Oxy-Fuel Combustion of Hard Coal, Wheat Straw, and Solid Recovered Fuel in a 200 kWth Calcium Looping CFB Calciner
Abstract
:1. Introduction
2. Experimental Section
3. Evaluation Methodology
- in ppmv: the volume fractions of NOx, SO2 and HCl measured in the flue gas at standard temperature and pressure (STP) conditions are presented in parts-per-million. and are given in dry conditions, whereas is introduced on a wet basis.
- in mg/MJth: in combustion processes, the emission factor of a gas pollutant ‘i’ is commonly described as the mass of pollutant released per unit of fuel burned [33]:
4. Results
4.1. Combustion of Hard Coal and Wheat Straw
4.1.1. Nitrogen Oxides (NOx)
4.1.2. Acidic Gases (SO2 and HCl)
4.1.3. Reactor Profiles
4.2. Mono-Combustion of SRF
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ad | air dried |
B | fuel |
BECCS | bio-energy with CCS |
CaL | calcium looping |
CCS | carbon capture and storage |
CFB | circulating fluidized bed |
CPU | compression and purification unit |
FBC | fluidized bed combustion |
FG | flue gas |
FTIR | fourier-transform infrared spectroscopy |
MSW | municipal solid waste |
NDIR | non-dispersive infrared spectroscopy |
PTFE | polytetrafluoroethylene |
SRF | solid recovered fuel |
STP | standard temperature and pressure |
th | thermal |
waf | water and ash free |
wf | water free |
Symbols
emission factor of gas component i (mg/MJth) | |
h | height (m) |
net calorific value (MJ/kg) | |
mass flow (kg/h or kg/s) | |
molar mass of component i (kg/kmol) | |
molar flow (kmol/h or kmol/s) | |
Δp | differential pressure (mbar) |
heat flow (kW) | |
T | temperature (°C) |
t | time, experimental duration (h) |
superficial gas velocity (m/s) | |
volume gas flow (m3/h) | |
standard molar volume (22.4 l/mol) | |
cross-sectional area based solid inventory (kg/m2) | |
mass fraction of component i (kg/kg) | |
outlet gas volume fraction of component i (ppmv) | |
inlet gas volume fraction of component i (m3/m3) | |
retention rate of component i (mol/mol) | |
fuel mass fraction of component i (kg/kg) | |
standard density of component i (kg/m3) |
References
- RAL-GZ 724. Sekundärbrennstoffe-Gütesicherung; RAL Deutsches Institut für Gütesicherung und Kennzeichnung e. V.: Münster, Germany, 2012. [Google Scholar]
- Sarc, R.; Lorber, K.E.; Pomberger, R. Manufacturing of Solid Recovered Fuels (SRF) for Energy Recovery Processes. Waste Manag. 2016, 6, 401–416. [Google Scholar]
- Iacovidou, E.; Hahladakis, J.; Deans, I.; Velis, C.; Purnell, P. Technical properties of biomass and solid recovered fuel (SRF) co-fired with coal: Impact on multi-dimensional resource recovery value. Waste Manag. 2018, 73, 535–545. [Google Scholar] [CrossRef] [PubMed]
- United Nations Treaty Collection. The Paris Agreement; Chapter XXVII 7 d; United Nations Framework Convention on Climate Change (UNFCCC): Paris, France, 2015. [Google Scholar]
- Bui, M.; Fajardy, M.; Mac Dowell, N. Thermodynamic Evaluation of Carbon Negative Power Generation: Bio-energy CCS (BECCS). Energy Procedia 2017, 114, 6010–6020. [Google Scholar] [CrossRef] [Green Version]
- Gough, C.; Upham, P. Biomass energy with carbon capture and storage (BECCS or Bio-CCS). Greenh. Gases Sci. Technol. 2011, 1, 324–334. [Google Scholar] [CrossRef]
- Ditaranto, M.; Becidan, M.; Stuen, J. Opportunities for CO2 Capture in the Waste-to-Energy Sector. Waste Manag. 2019, 9, 319–328. [Google Scholar]
