Deep Learning-Based Approaches to Optimize the Electricity Contract Capacity Problem for Commercial Customers
Abstract
:1. Introduction
1.1. Literature Review
1.2. Contribution
- We develop a new, two-stage approach to determine the optimal capacity contract based on the predicted maximal capacity demands and genetic algorithms;
- As an alternative to the two-stage approach, we create a new deep learning architecture to predict the maximal capacity demands and, simultaneously, to determine the optimal capacity contract;
- We propose the incorporation of the quantile loss function in deep learning model learning for the benefit of accurate prediction of the maximum consumption;
- Through empirical analysis, we compare and choose the best forecasting strategy, i.e., direct multistep forecasting, recursive multistep forecasting and multiple-output forecasting.
2. Proposed Approaches to Optimize the Electricity Contract Capacity Problem
2.1. Two Stage Approach
2.1.1. Stage One—LSTM Electricity Load Time Series Forecasting
2.1.2. Stage Two—Load Forecast Optimization
- —contracted capacity (kW) in month ;
- —maximum demand amount (kW) in month ;
- —the sum of up to ten largest amounts of surplus consumed capacity over the contractual capacity, indicated by the measuring;
- —rate of contractual capacity (PLN/kW) in month .
2.2. Hybrid Model for Optimization and Multipl Output Forecasting
3. Data Characteristics and Tariff Structure
4. Numerical Experiments
- Actual contract—the value of the customer’s contracted capacity in kW;
- Actual cost—the customer’s total cost of contracted capacity and the penalties exceeding the contracted capacity level in PLN;
- Above actual contract—the amount of capacity consumed over the contracted level in kW;
- Opt contract capacity—the optimal amount of consumed capacity based on the historical usage in kW;
- Opt contract cost—the optimal cost of consumed capacity based on historical usage in PLN;
- Above opt contract—the number of loads over the contracted capacity based on historical usage;
- Opt contract capacity pred—the optimal contract based on the forecast obtained by the neural network and optimized by GA in kW;
- Opt cost capacity pred—the total cost of optimal contract predicted by the network and optimized by GA in PLN;
- Above opt capacity pred—the number of loads over the contracted capacity based on the forecast obtained by the neural network and optimized by GA.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tostado-Véliz, M.; Icaza-Alvarez, D.; Jurado, F. A novel methodology for optimal sizing photovoltaic-battery systems in smart homes considering grid outages and demand response. Renew. Energy 2021, 170, 884–896. [Google Scholar] [CrossRef]
- Regulation of the minister of economy of 27 april 2012 amending the regulation on the specific rules for the determination and calculation of tariffs and billing in electricity trading. J. Laws 2012, 640, 5–16.
- Lindberg, K.; Seljom, P.; Madsen, H.; Fischer, D.; Korpås, M. Long-term electricity load forecasting: Current and future trends. Util. Policy 2019, 58, 102–119. [Google Scholar] [CrossRef]
- Rajakovic, N.L.; Shiljkut, V.M. Long-term forecasting of annual peak load considering effects of demand-side programs. J. Mod. Power Syst. Clean Energy 2017, 6, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Gajowniczek, K.; Nafkha, R.; Ząbkowski, T. Electricity Peak Demand Classification with Artificial Neural Networks. In Proceedings of the 2017 Federated Conference on Computer Science and Information Systems (FedCSIS), Prague, Czech Republic, 3–6 September 2017; IEEE: Prague, Czech Republic, 2017; pp. 307–315. [Google Scholar]
- Mojica, J.L.; Petersen, D.; Hansen, B.; Powell, K.M.; Hedengren, J.D. Optimal combined long-term facility design and short-term operational strategy for chp capacity investments. Energy 2017, 118, 97–115. [Google Scholar] [CrossRef] [Green Version]
