Integrated Risk Assessment for Robustness Evaluation and Resilience Optimisation of Power Systems after Cascading Failures
Abstract
:1. Introduction
2. Degradation of the Power System
2.1. Basis of the Cascading Interruption Modelling
2.2. Cascading Failure Algorithm
Algorithm 1: Disruption stage. Cascading failures. |
Input: Technical data of the electrical network and |
Output: Degradation of the power grid. Set of islands I, state of branches , set of isolated elements E, and satisfied demand |
Step 1.Initialisation: E = ∅ and = d; |
Step 2.Power flows: calculate ∈ K for all power lines of the infrastructure in stage s; determine with (1); |
Step 3.Starting point: eliminate the most loaded power line, k′; set ′ = 0; |
Step 4.Calculate power flows: determine the increases or decreases in each ∀K, using DC power flows; set s = 1 for the first step; |
Step 5.Trigger mechanisms for circuit breakers: evaluate the condition < ∀K. If the condition is not met, set = 0 for the triggered power lines k and go to Step 6; otherwise, go to Step 10; |
Step 6.Graph traversal algorithm: use DFS to determine islands I = {} and isolated elements E; |
Step 7.Energy balance: |
(a) for each island with generators, g ∈ , evaluate |
- if < , set = in stage s; |
- if > , set = in stage s; |
(b) for each island without generators, g ∈ ; set = 0 and = ; |
Step 8.Satisfied demand: Calculate = for iteration s; |
Step 9.Iterations: set s = s + 1 and go to Step 4; |
Step 10.Termination: if < ∀k or E = M, the algorithm ends. |
3. Recovery of the Power System
DC Power Flows with Line Drive Incorporation
Algorithm 2: Recovery process. Mixed-integer optimisation problem. |
Input: the output of Algorithm 1 (set of islands I, state of branches , set of isolated elements E and remaining satisfied demand ) and the number of lines to be reconnected in each step s. |
Output: and ∀k in each recovery step s |
Step 1.Inicialisation: set = ; |
Step 2.Build the problem: set the minimum and maximum parameters of the constraints (3)–(5). The thresholds of (4) are initially determined in Algorithm 1; |
Step 3.Solve the mixed-integer optimisation problem: maximise (2), subject to the constraints in (3)–(10); |
Step 4.Solution: save the results of and ; set the restored variables as constants =1 for all subsequent stages; |
Step 5.Evaluation: if ∀k ∈ (K − k′): = 1 and go to Step 7; otherwise, go to Step 6; |
Step 6.Iterations: set s = s + 1 and go to Step 3; |
Step 7.Termination: if ∀k ∈ (K − k′) and = 1; the algorithm ends. |
4. Simulation and Results
4.1. Normal Operation State: IEEE 118-Bus Test System
4.2. Disruption State: Degradation of the Power System
4.3. Preparation State
4.4. Recovery Process
4.5. Variations in Generation and Load
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Indices | |
n,m | Nodes or buses |
k | Lines |
g | Generators |
d | Loads |
j | Number of closed power lines |
i | Islands |
s | Steps |
Variables | |
Voltage angle at node n (radians) | |
Power flow through line k, generator g, and power demand at node n | |
Binary variable indicating the open or closed state of the power line | |
(open, = 0, closed, = 1) | |
Demand on each island i | |
Satisfied demand in step s (MW) | |
Parameters | |
Maximum and minimum capacity of the power line k (MW) | |
Maximum and minimum capacity of the generator g (MW) | |
Maximum and minimum voltage angle at node n (radians) | |
Susceptance of the power line k | |
Maximum number of power lines to be closed at each step s | |
Overload tolerance parameter of the power line k | |
Sets | |