- Wienchol, P.; Szlęk, A.; Ditaranto, M. Waste-to-energy technology integrated with carbon capture—Challenges and opportunities. Energy 2020, 198, 117352. [Google Scholar] [CrossRef]
- Shimizu, T.; Hirama, T.; Hosoda, H.; Kitano, K.; Inagaki, M.; Tejima, K. A Twin Fluid-Bed Reactor for Removal of CO2 from Combustion Processes. Chem. Eng. Res. Des. 1999, 77, 62–68. [Google Scholar] [CrossRef]
- Abanades, J.C.; Anthony, E.J.; Wang, J.; Oakey, J.E. Fluidized Bed Combustion Systems Integrating CO2 Capture with CaO. Environ. Sci. Technol. 2005, 39, 2861–2866. [Google Scholar] [CrossRef] [PubMed]
- Haaf, M.; Hilz, J.; Peters, J.; Unger, A.; Ströhle, J.; Epple, B. Operation of a 1 MWth calcium looping pilot plant firing waste-derived fuels in the calciner. Powder Technol. 2020, 372, 267–274. [Google Scholar] [CrossRef]
- Arias, B.; Diego, M.; Abanades, J.; Lorenzo, M.; Diaz, L.; Martínez, D.; Alvarez, J.; Sánchez-Biezma, A. Demonstration of steady state CO2 capture in a 1.7MWth calcium looping pilot. Int. J. Greenh. Gas Control. 2013, 18, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Haaf, M.; Peters, J.; Hilz, J.; Unger, A.; Ströhle, J.; Epple, B. Combustion of solid recovered fuels within the calcium looping process—Experimental demonstration at 1 MWth scale. Exp. Therm. Fluid Sci. 2020, 113, 110023. [Google Scholar] [CrossRef]
- Vorrias, I.; Atsonios, K.; Nikolopoulos, A.; Nikolopoulos, N.; Grammelis, P.; Kakaras, E. Calcium looping for CO2 capture from a lignite fired power plant. Fuel 2013, 113, 826–836. [Google Scholar] [CrossRef]
- Dieter, H.; Bidwe, A.R.; Varela-Duelli, G.; Charitos, A.; Hawthorne, C.; Scheffknecht, G. Development of the calcium looping CO2 capture technology from lab to pilot scale at IFK, University of Stuttgart. Fuel 2014, 127, 23–37. [Google Scholar] [CrossRef]
- Shah, M.; Degenstein, N.; Zanfir, M.; Kumar, R.; Bugayong, J.; Burgers, K. Near zero emissions oxy-combustion CO2 purification technology. Energy Procedia 2011, 4, 988–995. [Google Scholar] [CrossRef]
- Scheffknecht, G.; Al-Makhadmeh, L.; Schnell, U.; Maier, J. Oxy-fuel coal combustion—A review of the current state-of-the-art. Int. J. Greenh. Gas Control. 2011, 5, S16–S35. [Google Scholar] [CrossRef]
- Stanger, R.; Wall, T.; Spörl, R.; Paneru, M.; Grathwohl, S.; Weidmann, M.; Scheffknecht, G.; McDonald, D.; Myöhänen, K.; Ritvanen, J.; et al. Oxyfuel combustion for CO2 capture in power plants. Int. J. Greenh. Gas Control. 2015, 40, 55–125. [Google Scholar] [CrossRef]
- Pang, L.; Shao, Y.; Zhong, W.; Gong, Z.; Liu, H. Experimental study of NOx emissions in a 30 kWth pressurized oxy-coal fluidized bed combustor. Energy 2020, 194, 116756. [Google Scholar] [CrossRef]
- Krzywanski, J.; Czakiert, T.; Shimizu, T.; Majchrzak-Kuceba, I.; Shimazaki, Y.; Zylka, A.; Grabowska, K.; Sosnowski, M. NOx Emissions from Regenerator of Calcium Looping Process. Energy Fuels 2018, 32, 6355–6362. [Google Scholar] [CrossRef]
- Hofbauer, G. Experimentelle Untersuchung der Oxy-Fuel-Verbrennung von Steinkohle in einer zirkulierenden Wirbelschichtfeuerung. Univ. Stuttg. 2017. [Google Scholar] [CrossRef]
- Liu, H.; Gibbs, B. The influence of calcined limestone on NOx and N2O emissions from char combustion in fluidized bed combustors. Fuel 2001, 80, 1211–1215. [Google Scholar] [CrossRef]
- Hornberger, M.; Moreno, J.; Schmid, M.; Scheffknecht, G. Experimental investigation of the calcination reactor in a tail-end calcium looping configuration for CO2 capture from cement plants. Fuel 2021, 284, 118927. [Google Scholar] [CrossRef]
