns and Volatility in South Asian Markets. Asia-Pac. Financ. Mark. 2017, 24, 75–107. [Google Scholar] [CrossRef] [Green Version]
- Hirshleifer, D.; Shumway, T. Good Day Sunshine: Stock Returns and the Weather. J. Financ. 2003, 58, 1009–1032. [Google Scholar] [CrossRef]
- Howarth, E.; Hoffman, M.S. A multidimensional approach to the relationship between mood and weather. Br. J. Psychol. 1984, 75, 15–23. [Google Scholar] [CrossRef]
- Saunders, E.M. Stock prices and wall street weather. Am. Econ. Rev. 1993, 83, 1337–1345. [Google Scholar]
- Kamstra, M.J.; Kramer, L.A.; Levi, M.D. Winter Blues: A SAD Stock Market Cycle. Am. Econ. Rev. 2003, 93, 324–343. [Google Scholar] [CrossRef] [Green Version]
- Kamstra, M.J.; Kramer, L.A.; Levi, M.D. Losing Sleep at the Market: The Daylight Saving Anomaly. Am. Econ. Rev. 2000, 90, 1005–1011. [Google Scholar] [CrossRef] [Green Version]
- Shafi, K.; Mohammadi, A. Too gloomy to invest: Weather-induced mood and crowdfunding. J. Corp. Financ. 2020, 65, 101761. [Google Scholar] [CrossRef]
- Fama, E. Efficient Capital Markets: A Review of Theory and Empirical Work. J. Financ. 1970, 25, 383–417. [Google Scholar] [CrossRef]
- Nofsinger, J.R. The Psychology of Investing, 4th ed.; Pearson Education Inc.: New York, NY, USA, 2011. [Google Scholar]
- Loewenstein, G.F.; Weber, E.U.; Hsee, C.K.; Welch, N. Risk as feelings. Psychol. Bull. 2001, 127, 267. [Google Scholar] [CrossRef]
- Zajonc, R.B. Feeling and thinking: Preferences need no inferences. Am. Psychol. 1980, 35, 151. [Google Scholar] [CrossRef]
- Johnson, E.J.; Tversky, A. Affect, generalization, and the perception of risk. J. Personal. Soc. Psychol. 1983, 45, 20. [Google Scholar] [CrossRef]
- Damasio, A.R. Descartes’ Error. Emotions, Reason and a Human Brain; Avon Books: New York, NY, USA, 1995. [Google Scholar]
- Cavalheiro, E.A.; Vieira, K.M.; Ceretta, P.S.; de Lima Trindade, L.; Tavares, C.E.M. Misattribution Bias: The Role of Emotion in Risk Tolerance. IUP J. Behav. Financ. 2011, 8, 25. [Google Scholar]
- Cajueiro, D.O.; Tabak, B.M. Ranking efficiency for emerging markets. Chaos Solitons Fractals 2004, 22, 349–352. [Google Scholar] [CrossRef]
- Rind, B. Effect of Beliefs About Weather Conditions on Tipping. J. Appl. Soc. Psychol. 1996, 26, 137–147. [Google Scholar] [CrossRef]
- Cao, N.; Wei, J. Stock Market Returns: A Note on Temperature Anomaly. J. Bank. Financ. 2005, 29, 1559–1573. [Google Scholar] [CrossRef]
- Tufan, E.; Hamarat, B. Do cloudy days affect stock exchange returns: Evidence from Istanbul stock exchange. J. Nav. Sci. Eng. 2004, 2, 117–126. [Google Scholar]
- Yoon, S.-M.; Kang, S.H. Weather effects on returns: Evidence from the Korean stock market. Phys. A Stat. Mech. Its Appl. 2009, 388, 682–690. [Google Scholar] [CrossRef]