- Torkzadeh, R.; Mirzaei, A.; Mirjalili, M.M.; Anaraki, A.S.; Sehhati, M.R.; Behdad, F. Medium Term Load Forecasting in Distribution Systems Based on Multi Linear Regression & Principal Component Analysis: A Novel Approach. In Proceedings of the 2014 19th Conference on Electrical Power Distribution Networks (EPDC), Poonak, Tehran, 6–7 May 2014; IEEE: Poonak, Teheran, 2014; pp. 66–70. [Google Scholar]
- Hippert, H.S.; Pedreira, C.E.; Souza, R.C. Neural networks for short-term load forecasting: A review and evaluation. IEEE Trans. Power Syst. 2001, 16, 44–55. [Google Scholar] [CrossRef]
- Ryu, S.; Noh, J.; Kim, H. Deep neural network based demand side short term load forecasting. Energies 2016, 10, 3. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Liao, C.-J. A linear programming approach to the electricity contract capacity problem. Appl. Math. Model. 2011, 35, 4077–4082. Available online: https://www.sciencedirect.com/science/article/pii/S0307904X11000898 (accessed on 10 February 2021). [CrossRef]
- CRE. Règles Tarifaires Pour L’utilisation des Réseaux Publics D’électricité; Commission de régulation de l’énergie: Paris, France, 2012. [Google Scholar]
- Baharudin, Z.; Kamel, N. Autoregressive Method in Short Term Load Forecast. In Proceedings of the 2008 IEEE 2nd International Power and Energy Conference, Johor Bahru, Malaysia, 1–3 December 2008; IEEE: Johor Bahru, Malaysia, 2008; pp. 1603–1608. [Google Scholar]
- Karpio, K.; Łukasiewicz, P.; Nafkha, R. Regression technique for electricity load modeling and outlined data points explanation. In Proceedings of the International Multi-Conference on Advanced Computer Systems, Cairo, Egypt, 26–28 October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 56–67. [Google Scholar]
- Alberg, D.; Last, M. Short-term load forecasting in smart meters with sliding window-based arima algorithms. Vietnam. J. Comput. Sci. 2018, 5, 241–249. [Google Scholar] [CrossRef]
- Mohamed, N.; Ahmad, M.H.; Ismail, Z. Improving Short Term Load Forecasting Using Double Seasonal Arima Model. World Appl. Sci. J. 2011, 15, 223–231. [Google Scholar]
- Mado, I.; Soeprijanto, A.; Suhartono, S. Applying of double seasonal arima model for electrical power demand forecasting at pt. Pln gresik indonesia. Int. J. Electr. Comput. Eng. 2018, 8, 4892–4901. [Google Scholar] [CrossRef]
- Kowm, D.; Kim, M.; Hong, C.; Cho, S. Artificial neural network based short term load forecasting. Int. J. Smart Home 2014, 8, 145–150. [Google Scholar] [CrossRef]
- Feinberg, E.A.; Genethliou, D. Load forecasting. In Applied Mathematics for Restructured Electric Power Systems; Springer: Berlin/Heidelberg, Germany, 2005; pp. 269–285. [Google Scholar]
- Shahriar, S.M.; Hasan, M.K.; Abrar, S.R.A. An effective artificial neural network based power load prediction algorithm. Int. J. Comput. Appl. 2019, 178, 35–41. [Google Scholar]
- Charytoniuk, W.; Chen, M. Very short-term load forecasting using artificial neural networks. IEEE Trans. Power Syst. 2000, 15, 263–268. [Google Scholar] [CrossRef]
- Haniffuddin, H.; Mansor, W. Plc based load limiter. In Proceedings of the 2011 IEEE Control and System Graduate Research Colloquium, Shah Alam, Malaysia, 27–28 June 2011; pp. 185–188. [Google Scholar]
- Hayakawa, H.; Watanabe, T.; Kimura, T. Electric Power Distribution and Utility Monitoring System for Better Energy Visualization. Hitachi Rev. 2014, 63, 427–431. [Google Scholar]
- Fraczek, J.; Blach, D. Contracted power order optimization. Studia Inform. 2014, 35, 199–212. [Google Scholar]
