Environment Management of Hydropower Development: A Case Study
Abstract
:1. Introduction
2. Literature Review on Environment Management of Hydropower Development
- What is the status of environment management system in the hydropower project?
- What is the status of environment management process in the hydropower project?
- What is the status of cooperative environment management in the hydropower project?
- What are the appropriate strategies to improve environment management of hydropower development?
3. Research Methods
3.1. Choosing Research Case of Yangfanggou Hydropower Project
3.2. A Triangulated Approach of Data Collection
4. Survey Results and Analyses
4.1. Environment Management System
4.2. Environment Management Processes
4.3. Cooperative Environment Management
5. Discussions
5.1. Strategies for Environment Management of Hydropower Development
5.2. Contributions to the Body of Knowledge
5.3. Limitations and Future Research Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schiermeier, Q.; Tollefson, J.; Scully, T.; Witze, A.; Morton, O. Electricity without carbon. Nature 2008, 454, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Hellweg, S.; Mila i Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. Science 2014, 344, 1109–1113. [Google Scholar] [CrossRef]
- Cartelle Barros, J.J.; Lara Coira, M.; de la Cruz Lopez, M.P.; del Cano Gochi, A. Assessing the global sustainability of different electricity generation systems. Energy 2015, 89, 473–489. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H. The urgency of assessing the greenhouse gas budgets of hydroelectric reservoirs in China. Nat. Clim. Chang. 2013, 3, 708–712. [Google Scholar] [CrossRef] [Green Version]
- National Development and Reform Commission (NDRC) of People’s Republic of China. The 14th Five-year Plan for Economic and Social Development of the People’s Republic of China. Available online: https://www.ndrc.gov.cn/fggz/fzzlgh/gjfzgh/202103/P020210323405614585384.pdf (accessed on 23 March 2021).
- Bawa, K.S.; Koh, L.P.; Lee, T.M.; Liu, J.; Ramakrishnan, P.S.; Yu, D.W.; Zhang, Y.-P.; Raven, P.H. China, India, and the Environment. Science 2010, 327, 1457–1459. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Tang, W.; Liu, C.; Wang, S.; Wang, T.; Shen, W.; Huang, M.; Zhou, Y. Enhancing engineer-procure-construct project performance by partnering in international markets: Perspective from Chinese construction companies. Int. J. Proj. Manag. 2016, 34, 30–43. [Google Scholar] [CrossRef]
- Tang, W.; Shen, W.; Lei, Z.; Wang, S.; Duffield, C.F.; Wei, Y.; Hui, F.K.P. Holistic hydropower scheme for China. Nature 2016, 532, 37. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.Z.; Duffield, C.F.; Young, D.M. Partnering mechanism in construction: An empirical study on the Chinese construction industry. J. Constr. Eng. Manag. 2006, 132, 217–229. [Google Scholar] [CrossRef]
- Wang, S.; Tang, W.; Qi, D.; Li, J.; Wang, E.; Lin, Z.; Duffield, C.F. Understanding the Role of Built Environment Resilience to Natural Disasters: Lessons Learned from the Wenchuan Earthquake. J. Perform. Constr. Facil. 2017, 31, 04017058. [Google Scholar] [CrossRef]
- Chang, X.; Liu, X.; Zhou, W. Hydropower in China at present and its further development. Energy 2010, 35, 4400–4406. [Google Scholar] [CrossRef]
- Shen, W.; Tang, W.; Wang, S.; Duffield, C.F.; Hui, F.K.P.; You, R. Enhancing Trust-Based Interface Management in International Engineering-Procurement-Construction Projects. J. Constr. Eng. Manag. 2017, 143, 04017061. [Google Scholar] [CrossRef]
- Diakoulaki, D.; Karangelis, F. Multi-criteria decision analysis and cost-benefit analysis of alternative scenarios for the power generation sector in Greece. Renew. Sustain. Energy Rev. 2007, 11, 716–727. [Google Scholar] [CrossRef]
- Darmawi; Bernas, S.M.; Imanuddin, M.S.; Sipahutar, R. Renewable energy and hydropower utilization tendency worldwide. Renew. Sustain. Energy Rev. 2013, 17, 213–215. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Tang, W.; Li, Y. Relationship between Owners’ Capabilities and Project Performance on Development of Hydropower Projects in China. J. Constr. Eng. Manag. 2013, 139, 1168–1178. [Google Scholar] [CrossRef]