- Haaf, M.; Müller, A.; Unger, A.; Ströhle, J.; Epple, B. Combustion of solid recovered fuels in a semi-industrial circulating fluid-ized bed pilot plant—Implications of bed material and combustion atmosphere on gaseous emissions. VGB PowerTech. 2020, 3, 51–56. [Google Scholar]
- Lupiáñez, C.; Mayoral, M.C.; Díez, L.I.; Pueyo, E.; Espatolero, S.; Andrés, J.M. The role of limestone during fluidized bed oxy-combustion of coal and biomass. Appl. Energy 2016, 184, 670–680. [Google Scholar] [CrossRef] [Green Version]
- Spliethoff, H. Power Generation from Solid Fuels; Springer: Berlin, Germany, 2010; ISBN 9783642028557. [Google Scholar]
- Partanen, J.; Backman, P.; Backman, R.; Hupa, M. Absorption of HCl by limestone in hot flue gases. Part I: The effects of temperature, gas atmosphere and absorbent quality. Fuel 2005, 84, 1664–1673. [Google Scholar] [CrossRef]
- Partanen, J.; Backman, P.; Backman, R.; Hupa, M. Absorption of HCl by limestone in hot flue gases. Part II: Importance of calcium hydroxychloride. Fuel 2005, 84, 1674–1684. [Google Scholar] [CrossRef]
- Partanen, J.; Backman, P.; Backman, R.; Hupa, M. Absorption of HCl by limestone in hot flue gases. Part III: Simultaneous absorption with SO2. Fuel 2005, 84, 1685–1694. [Google Scholar] [CrossRef]
- Piao, G.; Aono, S.; Kondoh, M.; Yamazaki, R.; Mori, S. Combustion test of refuse derived fuel in a fluidized bed. Waste Manag. 2000, 20, 443–447. [Google Scholar] [CrossRef]
- Desroches-Ducarne, E.; Marty, E.; Martin, G.; Delfosse, L.; Nordin, A. Effect of Operating Conditions on HCl Emissions from Municipal Solid Waste Combustion in a Laboratory-Scale Fluidized Bed Incinerator. Environ. Eng. Sci. 1998, 15, 279–289. [Google Scholar] [CrossRef]
- DIN EN 14792. In Stationary Source Emissions—Determination of Mass Concentration of Nitrogen Oxides—Standard Reference Method: Chemiluminescence; DIN German Institute for Standardization: Berlin, Germany, 2017.
- Trozzi, C. EMEP/EEA Air Pollution Emission Inventory Guidebook 2019: Energy Industries; European Environment Agency: Copenhagen, Denmark, 2019. [Google Scholar]
- Pu, G.; Zan, H.; Du, J.; Zhang, X. Study on NO Emission in the Oxy-Fuel Combustion of Co-Firing Coal and Biomass in a Bub-bling Fluidized Bed Combustor. BioResources 2016, 12, 1890–1902. [Google Scholar] [CrossRef]
- Riaza, J.; Gil, M.; Álvarez, L.; Pevida, C.; Pis, J.; Rubiera, F. Oxy-fuel combustion of coal and biomass blends. Energy 2012, 41, 429–435. [Google Scholar] [CrossRef] [Green Version]
- De Diego, L.; Rufas, A.; García-Labiano, F.; Obras-Loscertales, M.D.L.; Abad, A.; Gayán, P.; Adánez, J. Optimum temperature for sulphur retention in fluidised beds working under oxy-fuel combustion conditions. Fuel 2013, 114, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Ma, Z.; Yan, J.; Zhang, Y.; Chen, Z.; Gao, R.; Zhong, P. Dichlorination in a circulating fluidized-bed incinerator for municipal solid waste incineration system. Waste Dispos. Sustain. Energy 2019, 1, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Naito, S.; Kobayashi, N.; Hasatani, M. CO2, NOx and SO2 emissions from the combustion of coal with high oxygen concentration gases. Fuel 2000, 79, 1925–1932. [Google Scholar] [CrossRef]
- Wolf, C.; Leino, T.J.; Stephan, A.R.; Aho, M.J.; Spliethoff, H. Online Corrosion Measurements in Combination with Deposit and Aerosol Analysis during the Co-firing of Straw with Coal in Electrically Heated, Small-Scale Pulverized Fuel and Circulating Fluidized Bed Systems. Energy Fuels 2018, 32, 2506–2516. [Google Scholar] [CrossRef]