- Yang, H.-T.; Peng, P.-C.; Huang, C.-H. Improved taguchi method based contracted capacity optimization for power consumer with self-owned generating units. In Proceedings of the 6th WSEAS International Conference on Applications of Electrical Engineering, Istanbul, Turkey, 27–29 May 2007; Citeseer: Istanbul, Turkey, 2007. [Google Scholar]
- Liu, D.; Cai, Y. Taguchi method for solving the economic dispatch problem with nonsmooth cost functions. IEEE Trans. Power Syst. 2005, 20, 2006–2014. [Google Scholar] [CrossRef]
- Niu, D.; Dai, S. A short-term load forecasting model with a modified particle swarm optimization algorithm and least squares support vector machine based on the denoising method of empirical mode decomposition and grey relational analysis. Energies 2017, 10, 408. Available online: https://www.mdpi.com/1996-1073/10/3/408 (accessed on 10 February 2021). [CrossRef] [Green Version]
- Ali, S.; Kim, D.-H. Optimized power control methodology using genetic algorithm. Wirel. Pers. Commun. 2015, 83, 493–505. [Google Scholar] [CrossRef]
- Fernández, M.; Zorita, A.; García-Escudero, L.; Duque, O.; Moríñigo, D.; Riesco, M.; Muñoz, M. Cost optimization of electrical contracted capacity for large customers. Int. J. Electr. Power Energy Syst. 2013, 46, 123–131. [Google Scholar] [CrossRef]
- Nafkha, R.; Gajowniczek, K.; Ząbkowski, T. Do customers choose proper tariff? Empirical analysis based on polish data using unsupervised techniques. Energies 2018, 11, 514. [Google Scholar] [CrossRef] [Green Version]
- Tostado-Véliz, M.; Arévalo, P.; Jurado, F. A comprehensive electrical-gas-hydrogen microgrid model for energy management applications. Energy Convers. Manag. 2021, 228, 113726. [Google Scholar] [CrossRef]
- Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 1994, 5, 157–166. [Google Scholar] [CrossRef]
- Gers, F.; Schmidhuber, U.; Cummins, F. Learning to forget: Continual prediction with lstm. In Proceedings of the 1999 Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ. No. 470), Edinburgh, UK, 7–10 September 1999. [Google Scholar]
- Sak, H.; Senior, A.; Beaufays, F. Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition. arXiv 2014, arXiv:abs/1402.1128. [Google Scholar]
- Gajowniczek, K.; Ząbkowski, T. Short term electricity forecasting based on user behavior from individual smart meter data. J. Intell. Fuzzy Syst. 2015, 30, 223–234. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Month | Actual Values | Optimal Values Based on Historical Usage | Naïve Forecast Optimal Values Based on Predicted Usage | Direct Multi Step Forecast Optimal Values Based on Predicted Usage | Recursive Multi Step Forecast Optimal Values Based on Predicted Usage | Multiple-Output Forecast/Hybrid Approach (Deep Learning) Optimal Values Based on Predicted Usage | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Actual Contract [kW] | Actual Cost [PLN] | Opt Contract Capacity Pred [kW] | Opt Contract Capacity [kW] | Opt Contract Cost [PLN] | Above Opt Contract | Opt Contract Capacity Pred [kW] | Opt Cost Capacity Pred [PLN] | Above Opt Capacity Pred | Opt Contract Capacity Pred [kW] | Opt Cost Capacity Pred [PLN] | Above Opt Capacity Pred | Opt Contract Capacity Pred [kW] | Opt Cost Capacity Pred [PLN] | Above Opt Capacity Pred | Opt Contract Capacity Pred [kW] | Opt Cost Capacity Pred [PLN] | Above Opt Capacity Pred | |
March | 51 | 510.00 | 0 | 50 | 506.74 | 1 | 53 | 530.00 | 0 | 60 | 600.00 | 0 | 58 | 580.00 | 0 | 53 | 530.00 | 0 |
April | 51 | 510.00 | 0 | 47 | 471.39 | 1 | 51 | 510.00 | 0 | 59 | 590.00 | 0 | 56 | 560.00 | 0 | 49 | 490.00 | 0 |
May | 51 | 510.00 | 0 | 50 | 501.72 | 1 | 47 | 787.28 | 24 | 59 | 590.00 | 0 | 56 | 560.00 | 0 | 51 | 510.00 | 0 |
June | 51 | 522.89 | 2 | 52 | 520.00 | 0 | 50 | 664.49 | 17 | 59 | 590.00 | 0 | 56 | 560.00 | 0 | 52 | 520.00 | 0 |
July | 51 | 950.30 | 122 | 56 | 560.00 | 0 | 52 | 860.31 | 94 | 60 | 600.00 | 0 | 58 | 580.00 | 0 | 56 | 560.00 | 0 |