- Shahzad, F. Does weather influence investor behavior, stock returns, and volatility? Evidence from the Greater China region. Phys. A Stat. Mech. Its Appl. 2019, 523, 525–543. [Google Scholar] [CrossRef]
- Kang, S.H.; Jiang, Z.; Lee, Y.; Yoon, S.-M. Weather effects on the returns and volatility of the Shanghai stock market. Phys. A Stat. Mech. Its Appl. 2010, 389, 91–99. [Google Scholar] [CrossRef]
- Mugerman, Y.; Yidov, O.; Wiener, Z. By the light of day: The effect of the switch to winter time on stock markets. J. Int. Financ. Mark. Inst. Money 2020, 65, 101197. [Google Scholar] [CrossRef]
- Apergis, N.; Gupta, R. Can (unusual) weather conditions in New York predict South African stock returns? Res. Int. Bus. Financ. 2017, 41, 377–386. [Google Scholar] [CrossRef]
- Hirshleifer, D.; Jiang, D.; DiGiovanni, Y.M. Mood beta and seasonalities in stock returns. J. Financ. Econ. 2020, 137, 272–295. [Google Scholar] [CrossRef]
- Daglis, T.; Konstantakis, K.N.; Michaelides, P.G.; Papadakis, T.E. The forecasting ability of solar and space weather data on NASDAQ’s finance sector price index volatility. Res. Int. Bus. Financ. 2020, 52, 101147. [Google Scholar] [CrossRef]
- Keef, S.P.; Khaled, M.S. Are investors moonstruck? Further international evidence on lunar phases and stock returns. J. Empir. Financ. 2011, 18, 56–63. [Google Scholar] [CrossRef]
- Bassi, A.; Colacito, R.; Fulghieri, P. ’O sole mio’: An experimental analysis of weather and risk attitudes in financial decisions. Rev. Financ. Stud. 2013, 26, 1824–1852. [Google Scholar] [CrossRef]
- Chang, T.; Nieh, C.-C.; Yang, M.J.; Yang, T.-Y. Are stock market returns related to the weather effects? Empirical evidence from Taiwan. Phys. A Stat. Mech. Appl. 2006, 364, 343–354. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Lin, C.-T.; Lin, J.D. Does weather impact the stock market? Empirical evidence in Taiwan. Qual. Quant. 2011, 46, 695–703. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Shih, K.-H.; Jang, J.-W. Relationship among weather effects, investors’ moods and stock market risk: An analysis of bull and bear markets in Taiwan, Japan and Hong Kong. Panoeconomicus 2018, 65, 239–253. [Google Scholar] [CrossRef]
- Frühwirth, M.; Sögner, L. Weather and SAD related mood effects on the financial market. Q. Rev. Econ. Financ. 2015, 57, 11–31. [Google Scholar] [CrossRef]
- Brzeszczyński, J.; Kelm, R. Ekonometryczne modele rynków finansowych; Wig-Press: Warszawa, Poland, 2002. [Google Scholar]
- Szetela, B.; Mentel, G.; Mentel, U.; Bilan, Y. Directional Movement Distribution in the Bitcoin Markets. Eng. Econ. 2020, 31, 188–196. [Google Scholar] [CrossRef]
- Hou, J.; Shi, W.; Sun, J. Stock Returns, weather, and air conditioning. PLoS ONE 2019, 14, e0219439. [Google Scholar] [CrossRef]
