Machine Learning-Based Predictive Modelling of Biodiesel Production—A Comparative Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Machine Learning Algorithms
2.1.1. Linear Regression
2.1.2. Random Forest Regression
2.1.3. Adaptive Boosting Regression
2.1.4. Predictive Model Performance Evaluation Metrics
3. Results and Discussion
3.1. Example 1: Biodiesel Production Yield Estimation
3.1.1. Effect of Process Parameters
3.1.2. Linear Regression Predictive Model
3.1.3. Random Forest Regression Predictive Model
3.1.4. AdaBoost Predictive Model
3.1.5. Comparison of Various ML Predictive Models
3.2. Example 2: Biodiesel FFA Conversion Percentage Estimation
3.2.1. Effect of Process Parameters
3.2.2. Linear Regression Predictive Model
3.2.3. Random Forest Regression Predictive Model
3.2.4. AdaBoost Predictive Model
3.2.5. Comparison of Various ML Predictive Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Yield (%) | ||||
---|---|---|---|---|
5 | 0.7 | 35 | 45 | 93.3 |
6 | 1 | 65 | 30 | 95.88 |
5 | 0.7 | 50 | 30 | 96.62 |
5 | 1 | 50 | 45 | 94.9 |
6 | 0.4 | 35 | 30 | 96.4 |
4 | 1 | 65 | 60 | 92.26 |
6 | 0.4 | 35 | 60 | 96.84 |
5 | 0.7 | 50 | 45 | 94.22 |
4 | 1 | 35 | 60 | 91.04 |
4 | 0.4 | 35 | 60 | 84.14 |
4 | 0.7 | 50 | 45 | 95.9 |
6 | 0.4 | 65 | 60 | 98.1 |
6 | 1 | 35 | 30 | 96.86 |
6 | 1 | 35 | 60 | 98.72 |
5 | 0.7 | 50 | 45 | 96.66 |
6 | 1 | 65 | 60 | 95.5 |
5 | 0.4 | 50 | 45 | 94.58 |
6 | 0.7 | 50 | 45 | 99.54 |
5 | 0.7 | 50 | 60 | 95.68 |
4 | 1 | 35 | 30 | 94.86 |
6 | 0.4 | 65 | 30 | 98.41 |
4 | 0.4 | 35 | 30 | 85.88 |
5 | 0.7 | 50 | 45 | 96.86 |
4 | 0.4 | 65 | 30 | 96.48 |
5 | 0.7 | 65 | 45 | 94.52 |
4 | 0.4 | 65 | 60 | 92.26 |
5 | 0.7 | 50 | 45 | 96.14 |
4 | 1 | 65 | 30 | 89.32 |
5 | 0.7 | 50 | 45 | 96.18 |
FFA Conversion % | |||||
---|---|---|---|---|---|
50 | 2 | 2 | 5 | 600 | 46.6 |
50 | 1.5 | 0.5 | 20 | 700 | 84.66 |
70 | 2 | 1 | 20 | 500 | 69.27 |
60 | 1.5 | 2 | 15 | 500 | 52.46 |
60 | 2.5 | 1 | 5 | 700 | 56.8 |
40 | 2.5 | 2 | 20 | 800 | 65.35 |
60 | 2 | 0.5 | 10 | 800 | 54.3 |
40 | 1 | 0.5 | 5 | 500 | 38.48 |
40 | 2 | 1.5 | 15 | 700 | 60.1 |
60 | 1 | 1.5 | 20 | 600 | 62.1 |
70 | 1.5 | 1.5 | 5 | 800 | 46.18 |
70 | 1 | 2 | 10 | 700 | 54.6 |
70 | 2.5 | 0.5 | 15 | 600 | 55.06 |
40 | 1.5 | 1 | 10 | 600 | 52.5 |
50 | 1 | 1 | 15 | 800 | 76.97 |
50 | 2.5 | 1.5 | 10 | 500 | 50.46 |
References
- Bastos, R.R.C.; Corrêa, A.P.D.L.; Da Luz, P.T.S.; Filho, G.N.D.R.; Zamian, J.R.; Da Conceição, L.R.V. Optimization of biodiesel production using sulfonated carbon-based catalyst from an amazon agro-industrial waste. Energy Convers. Manag. 2020, 205, 112457. [Google Scholar] [CrossRef]
- Junior, W.A.P.; Takeno, M.L.; Nobre, F.X.; Barros, S.D.S.; Sá, I.S.; Silva, E.P.; Manzato, L.; Iglauer, S.; De Freitas, F.A. Application of water treatment sludge as a low-cost and eco-friendly catalyst in the biodiesel production via fatty acids esterification: Process optimization. Energy 2020, 213, 118824. [Google Scholar] [CrossRef]
- Shafiee, S.; Topal, E. When will fossil fuel reserves be diminished? Energy Policy 2009, 37, 181–189. [Google Scholar] [CrossRef]
- Naveenkumar, R.; Baskar, G. Optimization and techno-economic analysis of biodiesel production from Calophyllum inophyllum oil using heterogeneous nanocatalyst. Bioresour. Technol. 2020, 315, 123852. [Google Scholar] [CrossRef] [PubMed]
- Martins, E.H.; Vilela, A.P.; Mendes, R.F.; Mendes, L.M.; Vaz, L.E.V.D.S.B.; Guimarães, J.B., Jr. Soybean waste in particleboard production. Ciência e Agrotecnologia 2018, 42, 186–194. [Google Scholar] [CrossRef]
- Lertsathapornsuk, V.; Pairintra, R.; Aryusuk, K.; Krisnangkura, K. Microwave assisted in continuous biodiesel production from waste frying palm oil and its performance in a 100 kW diesel generator. Fuel Process. Technol. 2008, 89, 1330–1336. [Google Scholar] [CrossRef]
- Leung, D.; Guo, Y. Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Process. Technol. 2006, 87, 883–890. [Google Scholar] [CrossRef]
