Effect of Biochar Addition on the Microbial Community and Methane Production in the Rapid Degradation Process of Corn Straw
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Setup and Design of Biochar-Amended Corn Straw Anaerobic Digestion Experiments
2.3. Analytical Methods
2.4. Theoretical Methane Production
2.5. Kinetic Study
2.6. High-Throughput Sequencing of Bacterial and Archaeal Communities
2.7. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Corn Straw
3.2. Biomethanization Performance
3.3. Microbial Community Characteristics Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, K.; Dong, X.; Jiang, Q. How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels. World Econ. 2020, 43, 1665–1698. [Google Scholar] [CrossRef]
- Khalid, A.; Arshad, M.; Anjum, M.; Mahmood, T.; Dawson, L. The anaerobic digestion of solid organic waste. Waste Manag. 2011, 31, 1737–1744. [Google Scholar] [CrossRef] [PubMed]
- Karaszova, M.; Sedlakova, Z.; Izak, P. Gas permeation processes in biogas upgrading: A short review. Chem. Pap. 2015, 69, 1277–1283. [Google Scholar] [CrossRef]
- Raboni, M.; Urbini, G. Production and use of biogas in Europe: A survey of current status and perspectives. Rev. Ambiente Água 2014, 9, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.U.; Othman, M.H.D.; Hashim, H.; Matsuura, T.; Ismail, A.F.; Rezaei-DashtArzhandi, M.; Azelee, I.W. Biogas as a renewable energy fuel—A review of biogas upgrading, utilisation and storage. Energy Convers. Manag. 2017, 150, 277–294. [Google Scholar] [CrossRef]
- Ghosh, S.; Henry, M.P.; Sajjad, A.; Mensinger, M.C.; Arora, J.L. Pilot-scale gasification of municipal solid wastes by high-rate and two-phase anaerobic digestion (TPAD). Water Sci. Technol. 2000, 41, 101–110. [Google Scholar] [CrossRef]
- Gonçalves, G.A.; Mori, Y.; Kamiya, N. Biomolecular assembly strategies to develop potential artificial cellulosomes. Sustain. Chem. Process. 2014, 2, 19. [Google Scholar] [CrossRef] [Green Version]
- Raut, M.P.; Pandhal, J.; Wright, P.C. Effective pretreatment of lignocellulosic co-substrates using barley straw-adapted microbial consortia to enhanced biomethanation by anaerobic digestion. Bioresour. Technol. 2021, 321, 124437. [Google Scholar] [CrossRef]
- Gaballah, E.S.; Abomohra, A.F.; Xu, C.; Elsayed, M.; Abdelkader, T.K.; Lin, J.C.; Yuan, Q.X. Enhancement of biogas production from rape straw using different co-pretreatment techniques and anaerobic co-digestion with cattle manure. Bioresour. Technol. 2020, 309, 123311. [Google Scholar] [CrossRef]
- Li, D.; Liu, S.C.; Mi, L.; Li, Z.D.; Yuan, Y.X.; Yan, Z.Y.; Liu, X.F. Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure. Bioresour. Technol. 2015, 189, 319–326. [Google Scholar] [CrossRef]
- Li, D.; Liu, S.C.; Mi, L.; Li, Z.D.; Yuan, Y.X.; Yan, Z.Y.; Liu, X.F. Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and pig manure. Bioresour. Technol. 2015, 187, 120–127. [Google Scholar] [CrossRef]
- Meng, L.Y.; Xie, L.; Kinh, C.T.; Suenaga, T.; Hori, T.; Riya, S.; Terada, A.; Hosomi, M. Influence of feedstock-to-inoculum ratio on performance and microbial community succession during solid-state thermophilic anaerobic co-digestion of pig urine and rice straw. Bioresour. Technol. 2018, 252, 127–133. [Google Scholar] [CrossRef]
- Haryanto, A.; Sugara, B.P.; Telaumbanua, M.; Rosadi, R.A.B. Anaerobic Co-digestion of Cow Dung and Rice Straw to Produce Biogas using Semi-Continuous Flow Digester: Effect of Urea Addition. IOP Conf. Ser. Earth Environ. Sci. 2018, 147, 012032. [Google Scholar] [CrossRef]
