The Municipal Solid Waste Management System with Anaerobic Digestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Research Area Characterization
2.2. The Analytical Methods
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.P.; Zhu, Z.P. Can smart waste bins solve the dilemma of household solid waste sorting in China? A case study of Fuzhou City. Pol. J. Environ. Stud. 2020, 29, 3943. [Google Scholar] [CrossRef]
- Abad, V.; Avila, R.; Vicent, T.; Font, X. Promoting circular economy in the surroundings of an organic fraction of municipal solid waste anaerobic digestion treatment plant: Biogas production impact and economic factors. Bioresour. Technol. 2020, 283, 10–17. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.; Hutlink, E.J. The Circular Economy–A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef] [Green Version]
- EU. Directive 2006/12/CE of the European Parliament and of the Council of 5 April 2006 on Waste. Available online: https://eur-lex.europa.eu/eli/dir/2006/12/oj (accessed on 18 September 2020).
- EU. Directive 2014/94/UE of the European Parliament and of the Council of 22 October 2014 on the Deployment of Alternative Fuels Infrastructure. Available online: https://eur-lex.europa.eu/eli/dir/2014/94/oj (accessed on 18 September 2020).
- Polish Regulation. The Act of December 14 2012 on Waste, (Journal of Laws 2020 Item 797). (In Polish). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20130000021 (accessed on 25 September 2020).
- Aghbashlo, M.; Tabatabaei, M.; Soltanin, S.; Ghanavat, H. Biopower and biofertilizer production from organic municipal solid waste: An exergoenvironmental analysis. Renew. Energy 2019, 143, 64–76. [Google Scholar] [CrossRef]
- Heidari, R.; Yazdanparast, R.; Jabbarzadeh, A. Sustainable design of a municipal solid waste management system considering waste separators: A real-world application. Sustain. Cities Soc. 2019, 47, 101457. [Google Scholar] [CrossRef]
- Bachmann, N. Design and engineering of biogas plants. In The Biogas Handbook; Woodhead Publishing Series in Energy: Cambridge, UK, 2013; pp. 191–211. [Google Scholar]
- Abbasi, T.; Tauseef, S.M.; Abbasi, S.A. Biogas Capture from Solid Waste. In Biogas Energy; Springer: New York, NY, USA, 2012; Volume 2, pp. 105–143. [Google Scholar]
- International Environmental Agency (IEA). Biogas and More: Systems and Markets Overview of Anaerobic Digestion; AEA Technology Environment: Paris, France, 2001. [Google Scholar]
- Zhang, Y.; Huang, G.H.; He, L. A multi-echelon supply chain model for municipal solid waste management system. Waste Manag. 2014, 34, 553–561. [Google Scholar] [CrossRef]
- Antczak, E. Regional patterns in dumping sites in Poland-Analysis in context of the new “Sustainable” waste policy. Pol. J. Environ. Stud. 2020, 29, 1037–1049. [Google Scholar] [CrossRef]
- Polish Regulation: National Waste Management Plan 2022. Resolution No 88 of the Council of Ministers of July 1 2016, (Journal of Laws 2016, Item 784) (In Polish). Available online: https://bip.mos.gov.pl/strategie-plany-programy/krajowy-plan-gospodarki-odpadami/krajowy-plan-gospodarki-odpadami-2022-przyjety-w-2016-r/krajowy-plan-gospodarki-odpadami-2022-przyjety-przez-rade-ministrow-uchwala-nr-88-z-dnia-1-lipca-2016-r/ (accessed on 25 September 2020).
- Polish Regulation: Voivodeship Waste Management Plan for the Lower Silesian Region for the years 2016–2022. Resolution of the Lower Silesian Regional Assembly of 21st December 2017. (No. XLIII/1450/17). (In Polish). Available online: http://bip.umwd.dolnyslask.pl/dokument,iddok,29125,idmp,22,r,r (accessed on 12 June 2019).