D | System loads |
E | Isolated assets |
G | Generators |
I | Islands |
K | Power lines |
L | Closed power lines |
M | Nodes or buses |
References
- Jamborsalamati, P.; Moghimi, M.; Hossain, M.; Taghizadeh, S.; Lu, J.; Konstantinou, G. A framework for evaluation of power grid resilience case study: 2016 South Australian blackout. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018; pp. 1–6. [Google Scholar]
- Dehghanian, P.; Aslan, S.; Dehghanian, P. Maintaining electric system safety through an enhanced network resilience. IEEE Trans. Ind. Appl. 2018, 54, 4927–4937. [Google Scholar] [CrossRef]
- Chen, Q.; McCalley, J.D. Identifying high risk Nk contingencies for online security assessment. IEEE Trans. Power Syst. 2005, 20, 823–834. [Google Scholar] [CrossRef]
- Noebels, M.; Preece, R.; Panteli, M. AC Cascading Failure Model for Resilience Analysis in Power Networks. IEEE Syst. J. 2020, 1–12. [Google Scholar] [CrossRef]
- Sabouhi, H.; Doroudi, A.; Fotuhi-Firuzabad, M.; Bashiri, M. A novel matrix based systematic approach for vulnerability assessment. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2020, 40, 1–17. [Google Scholar] [CrossRef]
- Stankovic, A. The Definition and Quantification of Resilience; IEEE PES Industry Technical Support Task Force: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Tapia, T.; Lorca, Á.; Olivares, D.; Negrete-Pincetic, M.; Lamadrid L, A.J. A Robust Decision-Support Method Based on Optimization and Simulation for Wildfire Resilience in Highly Renewable Power Systems. Eur. J. Oper. Res. 2021, 1–11. [Google Scholar] [CrossRef]
- Shahbazi, A.; Aghaei, J.; Pirouzi, S.; Niknam, T.; Shafie-khah, M.; Catal ao, J.P. Effects of resilience-oriented design on distribution networks operation planning. Electr. Power Syst. Res. 2021, 191, 106902. [Google Scholar] [CrossRef]
- Zhao, N.; Yu, X.; Hou, K.; Liu, X.; Mu, Y.; Jia, H.; Wang, H.; Wang, H. Full-time scale resilience enhancement framework for power transmission system under ice disasters. Int. J. Electr. Power Energy Syst. 2021, 126, 106609. [Google Scholar] [CrossRef]
- Zobel, C.W.; MacKenzie, C.A.; Baghersad, M.; Li, Y. Establishing a frame of reference for measuring disaster resilience. Decis. Support Syst. 2021, 140, 113406. [Google Scholar] [CrossRef]
- Almoghathawi, Y.; González, A.D.; Barker, K. Exploring Recovery Strategies for Optimal Interdependent Infrastructure Network Resilience. Netw. Spat. Econ. 2021, 21, 229–260. [Google Scholar] [CrossRef]
- Senkel, A.; Bode, C.; Schmitz, G. Quantification of the resilience of integrated energy systems using dynamic simulation. Reliab. Eng. Syst. Saf. 2021, 209, 107447. [Google Scholar] [CrossRef]
- Bai, X.; Liang, L.; Zhu, X. Improved Markov-chain-based ultra-short-term PV forecasting method for enhancing power system resilience. J. Eng. 2021, 2021, 114–124. [Google Scholar] [CrossRef]
- Tawfiq, A.A.; Osama abed el Raouf, M.; Mosaad, M.I.; El-Gawad, A.A.; Farahat, M.A. Optimal reliability study of grid-connected PV systems using Evolutionary Computing Techniques. IEEE Access 2021, 9, 42125–42139. [Google Scholar] [CrossRef]
- Samy, M.M.; Mosaad, M.I.; El-Naggar, M.F.; Barakat, S. Reliability Support of Undependable Grid Using Green Energy Systems: Economic Study. IEEE Access 2020, 9, 14528–14539. [Google Scholar] [CrossRef]
- Hossain, E.; Roy, S.; Mohammad, N.; Nawar, N.; Dipta, D.R. Metrics and enhancement strategies for grid resilience and reliability during natural disasters. Appl. Energy 2021, 290, 116709. [Google Scholar] [CrossRef]