- Baek, G.; Kim, J.; Kim, J.; Lee, C. Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion. Energies 2018, 11, 107. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Atiyeha, H.K.; Kumar, A.; Zhang, H.L.; Tanner, R.S. Biochar enhanced ethanol and butanol production by Clostridium carboxidivorans from syngas. Bioresour. Technol. 2018, 265, 128–138. [Google Scholar] [CrossRef]
- Summers, Z.M.; Fogarty, H.E.; Leang, C.; Franks, A.E.; Malvankar, N.S.; Lovley, D.R. Direct Exchange of Electrons Within Aggregates of an Evolved Syntrophic Coculture of Anaerobic Bacteria. Science 2010, 330, 1413–1415. [Google Scholar] [CrossRef] [Green Version]
- Holmes, D.E.; Smith, J.A. Biologically Produced Methane as a Renewable Energy Source. Adv. Appl. Microbiol. 2016, 97, 1–61. [Google Scholar] [CrossRef]
- Jang, H.M.; Choi, Y.K.; Kan, E.S. Effects of dairy manure–derived biochar on psychrophilic, mesophilic and thermophilic anaerobic digestions of dairy manure. Bioresour. Technol. 2018, 250, 927–931. [Google Scholar] [CrossRef]
- Pan, J.T.; Ma, J.Y.; Liu, X.X.; Zhai, L.M.; Ouyang, X.H.; Liu, H.B. Effects of different types of biochar on the anaerobic digestion of chicken manure. Bioresour. Technol. 2019, 275, 258–265. [Google Scholar] [CrossRef]
- Wang, D.; Ai, J.; Shen, F.; Yang, G.; Zhang, Y.Z.; Deng, S.H.; Zhang, J.; Zeng, Y.M.; Song, C. Improving anaerobic digestion of easy–acidification substrates by promoting buffering capacity using biochar derived from vermicompost. Bioresour. Technol. 2017, 227, 286–296. [Google Scholar] [CrossRef]
- Yuan, J.H.; Xu, R.K.; Wang, N.; Li, J.Y. Amendment of Acid Soils with Crop Residues and Biochars. Pedosphere 2011, 21, 302–308. [Google Scholar] [CrossRef]
- Luo, C.H.; Lu, F.; Shao, L.M.; He, P.J. Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes.(vol 68, pg 710, 2014). Water Res. 2015, 70, 496. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, H.S.; Li, X.R.; Cheng, J.J.; Wu, W.X. Improving methane yield from organic fraction of municipal solid waste (OFMSW) with magnetic rice-straw biochar. Bioresour. Technol. 2017, 245, 1058–1066. [Google Scholar] [CrossRef]
- APHA-AWWA-WEF. Standard Methods for Examination of Water and Wastewater; APHA-AWWA-WEF: Washington, DC, USA, 2012. [Google Scholar]
- Sunyoto, N.M.S.; Zhu, M.M.; Zhang, Z.Z.; Zhang, D.K. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste. Bioresour. Technol. 2016, 219, 29–36. [Google Scholar] [CrossRef]
- Penaud, V.; Delgenes, J.P.; Moletta, R. Thermo-chemical pretreatment of a microbial biomass: Influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzym. Microb. Technol. 1999, 25, 258–263. [Google Scholar] [CrossRef]
- Li, W.W.; Khalid, H.; Amin, F.R.; Zhang, H.; Dai, Z.Q.; Chen, C.; Liu, G.Q. Biomethane production characteristics, kinetic analysis, and energy potential of different paper wastes in anaerobic digestion. Renew. Energy 2020, 157, 1081–1088. [Google Scholar] [CrossRef]
- Lu, F.; Luo, C.H.; Shao, L.M.; He, P.J. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina. Water Res. 2016, 90, 34–43. [Google Scholar] [CrossRef]
- Song, Z.; Sun, X.; Yang, G.; Yan, Z.; Yuan, Y.; Li, D.; Li, X.; Liu, X. Effect of NaOH pretreatment on methane yield of corn straw at different temperatures by anaerobic digestion. CIESC J. 2014, 65, 1876–1882. [Google Scholar]