- Vaccari, M.; Di Bella, V.; Vitalli, F.; Collivignarelli, C. From mixed to separate collection of solid waste: Benefits for the town of Zavidovići (Bosnia and Herzegovina). Waste Manag. 2013, 33, 277. [Google Scholar] [CrossRef]
- Ciuta, S.; Apostol, T.; Rusu, V. Urban and rural MSW stream characterization for separate collection improvement. Sustainability 2015, 7, 916. [Google Scholar] [CrossRef] [Green Version]
- Khoshnevisan, B.; Tsapekos, P.; Alvardo-Morales, M.; Angelidaki, I. Process performance and modelling of anaerobic digestion using source-sorted organic household waste. Bioresour. Technol. 2018, 247, 486–495. [Google Scholar] [CrossRef] [Green Version]
- Seruga, P.; Krzywonos, M.; Wilk, M. Treatment of By-Products Generated from Anaerobic Digestion of Municipal Solid Waste. Waste Biomass Valor 2019, 11, 4933–4940. [Google Scholar] [CrossRef] [Green Version]
- Seruga, P.; Krzywonos, M.; Seruga, A.; Niedźwecki, Ł.; Pawlak-Kruczek, H.; Urbanowska, A. Anaerobic Digestion Performance: Separate Collected vs. Mechanical Segregated Organic Fractions of Municipal Solid Waste as Feedstock. Energies 2020, 13, 3768. [Google Scholar] [CrossRef]
- Ramasamy, E.V.; Gajalaksl, S.; Sanjeevi, R.; Jithesh, M.N.; Abbasi, S. Feasibility studies on the treatment of dairy wastewaters with up flow anaerobic sludge blanket reactors. Bioresour. Technol. 2004, 93, 209–212. [Google Scholar]
- Polish Regulation: Regulation of the Minister of the Environment of October 7 2019 on the Detailed Method of Selective Collection of Selected Waste Fractions and Realized by Collecting the Following Fractions: Metals and Plastics; Paper; Glass, Biowaste and Residual. (Journal of Laws 2019, Item 2028). (In Polish). Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190002028 (accessed on 26 September 2020).
- Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.E. Standard Methods for Examination of Water and Wastewater, 22nd ed.; American Water Works Association: Alexandria, VA, USA, 2012. [Google Scholar]
- Rolewicz-Kalińska, A.; Lelicińska-Serafin, K.; Manczarski, P. The circular economy and organic fraction of municipal solid waste recycling strategies. Energies 2020, 13, 4366. [Google Scholar] [CrossRef]
- Abis, M.; Bruno, M.; Kuchta, K.; Simon, F.-G.; Grönholm, R.; Hoppe, M.; Fiore, S. Assessment of the Synergy between Recycling and Thermal Treatments in Municipal Solid Waste Management in Europe. Energies 2020, 13, 6412. [Google Scholar] [CrossRef]
- Zaman, A.U. A comprehensive study of the environmental and economic benefits of resource recovery from global waste management systems. J. Clean. Prod. 2016, 124, 41–50. [Google Scholar] [CrossRef]
- Salman, C.A.; Schwede, S.; Naqvi, M.; Thorin, E.; Yan, J. Synergistic combination of pyrolysis, anaerobic digestion, and CHP plants. Energy Procedia 2019, 158, 1323–1329. [Google Scholar] [CrossRef]
- Drosg, B. Process Monitoring in Biogas Plants; IEA Bioenergy: Tulln, Austria, 2013; ISBN 9781910154038. [Google Scholar]
- Paritosh, K.; Kushwaha, S.K.; Yadav, M.; Pareek, N.; Chawade, A.; Vivekanand, V. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling. BioMed Res. Int. 2017, 2017, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Banks, C.J.; Chesshire, M.; Heaven, S.; Arnold, R. Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance. Bioresour. Technol. 2011, 102, 612–620. [Google Scholar] [CrossRef] [Green Version]
- RIS International. Generating Biogas from Source Separated Organic Waste for Energy Production. Available online: http://www.toronto.ca/eia (accessed on 29 January 2007).
- Polish Regulation: The Ordinance of the Minister of Agriculture and Rural Development of 18 June 2008 on Implementation of Certain Provisions of the Act on Fertilisers and Fertilizing. (Journal of Laws 2008, Item 765). (In Polish). Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20081190765 (accessed on 25 September 2020).