- Peillex, J.; Ouadghiri, I.E.; Gomes, M.; Jaballah, J. Extreme heat and stock market activity. Ecol. Econ. 2021, 179, 106810. [Google Scholar] [CrossRef]
- Majewski, S.; Tarczynski, W.; Tarczynska-Luniewska, M. Measuring investors’ emotions using econometric models of trading volume of stock exchange indexes. Investig. Manag. Financ. Innov. 2020, 17, 281–291. [Google Scholar] [CrossRef]
- Engle, R.F. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica 1982, 50, 987. [Google Scholar] [CrossRef]
- Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econ. 1986, 31, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.B. Stationarity and Persistence in the GARCH(1,1) Model. Econ. Theory 1990, 6, 318–334. [Google Scholar] [CrossRef]
- Dekkers, A.L.M.; Einmahl, J.H.J.; De Haan, L. A Moment Estimator for the Index of an Extreme-Value Distribution. Ann. Stat. 1989, 17, 1833–1855. [Google Scholar] [CrossRef]
- Pickands, J., III. Statistical inference using extreme order statistics. Ann. Stat. 1975, 3, 119–131. [Google Scholar]
- Shi, X.; Kobayashi, M. Testing for jumps in the EGARCH process. Math. Comput. Simul. 2009, 79, 2797–2808. [Google Scholar] [CrossRef]
- Nelson, D.B. Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica 1991, 59, 347. [Google Scholar] [CrossRef]
- Higgins, M.L.; Bera, A.K. A Class of Nonlinear Arch Models. Int. Econ. Rev. 1992, 33, 137. [Google Scholar] [CrossRef]
- Glosten, L.R.; Jagannathan, R.; Runkle, D.E. On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. J. Financ. 1993, 48, 1779–1801. [Google Scholar] [CrossRef]
- Franses, P.H.; Van Dijk, D. Forecasting stock market volatility using (non-linear) Garch models. J. Forecast. 1996, 15, 229–235. [Google Scholar] [CrossRef]
- Ding, Z.; Granger, C.W.J.; Engle, R.F. A long memory property of stock market returns and a new model. J. Empir. Financ. 1993, 1, 83–106. [Google Scholar] [CrossRef]
- Taylor, S.J. Modeling Financial Time Series; John Wiley and Sons: Chichester, UK, 1986. [Google Scholar]
- Schwert, G.W. Why Does Stock Market Volatility Change Over Time? J. Financ. 1989, 44, 1115–1153. [Google Scholar] [CrossRef]
- Bollerslev, T. Glossary to ARCH (GARCH). SSRN Electron. J. 2008. [Google Scholar] [CrossRef] [Green Version]
- Zakoian, J.-M. Threshold heteroskedastic models. J. Econ. Dyn. Control. 1994, 18, 931–955. [Google Scholar] [CrossRef]
- Echaust, K.; Małgorzata, J. Implied Correlation Index: An Application to Economic Sectors of Commodity Futures and Stock Markets. Eng. Econ. 2020, 31, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Digon, E.; Bock, H.B. Suicides and Climatology. Arch. Environ. Health Int. J. 1966, 12, 279–286. [Google Scholar] [CrossRef]
- Keller, M.C.; Fredrickson, B.L.; Ybarra, O.; Cote, S.; Johnson, K.; Mikels, J.; Conway, A.; Wager, T. A Warm Heart and a Clear Head: The Contingent Effects of Weather on Mood and Cognition. Psychol. Sci. 2005, 16, 724–731. [Google Scholar] [CrossRef]