- Xie, W.; Liu, K.; Pan, W.-P.; Riley, J. Interaction between emissions of SO2 and HCl in fluidized bed combustors. Fuel 1999, 78, 1425–1436. [Google Scholar] [CrossRef]
- Hu, G.; Dam-Johansen, K.; Wedel, S.; Hansen, J.P. Enhancement of the Direct Sulfation of Limestone by Alkali Metal Salts, Calcium Chloride, and Hydrogen Chloride. Ind. Eng. Chem. Res. 2007, 46, 5295–5303. [Google Scholar] [CrossRef]
- Addink, R.; Bakker, W.C.M.; Olie, K. Influence of HCl and Cl2 on the Formation of Polychlorinated Diben-zo-p-dioxins/Dibenzofurans in a Carbon/Fly Ash Mixture. Environ. Sci. Technol. 1995, 29, 2055–2058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dieter, H.; Hawthorne, C.; Zieba, M.; Scheffknecht, G. Progress in Calcium Looping Post Combustion CO2 Capture: Successful Pilot Scale Demonstration. Energy Procedia 2013, 37, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Scala, F.; Salatino, P. Modelling fluidized bed combustion of high-volatile solid fuels. Chem. Eng. Sci. 2002, 57, 1175–1196. [Google Scholar] [CrossRef]
- Dri, M.; Canfora, P.; Antonopoulos, I.S.; Gaudillat, P. Best Environmental Management Practice for the Waste Management Sector. JRC Sci. Policy Rep. 2018. [Google Scholar] [CrossRef]
- Bolhàr-Nordenkampf, M.; Nummelin, T.; Luomaharju, T.; Viljanen, J. Operating Experience from the World´s Largest Waste Fired Circulating Fluidized Bed Reactor in Västerås. Waste Manag. 2015, 5, 167–178. [Google Scholar]
- Gatternig, B. Predicting Agglomeration in Biomass Fired Fluidized Beds; University of Erlangen-Nürnberg: Erlangen, Germany, 2015. [Google Scholar]
kg/kg, waf | kg/kg, wf | kg/kg, ad | MJ/kg, ad | ||||||
---|---|---|---|---|---|---|---|---|---|
Colombian hard coal | 0.776 | 0.052 | 0.145 | 0.016 | 0.011 | 0.000 | 0.091 | 0.019 | 27.5 |
German wheat straw | 0.497 | 0.066 | 0.425 | 0.010 | 0.001 | 0.001 | 0.059 | 0.081 | 15.6 |
Spanish SRF | 0.515 | 0.067 | 0.377 | 0.026 | 0.006 | 0.009 | 0.261 | 0.067 | 14.3 |
kg/kg, wf | ||||||
---|---|---|---|---|---|---|
German limestone | 0.551 | 0.007 | 0.004 | 0.001 | 0.435 | 0.002 |
Parameter | Symbol | Value/Range | Unit |
---|---|---|---|
Temperature | 835–852 | °C | |
Thermal input | 93–112 | kWth | |
Superficial gas velocity | 3.9–4.1 | m/s | |
Solid inventory | 971–1479 | kg/m2 | |
O2 inlet volume fraction | 0.21–0.22 | m3/m3 | |
Experimental duration | 3.5 | h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno, J.; Hornberger, M.; Schmid, M.; Scheffknecht, G. Oxy-Fuel Combustion of Hard Coal, Wheat Straw, and Solid Recovered Fuel in a 200 kWth Calcium Looping CFB Calciner. Energies 2021, 14, 2162. https://doi.org/10.3390/en14082162
Moreno J, Hornberger M, Schmid M, Scheffknecht G. Oxy-Fuel Combustion of Hard Coal, Wheat Straw, and Solid Recovered Fuel in a 200 kWth Calcium Looping CFB Calciner. Energies. 2021; 14(8):2162. https://doi.org/10.3390/en14082162
Chicago/Turabian StyleMoreno, Joseba, Matthias Hornberger, Max Schmid, and Günter Scheffknecht. 2021. "Oxy-Fuel Combustion of Hard Coal, Wheat Straw, and Solid Recovered Fuel in a 200 kWth Calcium Looping CFB Calciner" Energies 14, no. 8: 2162. https://doi.org/10.3390/en14082162
APA StyleMoreno, J., Hornberger, M., Schmid, M., & Scheffknecht, G. (2021). Oxy-Fuel Combustion of Hard Coal, Wheat Straw, and Solid Recovered Fuel in a 200 kWth Calcium Looping CFB Calciner. Energies, 14(8), 2162. https://doi.org/10.3390/en14082162