- Yu, Z.; Li, Z.; Qian, T.; Huang, K.; Chen, X.; Tang, W. Optimal Restoration Strategy Based on Resilience Improvement for Power Transmission Systems Under Extreme Weather Events. In Proceedings of the 2020 International Conference on Smart Grid and Energy Engineering, Guilin, China, 13–15 November 2021; IOP Publishing: Bristol, UK, 2021; Volume 645, pp. 1–8. [Google Scholar]
- Cicilio, P.; Glennon, D.; Mate, A.; Barnes, A.; Chalishazar, V.; Cotilla-Sanchez, E.; Vaagensmith, B.; Gentle, J.; Rieger, C.; Wies, R.; et al. Resilience in an Evolving Electrical Grid. Energies 2021, 14, 694. [Google Scholar] [CrossRef]
- Jamborsalamati, P.; Garmabdari, R.; Hossain, J.; Lu, J.; Dehghanian, P. Planning for resilience in power distribution networks: A multi-objective decision support. IET Smart Grid 2021, 4, 45–60. [Google Scholar] [CrossRef]
- Tari, A.N.; Sepasian, M.S.; Kenari, M.T. Resilience assessment and improvement of distribution networks against extreme weather events. Int. J. Electr. Power Energy Syst. 2021, 125, 106414. [Google Scholar]
- Liberati, F.; Di Giorgio, A.; Giuseppi, A.; Pietrabissa, A.; Priscoli, F.D. Efficient and risk-aware control of electricity distribution grids. IEEE Syst. J. 2020, 14, 3586–3597. [Google Scholar] [CrossRef]
- Zheng, W.; Huang, W.; Hill, D.J. A deep learning-based general robust method for network reconfiguration in three-phase unbalanced active distribution networks. Int. J. Electr. Power Energy Syst. 2020, 120, 105982. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, W.; Shi, J.; Yu, N. Batch-constrained reinforcement learning for dynamic distribution network reconfiguration. IEEE Trans. Smart Grid 2020, 11, 5357–5369. [Google Scholar] [CrossRef]
- Wang, C.; Lei, S.; Ju, P.; Chen, C.; Peng, C.; Hou, Y. MDP-based distribution network reconfiguration with renewable distributed generation: Approximate dynamic programming approach. IEEE Trans. Smart Grid 2020, 11, 3620–3631. [Google Scholar] [CrossRef]
- Plotnek, J.J.; Slay, J. Power systems resilience: Definition and taxonomy with a view towards metrics. Int. J. Crit. Infrastruct. Prot. 2021, 33, 100411. [Google Scholar] [CrossRef]
- Mahzarnia, M.; Moghaddam, M.P.; Baboli, P.T.; Siano, P. A review of the measures to enhance power systems resilience. IEEE Syst. J. 2020, 14, 4059–4070. [Google Scholar] [CrossRef]
- Naghshbandi, S.N.; Varga, L.; Purvis, A.; Mcwilliam, R.; Minisci, E.; Vasile, M.; Troffaes, M.; Sedighi, T.; Guo, W.; Manley, E.; et al. A review of methods to study resilience of complex engineering and engineered systems. IEEE Access 2020, 8, 87775–87799. [Google Scholar] [CrossRef]
- Mishra, D.K.; Ghadi, M.J.; Azizivahed, A.; Li, L.; Zhang, J. A review on resilience studies in active distribution systems. Renew. Sustain. Energy Rev. 2021, 135, 110201. [Google Scholar] [CrossRef]
- Cheng, Y.; Elsayed, E.; Chen, X. Random Multi Hazard Resilience Modeling of Engineered Systems and Critical Infrastructure. Reliab. Eng. Syst. Saf. 2021, 209, 107453. [Google Scholar] [CrossRef]
- Aziz, T.; Lin, Z.; Waseem, M.; Liu, S. Review on optimization methodologies in transmission network reconfiguration of power systems for grid resilience. Int. Trans. Electr. Energy Syst. 2021, 31, 1–38. [Google Scholar] [CrossRef]
- Cantelmi, R.; Di Gravio, G.; Patriarca, R. Reviewing qualitative research approaches in the context of critical infrastructure resilience. Environ. Syst. Decis. 2021, 1–36. [Google Scholar] [CrossRef]
- IEEE. IEEE 118-Bus System. Available online: https://electricgrids.engr.tamu.edu/electric-grid-test-cases/ieee-118-bus-system/ (accessed on 6 April 2021).