August | 51 | 1123.16 | 95 | 57 | 571.31 | 1 | 56 | 661.85 | 9 | 62 | 620.00 | 0 | 60 | 600.00 | 0 | 57 | 571.31 | 1 |
September | 51 | 510.00 | 0 | 49 | 490.00 | 0 | 57 | 570.00 | 0 | 60 | 600.00 | 0 | 59 | 590.00 | 0 | 54 | 540.00 | 0 |
October | 51 | 510.00 | 0 | 46 | 466.28 | 2 | 49 | 490.00 | 0 | 58 | 580.00 | 0 | 55 | 550.00 | 0 | 48 | 480.00 | 0 |
November | 51 | 510.00 | 0 | 50 | 500.00 | 0 | 47 | 759.40 | 54 | 58 | 580.00 | 0 | 56 | 560.00 | 0 | 50 | 500.00 | 0 |
December | 51 | 510.00 | 0 | 50 | 506.52 | 3 | 50 | 506.52 | 3 | 60 | 600.00 | 0 | 56 | 560.00 | 0 | 51 | 510.00 | 0 |
Total costs | 6166.36 | 5093.99 | 6339.84 | 5950.00 | 5700.00 | 5211.31 |
Month | Actual Values | Optimal Values Based on Historical Usage | Naïve Forecast Optimal Values Based on Predicted Usage | Direct Multi Step Forecast Optimal Values Based on Predicted Usage | Recursive Multi Step Forecast Optimal Values Based on Predicted Usage | Multiple-Output Forecast/Hybrid Approach (Deep Learning) Optimal Values Based on Predicted Usage | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Actual Contract [kW] | Actual Cost [PLN] | Opt Contract Capacity Pred [kW] | Opt Contract Capacity [kW] | Opt Contract Cost [PLN] | Above Opt Contract | Opt Contract Capacity Pred [kW] | Opt Cost Capacity Pred [PLN] | Above Opt Capacity Pred | Opt Contract Capacity Pred [kW] | Opt Cost Capacity Pred [PLN] | Above Opt Capacity Pred | Opt Contract Capacity Pred [kW] | Opt Cost Capacity Pred [PLN] | Above Opt Capacity Pred | Opt Contract Capacity Pred [kW] | Opt Cost Capacity Pred [PLN] | Above Opt Capacity Pred | |
March | 80 | 1402.72 | 62 | 85 | 860.27 | 1 | 93 | 930.00 | 0 | 99 | 990.00 | 0 | 99 | 990.00 | 0 | 88 | 880.00 | 0 |
April | 80 | 800.00 | 0 | 78 | 786.63 | 1 | 86 | 860.00 | 0 | 98 | 980.00 | 0 | 97 | 970.00 | 0 | 85 | 850.00 | 0 |
May | 80 | 800.00 | 0 | 72 | 722.82 | 1 | 79 | 790.00 | 0 | 98 | 980.00 | 0 | 93 | 930.00 | 0 | 77 | 770.00 | 0 |
June | 80 | 800.00 | 0 | 72 | 724.29 | 1 | 73 | 730.00 | 0 | 94 | 940.00 | 0 | 87 | 870.00 | 0 | 73 | 730.00 | 0 |
July | 80 | 800.00 | 0 | 73 | 737.82 | 2 | 73 | 737.82 | 2 | 94 | 940.00 | 0 | 87 | 870.00 | 0 | 74 | 740.00 | 0 |
August | 80 | 800.00 | 0 | 74 | 740.00 | 0 | 74 | 740.00 | 0 | 97 | 970.00 | 0 | 91 | 910.00 | 0 | 74 | 740.00 | 0 |
September | 80 | 800.00 | 0 | 76 | 760.00 | 0 | 74 | 878.72 | 8 | 96 | 960.00 | 0 | 87 | 870.00 | 0 | 76 | 760.00 | 0 |
October | 80 | 800.00 | 0 | 78 | 780.00 | 0 | 76 | 923.78 | 11 | 97 | 970.00 | 0 | 92 | 920.00 | 0 | 78 | 780.00 | 0 |
November | 80 | 1547.07 | 58 | 87 | 874.71 | 1 | 78 | 1727.07 | 98 | 99 | 990.00 | 0 | 92 | 920.00 | 0 | 87 | 874.71 | 1 |
March | 80 | 2239.56 | 266 | 89 | 943.96 | 1 | 88 | 1199.78 | 5 | 99 | 990.00 | 0 | 98 | 980.00 | 0 | 89 | 943.96 | 1 |
Total costs | 10,789.34 | 7930.48 | 9517.17 | 9710.00 | 9230.00 | 8068.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nafkha, R.; Ząbkowski, T.; Gajowniczek, K. Deep Learning-Based Approaches to Optimize the Electricity Contract Capacity Problem for Commercial Customers. Energies 2021, 14, 2181. https://doi.org/10.3390/en14082181
Nafkha R, Ząbkowski T, Gajowniczek K. Deep Learning-Based Approaches to Optimize the Electricity Contract Capacity Problem for Commercial Customers. Energies. 2021; 14(8):2181. https://doi.org/10.3390/en14082181
Chicago/Turabian StyleNafkha, Rafik, Tomasz Ząbkowski, and Krzysztof Gajowniczek. 2021. "Deep Learning-Based Approaches to Optimize the Electricity Contract Capacity Problem for Commercial Customers" Energies 14, no. 8: 2181. https://doi.org/10.3390/en14082181
APA StyleNafkha, R., Ząbkowski, T., & Gajowniczek, K. (2021). Deep Learning-Based Approaches to Optimize the Electricity Contract Capacity Problem for Commercial Customers. Energies, 14(8), 2181. https://doi.org/10.3390/en14082181