Parameter | Coefficient | st. Error | z | p-Value |
---|---|---|---|---|
Models for Bedzin, localization-Poznan | ||||
Model: Taylor/Schwert’s GARCH(1,1) (Normal) | ||||
const | −3.539172 | 0.007038 | −502.823 | 0.0000 *** |
av. temperature | 0.003201 | 0.000331 | 9.657 | 4.60 × 10−22 *** |
sum of falls | 0.001498 | 0.000255 | 5.877 | 4.18 × 10−9 *** |
sunshine duration | 0.004999 | 0.000414 | 12.071 | 1.49 × 10−33 *** |
time of rainfall | −0.010569 | 0.000486 | −21.774 | 4.48 × 10−105 *** |
av. d. cloudiness | 0.004285 | 0.000345 | 12.431 | 1.86 × 10−35 *** |
av. d. humidity | 0.003347 | 5.81538 × 10−5 | 57.562 | 0.0000 *** |
av. d. pressure | 0.003204 | 8.62110 × 10−6 | 371.613 | 0.0000 *** |
Rt | −7.290827 | 0.402704 | −18.101 | 2.93 × 10−73 *** |
Rt-1 | 1.595134 | 0.203706 | 7.831 | 4.86 × 10−15 *** |
Models for Energa, localization–Gdansk | ||||
Model: Taylor/Schwert’s GARCH(0,1) (Normal) | ||||
const | 0.183705 | 0.074777 | 2.457 | 0.0140 ** |
sunshine duration | −0.008466 | 0.004754 | −1.781 | 0.0749 * |
av. d. cloudiness | −0.027144 | 0.010643 | −2.550 | 0.0108 ** |
Rt | 3.59017 | 0.466560 | 7.695 | 1.42 × 10−14 *** |
Rt-1 | −1.63433 | 0.845982 | −1.932 | 0.0534 * |
Models for Kogenera, localization-Wroclaw | ||||
Model: Taylor/Schwert’s GARCH(1,1) (Normal) | ||||
const | 11.727742 | 0.013759 | 852.300 | 0.0000 *** |
Rt-1 | 1.086630 | 0.189142 | 5.745 | 9.19 × 10−9 *** |
Rt-2 | 2.698861 | 0.161277 | 16.730 | 7.36 × 10−63 *** |
av. temperature | 0.006169 | 0.000514 | 11.990 | 3.82 × 10−33 *** |
sum of falls | −0.020487 | 0.000683 | −29.970 | 2.28 × 10−197 *** |
sunshine duration | −0.028149 | 0.000325 | −86.490 | 0.0000 *** |
time of rainfall | −0.018224 | 0.001685 | −10.810 | 2.95 × 10−27 *** |
t. of sleety rain falls | −0.070292 | 0.000347 | −202.700 | 0.0000 *** |
av. d. cloudiness | −0.022197 | 0.000296 | −74.920 | 0.0000 *** |
av. d. wind speed | 0.001907 | 0.000322 | 5.924 | 3.14 × 10−9 *** |
av. d. pressure | −0.011272 | 2.08507 × 10−5 | −540.600 | 0.0000 *** |
Models for PAK, localization-Konin | ||||
Model: GARCH (0,2) | ||||
const | 0.033119 | 0.027313 | 1.213 | 0.2253 |
Rt | 3.093256 | 1.215881 | 2.544 | 0.0110 ** |
sum of falls | −0.013160 | 0.007697 | −1.710 | 0.0873 * |
Models for PGE, localization-Warsaw | ||||
Model: Taylor/Schwert’s GARCH(2,2) (Normal) | ||||
const | 2.067465 | 0.003243 | 637.500 | 0.0000 *** |
Rt | 1.339902 | 0.219941 | 6.092 | 1.11 × 10−9 *** |
av. d. pressure | −0.002022 | 8.02564 × 10−6 | −252.000 | 0.0000 *** |
Models for Polenerga, localization–Warsaw | ||||
Model: GARCH(0,1) | ||||
const | −0.173780 | 0.658214 | −1.048 | 0.2946 |
sum of falls | −0.014658 | 0.844329 | −1.736 | 0.0825 * |