- Wang, S.; Shen, W.; Tang, W.; Wang, Y.; Duffield, C.F.; Hui, F.K.P. Understanding the social network of stakeholders in hydropower project development: An owners’ view. Renew. Energy 2019, 132, 326–334. [Google Scholar] [CrossRef]
- Cheng, L.; Opperman, J.J.; Tickner, D.; Speed, R.; Guo, Q.; Chen, D. Managing the Three Gorges Dam to Implement Environmental Flows in the Yangtze River. Front. Environ. Sci. 2018, 6, 64. [Google Scholar] [CrossRef] [Green Version]
- Von Sperling, E. Hydropower in Brazil: Overview of positive and negative environmental aspects. In Terragreen 2012: Clean Energy Solutions for Sustainable Environment, Proceedings of the Clean Energy Solutions for Sustainable Environment, Beirut, Lebanon, 16–18 February 2012; Salame, C., Aillerie, M., Khoury, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 110–118. [Google Scholar]
- Ansar, A.; Flyvbjerg, B.; Budzier, A.; Lunn, D. Should we build more large dams? The actual costs of hydropower megaproject development. Energy Policy 2014, 69, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Brandt, S.A. Classification of geomorphological effects downstream of dams. Catena 2000, 40, 375–401. [Google Scholar] [CrossRef]
- Chen, S.; Chen, B.; Fath, B.D. Assessing the cumulative environmental impact of hydropower construction on river systems based on energy network model. Renew. Sustain. Energy Rev. 2015, 42, 78–92. [Google Scholar] [CrossRef]
- Tang, W.; Li, Z.; Qiang, M.; Wang, S.; Lu, Y. Risk management of hydropower development in China. Energy 2013, 60, 316–324. [Google Scholar] [CrossRef]
- Bridge, G.; Jonas, A.E.G. Governing nature: The reregulation of resource access, production, and consumption. Environ. Plan. A Econ. Space 2002, 34, 759–766. [Google Scholar] [CrossRef] [Green Version]
- Allan, J.D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Soito, J.L.; Vasconcelos Freitas, M.A. Amazon and the expansion of hydropower in Brazil: Vulnerability, impacts and possibilities for adaptation to global climate change. Renew. Sustain. Energy Rev. 2011, 15, 3165–3177. [Google Scholar] [CrossRef]
- Kuby, M.J.; Fagan, W.F.; ReVelle, C.S.; Graf, W.L. A multiobjective optimization model for dam removal: An example trading off salmon passage with hydropower and water storage in the Willamette basin. Adv. Water Resour. 2005, 28, 845–855. [Google Scholar] [CrossRef]
- Aguiar, F.C.; Martins, M.J.; Silva, P.C.; Fernandes, M.R. Riverscapes downstream of hydropower dams: Effects of altered flows and historical land-use change. Landsc. Urban Plan. 2016, 153, 83–98. [Google Scholar] [CrossRef]
- Anderson, D.; Moggridge, H.; Warren, P.; Shucksmith, J. The impacts of “run-of-river’ hydropower on the physical and ecological condition of rivers. Water Environ. J. 2015, 29, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Braatne, J.H.; Rood, S.B.; Goater, L.A.; Blair, C.L. Analyzing the impacts of dams on riparian ecosystems: A review of research strategies and their relevance to the Snake River through Hells Canyon. Environ. Manag. 2008, 41, 267–281. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.; Kuriqi, A.; Abubaker, S.; Kisi, O. Hydrologic Alteration at the Upper and Middle Part of the Yangtze River, China: Towards Sustainable Water Resource Management Under Increasing Water Exploitation. Sustainability 2019, 11, 5176. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Wang, Z.; Zhao, S.; Li, Y.; Tang, Z.; Yu, D.; Ni, L.; Liu, H.; Xie, P.; Da, L.; et al. Biodiversity changes in the lakes of the Central Yangtze. Front. Ecol. Environ. 2006, 4, 369–377. [Google Scholar] [CrossRef]
- Kuriqi, A.; Pinheiro, A.N.; Sordo-Ward, A.; Garrote, L. Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants. Appl. Energy 2019, 256, 113980. [Google Scholar] [CrossRef]
- Kuriqi, A.; Pinheiro, A.N.; Sordo-Ward, A.; Garrote, L. Influence of hydrologically based environmental flow methods on flow alteration and energy production in a run-of-river hydropower plant. J. Clean. Prod. 2019, 232, 1028–1042. [Google Scholar] [CrossRef]