- Teglia, C.; Tremier, A.; Martel, J.L. Characterization of solid digestates: Part 2, assessment of the quality and suitability for composting of six digested products. Waste Biomass Valor 2011, 2, 113. [Google Scholar] [CrossRef]
- Isam, H.; Gómez-Brandóm, M.; Ascher, J. Manure-based biogas fermentation residues-Friend or foe of soil fertility? Soil Biol. Biochem. 2015, 84, 1–14. [Google Scholar] [CrossRef]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242. [Google Scholar] [CrossRef]
- Zawadzki, P.; Głodnik, M. Environmental Safety Assessment of Fertilizer Products. Pol. J. Environ. Stud. 2020, 30, 11. [Google Scholar] [CrossRef]
- Jimenez, R.; Markou, G.; Tayibi, S.; Barakat, A.; Chapsal, C.; Monlau, F. Production of Microalgal Slow-Release Fertilizer by Valorizing Liquid Agricultural Digestate: Growth Experiments with Tomatoes. Appl. Sci. 2020, 10, 3890. [Google Scholar] [CrossRef]
Waste Fraction | 2016 | 2017 | 2018 | 2019 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Waste Amount (Ton/Year) | Waste Amount (Ton/Year) | Waste Amount (Ton/Year) | Waste Amount (Ton/Year) | Waste Amount (Ton/Year) | ||||||
Assumed [15] | Collected | Assumed [15] | Collected | Assumed [15] | Collected | Assumed [15] | Collected | Assumed [15] | Collected | |
Residual/Mixed solid waste | 56,170 | 60,059 | 53,594 | 65,659 | 50,956 | 63,887 | 4714 | 65,050 | 43,532 | 62,238 |
Biowaste | 5754 | 8195 | 6303 | 9777 | 6873 | 11,720 | 7251 | 13,770 | 7614 | 19,268 |
Packaging fractions (paper, glass, plastics, and metals) | 6977 | 8549 | 7816 | 9349 | 8614 | 12,075 | 9282 | 12,662 | 9771 | 14,822 |
Parameter | Content in Biogas |
---|---|
Methane (CH4) (%vol) | 59.0 ± 5.0 |
Carbon dioxide (CO2) (%vol) | 39.0 ± 3.4 |
Oxygen (O2) (%vol) | <0.2 |
Ammonia (NH3) (ppm) | 180.0 ± 20.0 |
Hydrogen sulfide (H2S) (ppm) | 238.0 ± 30.0 |
Parameter | Digestate | Required Levels [32] |
---|---|---|
Chrome (Cr) (mg/kgdry matter) | 32.0 ± 8.0 | Max. 100 |
Phosphorus (P2O5) (%dry matter) | 0.55 ± 0.14 | Min. 0.2 |
Cadmium (Cd) (mg/kgdry matter) | 0.36 ± 0.09 | Max. 5 |
Nickel (Ni) (mg/kgdry matter) | 20.0 ± 5.0 | Max. 60 |
Lead (Pb) (mg/kgdry matter) | 29.0 ± 7.0 | Max. 140 |
Potassium (K2O) (%dry matter) | 1.0 ± 0.1 | Min. 0.5 |
Mercury (Hg) (mg/kgdry matter) | <0.1 | Max. 2 |
Total nitrogen (%dry matter) | 1.5 ± 0.3 | Min. 0.3 |
Total organic carbon (TOC) (%dry matter) | 16.0 ± 3.0 | - |
pH value (–) | 8.5 ± 0.3 | - |
Water content (%) | 56.4 ± 3.9 | - |
Organic matter (%dry matter) | 34.2 ± 3.1 | Min. 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seruga, P. The Municipal Solid Waste Management System with Anaerobic Digestion. Energies 2021, 14, 2067. https://doi.org/10.3390/en14082067
Seruga P. The Municipal Solid Waste Management System with Anaerobic Digestion. Energies. 2021; 14(8):2067. https://doi.org/10.3390/en14082067
Chicago/Turabian StyleSeruga, Przemysław. 2021. "The Municipal Solid Waste Management System with Anaerobic Digestion" Energies 14, no. 8: 2067. https://doi.org/10.3390/en14082067
APA StyleSeruga, P. (2021). The Municipal Solid Waste Management System with Anaerobic Digestion. Energies, 14(8), 2067. https://doi.org/10.3390/en14082067