time of snow falls | −0,.250481 | 0.010274 | −2.438 | 0.0148 ** |
av. d. cloudiness | −0.032682 | 0.019214 | −1.701 | 0.0890 * |
av. d. humidity | 0.004782 | 0.002776 | 1.722 | 0.0850 * |
Models for Tauron, localization-Katowice | ||||
Model: Taylor/Schwert’s GARCH(0,1) (Normal) | ||||
const | −0.632573 | 0.004384 | −144.300 | 0.0000 *** |
Rt | 1.386932 | 0.175820 | 7.888 | 3.06 × 10−15 *** |
Rt-1 | −1.035316 | 0.463896 | −2.232 | 0.0256 ** |
sunshine duration | 0.003364 | 0.001850 | 1.818 | 0.0690 * |
av. d. pressure | 0.000603 | 1.03895 × 10−5 | 58.030 | 0.0000 *** |
Parameter | Coefficient | st. Error | z | p-Value |
---|---|---|---|---|
Models for Bedzin, localization-Poznan | ||||
Model: Taylor/Schwert’s GARCH(1,1) (Normal) | ||||
const | −3.254317 | 0.001494 | −2179.000 | 0.0000 *** |
av. temperature | 0.002003 | 0.000389 | 5.141 | 2.73 × 10−7 *** |
sunshine duration | 0.007617 | 0.000607 | 12.551 | 4.00 × 10−36 *** |
time of rain fall | −0.009165 | 0.000571 | −16.042 | 6.42 × 10−58 *** |
time of snow fall | −0.002042 | 0.000103 | −19.867 | 8.88 × 10−88 *** |
t. of sleety rain falls | 0.039741 | 0.000287 | 138.301 | 0.0000 *** |
av. d. cloudiness | 0.007121 | 0.000134 | 53.228 | 0.0000 *** |
av. d. wind speed | −0.010837 | 0.000311 | −34.811 | 1.48 × 10−265 *** |
av. d. humidity | 0.002764 | 6.46234 × 10−5 | 42.770 | 0.0000 *** |
av. d. pressure | 0.002977 | 1.04497 × 10−5 | 284.921 | 0.0000 *** |
Rt | −7.618912 | 0.246380 | −30.922 | 5.78 × 10−210 *** |
Rt−1 | 1.672107 | 0.071453 | 23.401 | 4.13 × 10−121 *** |
Rt−2 | −0.308714 | 0.007982 | −38.673 | 0.0000 *** |
Models for Energa, localization–Gdansk | ||||
Model: GARCH(0,1) | ||||
const | 0.221002 | 0.084224 | 2.624 | 0.0087 *** |
sunshine duration | −0.009169 | 0.005328 | −1.721 | 0.0853 * |
av. d. cloudiness | −0.033288 | 0.011939 | −2.788 | 0.0053 *** |
Models for Kogenera, localization–Wroclaw | ||||
TARCH(1,1) [Zakoian] (Normal) | ||||
const | 7.209262 | 0.015296 | 471.302 | 0.0000 *** |
Rt−1 | 0.349934 | 0.031199 | 11.221 | 3.39 × 10−29 *** |
Rt−2 | 2.288645 | 0.135468 | 16.892 | 4.95 × 10−64 *** |
av. temperature | 0.002947 | 0.000886 | 3.324 | 0.0009 *** |
sum of falls | −0.017139 | 0.007711 | −2.223 | 0.0262 ** |
sunshine duration | −0.020024 | 0.001888 | −10.601 | 2.87 × 10−26 *** |
time of rainfall | −0.019279 | 0.000924 | −20.867 | 1.11 × 10−96 *** |
av. d. cloudiness | −0.022925 | 0.000366 | −62.554 | 0.0000 *** |
av. d. wind speed | 0.011687 | 0.000992 | 11.781 | 5.05 × 10−32 *** |
av. d. humidity | 0.000954 | 0.000131 | 7.303 | 2.82 × 10−13 *** |
av. d. pressure | −0.007108 | 3.94940 × 10−5 | −180.002 | 0.0000 *** |
Models for PAK, localization-Konin | ||||
Model: GJR(1,1) [Glosten et al.] (Normal) | ||||
const | 0.060590 | 0.031204 | 1.942 | 0.0522 * |
Rt−1 | −2.064956 | 1.174094 | −1.759 | 0.0786 * |