- Kuriqi, A.; Pinheiro, A.N.; Sordo-Ward, A.; Garrote, L. Water-energy-ecosystem nexus: Balancing competing interests at a run-of-river hydropower plant coupling a hydrologic-ecohydraulic approach. Energy Convers. Manag. 2020, 223, 113267. [Google Scholar] [CrossRef]
- Tharme, R.E. A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 2003, 19, 397–441. [Google Scholar] [CrossRef]
- Gao, X.; Fujiwara, M.; Winemiller, K.O.; Lin, P.; Li, M.; Liu, H. Regime shift in fish assemblage structure in the Yangtze River following construction of the Three Gorges Dam. Sci. Rep. 2019, 9, 4212. [Google Scholar] [CrossRef] [PubMed]
- Egre, D.; Milewski, J.C. The diversity of hydropower projects. Energy Policy 2002, 30, 1225–1230. [Google Scholar] [CrossRef]
- Tilt, B.; Braun, Y.; He, D. Social impacts of large dam projects: A comparison of international case studies and implications for best practice. J. Environ. Manag. 2009, 90, S249–S257. [Google Scholar] [CrossRef]
- Varan, C.; Cretan, R. Place and the spatial politics of intergenerational remembrance of the Iron Gates displacements in Romania, 1966–1972. Area 2018, 50, 509–519. [Google Scholar] [CrossRef]
- Cretan, R.; Vesalon, L. The Political Economy of Hydropower in the Communist Space: Iron Gates Revisited. Tijdschr. Voor Econo. Soc. Geogr. 2017, 108, 688–701. [Google Scholar] [CrossRef]
- He, W.; Tang, W.; Wei, Y.; Duffield, C.F.; Lei, Z. Evaluation of Cooperation during Project Delivery: Empirical Study on the Hydropower Industry in Southwest China. J. Constr. Eng. Manag. 2016, 142, 04015068. [Google Scholar] [CrossRef]
- Grumbine, R.E.; Pandit, M.K. Threats from India’s Himalaya Dams. Science 2013, 339, 36–37. [Google Scholar] [CrossRef] [PubMed]
- Rosso, M.; Bottero, M.; Pomarico, S.; La Ferlita, S.; Comino, E. Integrating multicriteria evaluation and stakeholders analysis for assessing hydropower projects. Energy Policy 2014, 67, 870–881. [Google Scholar] [CrossRef]
- Wang, T.; Tang, W.; Qi, D.; Du, L. Enhancing design management in international EPC projects based on partnering. J. Tsinghua Univ. Sci. Technol. 2016, 56, 360–364. [Google Scholar]
- Liu, Y.; Ma, J.; Wang, H.; Yan, D.; Lv, Y.; Deng, W. Multi-dimensional assessment of socioeconomic impacts of hydropower development—A case in the Upper Chuan River. Sci. China Technol. Sci. 2015, 58, 1272–1279. [Google Scholar] [CrossRef]
- Gjermundsen, T.; Jenssen, L.; Mauring, K. Economic Risk- and Sensitivity Analyses for Hydro-Power Projects; International Energy Agency: Paris, France, 2000. [Google Scholar]
- Eom, C.S.J.; Paek, J.H. Risk Index Model for Minimizing Environmental Disputes in Construction. J. Constr. Eng. Manag. 2009, 135, 34–41. [Google Scholar] [CrossRef]
- Jiang, H.; Qiang, M.; Lin, P. Assessment of online public opinions on large infrastructure projects: A case study of the Three Gorges Project in China. Environ. Impact Assess. Rev. 2016, 61, 38–51. [Google Scholar] [CrossRef]
- Sternberg, R. Hydropower: Dimensions of social and environmental coexistence. Renew. Sustain. Energy Rev. 2008, 12, 1588–1621. [Google Scholar] [CrossRef]
- Noor, K.B.M. Case Study: A Strategic Research Methodology. Am. J. Appl. Sci. 2008, 5, 1602–1604. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Wang, M.; Deng, W.; Xu, K. Exploitation scale of hydropower based on instream flow requirements: A case from southwest China. Renew. Sustain. Energy Rev. 2010, 14, 2290–2297. [Google Scholar] [CrossRef]
- Love, P.E.D.; Holt, G.D.; Li, H. Triangulation in construction management research. Eng. Constr. Archit. Manag. 2002, 9, 294–303. [Google Scholar]
- Frey, G.W.; Linke, D.M. Hydropower as a renewable and sustainable energy resource meeting global energy challenges in a reasonable way. Energy Policy 2002, 30, 1261–1265. [Google Scholar] [CrossRef]
- Shaktawat, A.; Vadhera, S. Risk management of hydropower projects for sustainable development: A review. Environ. Dev. Sustain. 2021, 23, 45–76. [Google Scholar] [CrossRef]