- Georgogianni, K.; Kontominas, M.; Pomonis, P.; Avlonitis, D.; Gergis, V. Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel. Fuel Process. Technol. 2008, 89, 503–509. [Google Scholar] [CrossRef]
- Guo, M.; Jiang, W.; Chen, C.; Qu, S.; Lu, J.; Yi, W.; Ding, J. Process optimization of biodiesel production from waste cooking oil by esterification of free fatty acids using La3+/ZnO-TiO2 photocatalyst. Energy Convers. Manag. 2021, 229, 113745. [Google Scholar] [CrossRef]
- Ortega, M.F.; Donoso, D.; Bousbaa, H.; Bolonio, D.; Ballesteros, R.; García-Martínez, M.-J.; Lapuerta, M.; Canoira, L. Optimized Production of Fatty Acid Ethyl Esters (FAEE) from Waste Frying Oil by Response Surface Methodology. Waste Biomass Valorization 2020, 1–8. [Google Scholar] [CrossRef]
- Shin, H.-Y.; Lim, S.-M.; Kang, S.C.; Bae, S.-Y. Statistical optimization for biodiesel production from rapeseed oil via transesterificaion in supercritical methanol. Fuel Process. Technol. 2012, 98, 1–5. [Google Scholar] [CrossRef]
- Hameed, B.; Lai, L.; Chin, L. Production of biodiesel from palm oil (Elaeis guineensis) using heterogeneous catalyst: An optimized process. Fuel Process. Technol. 2009, 90, 606–610. [Google Scholar] [CrossRef]
- Ahmad, T.; Danish, M.; Kale, P.; Geremew, B.; Adeloju, S.B.; Nizami, M.; Ayoub, M. Optimization of process variables for biodiesel production by transesterification of flaxseed oil and produced biodiesel characterizations. Renew. Energy 2019, 139, 1272–1280. [Google Scholar] [CrossRef]
- Jayaprabakar, J.; Dawn, S.; Ranjan, A.; Priyadharsini, P.; George, R.; Sadaf, S.; Rajha, C.R. Process optimization for biodiesel production from sheep skin and its performance, emission and combustion characterization in CI engine. Energy 2019, 174, 54–68. [Google Scholar] [CrossRef]
- Matinja, A.I.; Zain, N.A.M.; Suhaimi, M.S.; Alhassan, A.J. Optimization of biodiesel production from palm oil mill effluent using lipase immobilized in PVA-alginate-sulfate beads. Renew. Energy 2019, 135, 1178–1185. [Google Scholar] [CrossRef]
- Hazra, A.; Gogtay, N. Biostatistics series module 6: Correlation and linear regression. Indian J. Dermatol. 2016, 61, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.K.; Kim, Y.H.; Eo, Y.D.; Park, W.Y.; Park, H.C. Generation of Radiometric, Phenological Normalized Image Based on Random Forest Regression for Change Detection. Remote Sens. 2017, 9, 1163. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, T.; Danish, M.; Kale, P.; Geremew, B.; Adeloju, S.B.; Nizami, M.; Ayoub, M. Conversion of flaxseed oil into biodiesel using KOH catalyst: Optimization and characterization dataset. Data in Brief 2020, 29, 105225. [Google Scholar] [CrossRef]
- Kumar, R.; Tiwari, P.; Garg, S. Alkali transesterification of linseed oil for biodiesel production. Fuel 2013, 104, 553–560. [Google Scholar] [CrossRef]
- Karmakar, B.; Dhawane, S.H.; Halder, G. Optimization of biodiesel production from castor oil by Taguchi design. J. Environ. Chem. Eng. 2018, 6, 2684–2695. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, K.K.; Kalita, K.; Ghadai, R.K.; Ramachandran, M.; Gao, X.-Z. Machine Learning-Based Predictive Modelling of Biodiesel Production—A Comparative Perspective. Energies 2021, 14, 1122. https://doi.org/10.3390/en14041122
Gupta KK, Kalita K, Ghadai RK, Ramachandran M, Gao X-Z. Machine Learning-Based Predictive Modelling of Biodiesel Production—A Comparative Perspective. Energies. 2021; 14(4):1122. https://doi.org/10.3390/en14041122
Chicago/Turabian StyleGupta, Krishna Kumar, Kanak Kalita, Ranjan Kumar Ghadai, Manickam Ramachandran, and Xiao-Zhi Gao. 2021. "Machine Learning-Based Predictive Modelling of Biodiesel Production—A Comparative Perspective" Energies 14, no. 4: 1122. https://doi.org/10.3390/en14041122
APA StyleGupta, K. K., Kalita, K., Ghadai, R. K., Ramachandran, M., & Gao, X. -Z. (2021). Machine Learning-Based Predictive Modelling of Biodiesel Production—A Comparative Perspective. Energies, 14(4), 1122. https://doi.org/10.3390/en14041122