t. of sleety rain falls | −0.228325 | 0.120616 | −1.893 | 0.0584 * |
Models for PGE, localization-Warsaw | ||||
Model: EGARCH(0,1) [Nelson] (Normal) | ||||
const | 1.618621 | 0.010467 | 154.600 | 0.0000 *** |
Rt−1 | −0.430435 | 0.069616 | −6.183 | 6.29 × 10−10 *** |
Rt−2 | −0.843530 | 0.038754 | −21.770 | 4.86 × 10−105 *** |
sum of falls | −0.003927 | 0.001517 | −2.588 | 0.0097 *** |
av. d. cloudiness | −0.008139 | 0.000904 | −9.000 | 2.27 × 10−19 *** |
av. d. humidity | 0.000925 | 0.000158 | 5.839 | 5.25 × 10−9 *** |
av. d. pressure | −0.001593 | 9.48459 × 10−6 | −168.000 | 0.0000 *** |
Models for Polenerga, localization-Warsaw | ||||
Model: NARCH(2,2) [Higgins and Bera] (Normal) | ||||
const | −2.972253 | 0.047096 | −63.110 | 0.0000 *** |
Rt−1 | −1.873721 | 0.930263 | −2.014 | 0.0440 ** |
time of snowfall | −0.020318 | 0.010626 | −1.912 | 0.0559 * |
av. d. pressure | 0.002930 | 4.84901 × 10−5 | 60.430 | 0.0000 *** |
Models for Tauron, localization-Katowice | ||||
Model: EGARCH(1,1) [Nelson] (Normal) | ||||
const | −0.630458 | 0.005643 | −111.700 | 0.0000 *** |
Rt−1 | −1.208344 | 0.366398 | −3.298 | 0.0010 *** |
av. d. wind speed | −0.007352 | 0.002203 | −3.337 | 0.0008 *** |
av. d. pressure | 0.0006458 | 1.10783 × 10−5 | 58.290 | 0.0000 *** |
Parameter | Coefficient | st. Error | z | p-Value |
---|---|---|---|---|
Models for Bedzin, localization-Poznan | ||||
Model: NARCH(1,1) [Higgins and Bera] (Normal) | ||||
const | 0.084546 | 0.047439 | 1.782 | 0.0747 * |
av. temperature | −0.000154 | 7.24542 × 10−5 | −2.130 | 0.0332 ** |
av. d. humidity | −7.90603 × 10−5 | 4.30186 × 10−5 | −1.838 | 0.0661 * |
av. d. pressure | −7.64290 × 10−5 | 4.55627 × 10−5 | −1.677 | 0.0935 * |
Rt−1 | −0.192535 | 0.025939 | −7.423 | 1.15 × 10−13 *** |
Models for Energa, localization–Gdansk | ||||
Model: Taylor/Schwert’s GARCH(1,1) (Normal) | ||||
const | −0.001108 | 1.37026 × 10−5 | −80.851 | 0.0000 *** |
av. temperature | −8.04759 × 10−5 | 6.51081 × 10−6 | −12.361 | 4.28 × 10−35 *** |
sum of falls | −0.000139 | 2.52435 × 10−6 | −55.007 | 0.0000 *** |
sunshine duration | 0.000209 | 1.27964 × 10−5 | 16.373 | 3.34 × 10−60 *** |
av. d. wind speed | −0.000205 | 3.83829 × 10−6 | −53.510 | 0.0000 *** |
av. d. humidity | 2.80800 × 10−5 | 1.85648 × 10−6 | 15.132 | 1.10 × 10−51 *** |
Rt−1 | 0.014289 | 0.000489 | 29.241 | 6.79 × 10−188 *** |
Models for Kogenera, localization–Wroclaw | ||||
Model: GARCH(1,1) | ||||
const | −0.001610 | 0.000548 | −2.935 | 0.0033 *** |
sum of falls | 0.000191 | 8.12640 × 10−5 | 2.351 | 0.0187 ** |
sunshine duration | 0.000160 | 7.30029 × 10−5 | 2.195 | 0.0281 ** |
Models for PAK, localization-Konin | ||||
Model: GARCH (1,1) | ||||
const | −0.000476 | 0.000465 | −1.024 | 0,3060 |
t. of snow fall | −0.000457 | 0.000201 | −2.269 | 0,0233 ** |