- Awojobi, O.; Jenkins, G.P. Managing the cost overrun risks of hydroelectric dams: An application of reference class forecasting techniques. Renew. Sustain. Energy Rev. 2016, 63, 19–32. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Q.; de Vries, B.; Zuo, J. How the public reacts to social impacts in construction projects? A structural equation modeling study. Int. J. Proj. Manag. 2016, 34, 1433–1448. [Google Scholar] [CrossRef]
Indicators | Overall | Client | Contractor | Consultant | ||||
---|---|---|---|---|---|---|---|---|
M. | R. | M. | R. | M. | R. | M. | R. | |
Compliance to legal requirements | 4.51 | 1 | 4.60 | 1 | 4.38 | 1 | 4.62 | 1 |
Matching project needs | 4.35 | 2 | 4.58 | 2 | 4.18 | 2 | 4.38 | 2 |
Environment management system renewal | 4.19 | 3 | 4.22 | 3 | 4.00 | 4 | 4.23 | 3 |
Environment management system completeness | 4.14 | 4 | 4.20 | 4 | 4.15 | 3 | 4.15 | 4 |
Average | 4.30 | — | 4.40 | — | 4.18 | — | 4.35 | — |
Indicators | Overall | Client | Contractor | Consultant | ||||
---|---|---|---|---|---|---|---|---|
M. | R. | M. | R. | M. | R. | M. | R. | |
Environment management training process | 4.15 | 1 | 4.00 | 2 | 4.31 | 1 | 4.38 | 1 |
Process of identifying key environmental factors | 4.14 | 2 | 4.13 | 1 | 4.03 | 5 | 4.15 | 3 |
Environment management process monitoring | 4.12 | 3 | 3.93 | 3 | 4.08 | 4 | 4.23 | 2 |
Integrating environment management into project implementation process | 4.09 a | 4 | 3.73 | 5 | 4.00 | 6 | 4.08 | 5 |
Environmental performance measuring process | 4.09 | 5 | 3.85 | 4 | 4.15 | 3 | 4.08 | 6 |
Environmental cost management process | 4.07 a | 6 | 3.67 | 6 | 4.23 | 2 | 4.11 | 4 |
Average | 4.11 | — | 3.89 | — | 4.13 | — | 4.17 | — |
Indicators | Overall | Client | Contractor | Consultant | ||||
---|---|---|---|---|---|---|---|---|
M. | R. | M. | R. | M. | R. | M. | R. | |
All project participants have mutual goals | 4.33 | 1 | 4.20 | 1 | 4.35 | 2 | 4.38 | 3 |
Timely review and continuously improvement | 4.28 | 2 | 4.00 | 3 | 4.23 | 5 | 4.35 | 4 |
Inputting sufficient resources | 4.21 | 3 | 3.95 | 4 | 4.08 | 11 | 4.15 | 9 |
Clear responsibilities in environment management | 4.19 | 4 | 4.07 | 2 | 4.21 | 6 | 4.62 | 1 |
Good cooperation with government | 4.16a | 5 | 3.73 | 12 | 4.16 | 8 | 4.23 | 7 |
Participants have rich knowledge and experience in environment management | 4.15 | 6 | 3.80 | 8 | 4.00 | 13 | 3.92 | 15 |
Environment information management infrastructure is effective | 4.12 | 7 | 3.89 | 5 | 4.31 | 3 | 4.31 | 5 |
Environment management process among participants are well connected | 4.07 | 8 | 3.73 | 13 | 4.15 | 9 | 4.15 | 10 |
Environment management systems among participants are well matched | 4.06 | 9 | 3.80 | 9 | 4.25 | 4 | 4.28 | 6 |
Participants actively cooperate to solve environmental problems | 4.05 | 10 | 3.67 | 14 | 3.77 | 15 | 4.05 | 12 |
Periodic training for environment management | 4.00 a | 11 | 3.78 | 10 | 4.08 | 12 | 4.46 | 2 |
Environment management plays an important role in overall project management | 3.98 a | 12 | 3.75 | 11 | 4.38 | 1 | 4.20 | 8 |
Coordination among participants is efficient | 3.95 | 13 | 3.67 | 15 | 4.12 | 10 | 3.94 | 14 |
Environment information is efficiently circulated | 3.91 | 14 | 3.87 | 6 | 4.18 | 7 | 4.08 | 11 |
Good cooperation with local residents | 3.79 | 15 | 3.82 | 7 | 4.00 | 14 | 4.00 | 13 |
Average | 4.08 | — | 3.85 | — | 4.15 | — | 4.21 | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Tang, W.; Duffield, C.F.; Zhang, L.; Hui, F.K.P. Environment Management of Hydropower Development: A Case Study. Energies 2021, 14, 2029. https://doi.org/10.3390/en14072029
Zhang Y, Tang W, Duffield CF, Zhang L, Hui FKP. Environment Management of Hydropower Development: A Case Study. Energies. 2021; 14(7):2029. https://doi.org/10.3390/en14072029
Chicago/Turabian StyleZhang, Yakun, Wenzhe Tang, Colin F. Duffield, Lihai Zhang, and Felix Kin Peng Hui. 2021. "Environment Management of Hydropower Development: A Case Study" Energies 14, no. 7: 2029. https://doi.org/10.3390/en14072029
APA StyleZhang, Y., Tang, W., Duffield, C. F., Zhang, L., & Hui, F. K. P. (2021). Environment Management of Hydropower Development: A Case Study. Energies, 14(7), 2029. https://doi.org/10.3390/en14072029