- Kröger, W.; Zio, E. Vulnerable Systems; Springer: London, UK, 2011; p. XIV-204. [Google Scholar]
- Albert, R.; Barabási, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 1–54. [Google Scholar] [CrossRef] [Green Version]
- Vaiman, M.; Bell, K.; Chen, Y.; Chowdhury, B.; Dobson, I.; Hines, P.; Papic, M.; Miller, S.; Zhang, P. Risk assessment of cascading outages: Methodologies and challenges. IEEE Trans. Power Syst. 2012, 27, 631–641. [Google Scholar] [CrossRef]
- Bier, V.M.; Gratz, E.R.; Haphuriwat, N.J.; Magua, W.; Wierzbicki, K.R. Methodology for identifying near-optimal interdiction strategies for a power transmission system. Reliab. Eng. Syst. Saf. 2007, 92, 1155–1161. [Google Scholar] [CrossRef]
- Haidar, A.M.; Mohamed, A.; Hussain, A. Vulnerability assessment of a large sized power system considering a new index based on power system loss. Eur. J. Sci. Res. 2007, 17, 61–72. [Google Scholar]
- Zimmerman, R.D.; Murillo-Sánchez, C.E.; Thomas, R.J. MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 2010, 26, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Even, S. Graph Algorithms; Cambridge University Press: Cambridge, UK, 2011; pp. 1–189. [Google Scholar]
- Martins, N.; de Oliveira, E.J.; Moreira, W.C.; Pereira, J.L.R.; Fontoura, R.M. Redispatch to reduce rotor shaft impacts upon transmission loop closure. IEEE Trans. Power Syst. 2008, 23, 592–600. [Google Scholar] [CrossRef]
- Wood, A.J.; Wollenberg, B.F.; Sheblé, G.B. Power Generation, Operation, and Control; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 1–656. [Google Scholar]
- Panteli, M.; Trakas, D.N.; Mancarella, P.; Hatziargyriou, N.D. Power systems resilience assessment: Hardening and smart operational enhancement strategies. Proc. IEEE 2017, 105, 1202–1213. [Google Scholar] [CrossRef] [Green Version]
- Bie, Z.; Lin, Y.; Li, G.; Li, F. Battling the extreme: A study on the power system resilience. Proc. IEEE 2017, 105, 1253–1266. [Google Scholar] [CrossRef]
- Chanda, S.; Srivastava, A.K. Quantifying resiliency of smart power distribution systems with distributed energy resources. In Proceedings of the 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), Buzios, Brazil, 3–5 June 2015; pp. 1–6. [Google Scholar]
- Panteli, M.; Mancarella, P. Influence of extreme weather and climate change on the resilience of power systems: Impacts and possible mitigation strategies. Electr. Power Syst. Res. 2015, 127, 259–270. [Google Scholar] [CrossRef]
Plan | Number of Lines to Be Closed () | Closed Lines (L) | Recovered Load (MW) | Satisfied Demand () | Computation Times (min) |
---|---|---|---|---|---|
State C | 0.414 | ||||
1 | 1 | 18 | 1214 | 0.701 | 7.357 |
2 | 3 | 18, 63, 80 | 1243 | 0.707 | 37.085 |
3 | 5 | 16, 18, 63, 64, | 1320 | 0.726 | 67.619 |
80 | |||||
4 | 7 | 16, 18, 63, 64, | 1373 | 0.738 | 71.649 |
80, 91, 114 |
Plan | Number of Stages s | Energy not Supplied (MWh) |
---|---|---|
Base network | 0 | |
1 | 52 | 135.65 |
2 | 49 | 114.56 |
3 | 29 | 77.06 |
4 | 23 | 63.71 |
Variation | Scenarios |
---|---|
Generation | →→→→ |
Load | →→→→ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beyza, J.; Yusta, J.M. Integrated Risk Assessment for Robustness Evaluation and Resilience Optimisation of Power Systems after Cascading Failures. Energies 2021, 14, 2028. https://doi.org/10.3390/en14072028
Beyza J, Yusta JM. Integrated Risk Assessment for Robustness Evaluation and Resilience Optimisation of Power Systems after Cascading Failures. Energies. 2021; 14(7):2028. https://doi.org/10.3390/en14072028
Chicago/Turabian StyleBeyza, Jesus, and Jose M. Yusta. 2021. "Integrated Risk Assessment for Robustness Evaluation and Resilience Optimisation of Power Systems after Cascading Failures" Energies 14, no. 7: 2028. https://doi.org/10.3390/en14072028
APA StyleBeyza, J., & Yusta, J. M. (2021). Integrated Risk Assessment for Robustness Evaluation and Resilience Optimisation of Power Systems after Cascading Failures. Energies, 14(7), 2028. https://doi.org/10.3390/en14072028