Models for PGE, localization-Warsaw | ||||
Model: EGARCH(0,1) [Nelson] (Normal) | ||||
const | −0.0368702 | 0.000475486 | −77.540 | 0.0000 *** |
av. d. humidity | −3.73576 × 10−5 | 7.01271 × 10−6 | −5.327 | 9.98 × 10−8 *** |
av. d. pressure | 3.84907 × 10−5 | 4.87037 × 10−7 | 79.030 | 0.0000 *** |
Models for Polenerga, localization-Warsaw | ||||
Model: NARCH(2,2) [Higgins and Bera] (Normal) | ||||
const | 0.020511 | 0.000617 | 33.220 | 5.85 × 10−242 *** |
time of rainfall | −0.000202 | 0.000118 | −1.719 | 0.0856 * |
av. d. cloudiness | 0.000151 | 4.85516 × 10−5 | 3.118 | 0.0018 *** |
av. d. wind speed | 0.000621 | 0.000101 | 6.150 | 7.76 × 10−10 *** |
av. d. pressure | −2.29414 × 10−5 | 3.85259 × 10−5 | −59.550 | 0.0000 *** |
Models for Tauron, localization-Katowice | ||||
Model: Taylor/Schwert’s GARCH(0,2) (Normal) | ||||
const | −0.00197544 | 0.000942 | −2.096 | 0.0360 ** |
av. d. wind speed | 0.000646449 | 0.000336 | 1.923 | 0.0544 * |
Dependent Variable | |||||
---|---|---|---|---|---|
Independent (Weather) Variables | Change of Trading Value | Change of Volume | Rt | without Variable Rt | Overall |
av. temperature | 2 | 2 | 2 | 4/14 (28.6%) | 6/21 (28.6%) |
sunshine duration | 4 | 3 | 2 | 7/14 (50.0%) | 9/21 (42.9%) |
time of rain fall | 2 | 2 | 1 | 4/14 (28.6%) | 5/21 (23.8%) |
time of snow fall | 1 | 2 | 1 | 3/14 (21.4%) | 4/21 (19.0%) |
sum of falls | 4 | 1 | 2 | 5/14 (35.7%) | 7/21 (33.3%) |
t. of sleety rain falls | 1 | 2 | 0 | 3/14 (21.4%) | 3/21 (14.3%) |
av. d. cloudiness | 4 | 4 | 1 | 8/14 (57.1%) | 9/21 (42.9%) |
av. d. wind speed | 1 | 3 | 3 | 4/14 (28.6%) | 7/21 (33.3%) |
av. d. humidity | 2 | 3 | 3 | 5/14 (35.7%) | 8/21 (38.1%) |
av. d. pressure | 4 | 5 | 3 | 9/14 (64.3%) | 12/21 (57.1%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarczyński, W.; Majewski, S.; Tarczyńska-Łuniewska, M.; Majewska, A.; Mentel, G. The Impact of Weather Factors on Quotations of Energy Sector Companies on Warsaw Stock Exchange. Energies 2021, 14, 1536. https://doi.org/10.3390/en14061536
Tarczyński W, Majewski S, Tarczyńska-Łuniewska M, Majewska A, Mentel G. The Impact of Weather Factors on Quotations of Energy Sector Companies on Warsaw Stock Exchange. Energies. 2021; 14(6):1536. https://doi.org/10.3390/en14061536
Chicago/Turabian StyleTarczyński, Waldemar, Sebastian Majewski, Małgorzata Tarczyńska-Łuniewska, Agnieszka Majewska, and Grzegorz Mentel. 2021. "The Impact of Weather Factors on Quotations of Energy Sector Companies on Warsaw Stock Exchange" Energies 14, no. 6: 1536. https://doi.org/10.3390/en14061536
APA StyleTarczyński, W., Majewski, S., Tarczyńska-Łuniewska, M., Majewska, A., & Mentel, G. (2021). The Impact of Weather Factors on Quotations of Energy Sector Companies on Warsaw Stock Exchange. Energies, 14(6), 1536. https://doi.org/10.3390/en14061536