- Jeoh, T.; Cardona, M.J.; Karuna, N.; Mudinoor, A.R.; Nill, J. Mechanistic kinetic models of enzymatic cellulose hydrolysis. A review. Biotechnol. Bioeng. 2017, 114, 1369–1385. [Google Scholar] [CrossRef]
- Hall, M.; Bansal, P.; Lee, J.H.; Realff, M.J.; Bommarius, A.S. Cellulose crystallinity—A key predictor of the enzymatic hydrolysis rate. FEBS J. 2010, 277, 1571–1582. [Google Scholar] [CrossRef]
- Fu, S.F.; Wang, F.; Yuan, X.Z.; Yang, Z.M.; Luo, S.J.; Wang, C.S.; Guo, R.B. The thermophilic (55 °C) microaerobic pretreatment of corn straw for anaerobic digestion. (vol 175, pg 203, 2015). Bioresour. Technol. 2016, 204, 213. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Sun, C.; Liu, R.H.; Yellezuome, D.; Zhu, X.P.; Bai, R.F.; Liu, M.Q.; Sun, M.Z. Anaerobic co-digestion of corn stover and chicken manure using continuous stirred tank reactor: The effect of biochar addition and urea pretreatment. Bioresour. Technol. 2021, 319, 124197. [Google Scholar] [CrossRef] [PubMed]
- Paritosh, K.; Vivekanand, V. Biochar enabled syntrophic action: Solid state anaerobic digestion of agricultural stubble for enhanced methane production. Bioresour. Technol. 2019, 289, 121712. [Google Scholar] [CrossRef] [PubMed]
- Sugiarto, Y.; Sunyoto, N.M.S.; Zhu, M.; Jones, I.; Zhang, D. Effect of biochar addition on microbial community and methane production during anaerobic digestion of food wastes: The role of minerals in biochar. Bioresour. Technol. 2021, 323, 124585. [Google Scholar] [CrossRef]
- Kaur, G.; Johnravindar, D.; Wong, J.W.C. Enhanced volatile fatty acid degradation and methane production efficiency by biochar addition in food waste-sludge co-digestion: A step towards increased organic loading efficiency in co-digestion. Bioresour. Technol. 2020, 308, 123250. [Google Scholar] [CrossRef]
- Wachemo, A.C.; Tong, H.; Yuan, H.R.; Zuo, X.Y.; Korai, R.M.; Li, X.J. Continuous dynamics in anaerobic reactor during bioconversion of rice straw: Rate of substance utilization, biomethane production and changes in microbial community structure. Sci. Total Environ. 2019, 687, 1274–1284. [Google Scholar] [CrossRef]
- Pan, S.Y.; Liu, Q.Q.; Wen, C.; Li, Z.C.; Du, L.Q.; Wei, Y.T. Producing Biogas from Rice Straw: Kinetic Analysis and Microbial Community Dynamics. Bioenergy Res. 2020, 1, 11. [Google Scholar]
- Garcia, J.L.; Patel, B.K.C.; Ollivier, B. Taxonomic phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe 2000, 6, 205–226. [Google Scholar] [CrossRef]
Parameters | Raw Corn Straw | Pretreated Corn Straw |
---|---|---|
TS (%, WM) | 94.17 | 34.47 |
VS (%, WM) | 86.62 | 33.40 |
C (%, TS) | 43.58 | 43.01 |
H (%, TS) | 6.02 | 6.38 |
O (%, TS) | 35.91 | 47.11 |
N (%, TS) | 1.11 | 0.41 |
Cellulose (%, TS) | 30.91 | 43.72 |
Hemicellulose (%, TS) | 22.53 | 25.83 |
Lignin (%, TS) | 19.43 | 14.87 |
Treatments | Rmax (mL·d−1) | λ (d) | Mmax (mLCH4) | Ultimate CH4 Yield (mL) | R2 |
---|---|---|---|---|---|
0% | 48.07616 ± 7.00503 | 1.25275 ± 0.2469 | 161.19639 ± 6.57806 | 156.45 | 0.98048 |
1% | 56.57962 ± 6.09878 | 1.29596 ± 0.16176 | 165.72529 ± 4.29053 | 163.03 | 0.99076 |
2% | 61.65405 ± 5.93145 | 1.26393 ± 0.12675 | 156.39771 ± 3.04981 | 155.51 | 0.99375 |
4% | 65.37325 ± 3.94515 | 1.43229 ± 0.07937 | 166.78352 ± 2.13146 | 167.00 | 0.99761 |
Treatments | Time (d) | Acetic | Propionic | Butyric | VFAs |
---|---|---|---|---|---|
0% | 1 | 6699.73 | 419.13 | 157.03 | 7275.90 |
3 | 4723.80 | 947.08 | 486.55 | 6157.43 | |
5 | 162.51 | 1150.72 | ND | 1313.24 | |
7 | 80.53 | 98.53 | ND | 237.28 | |
10 | 81.50 | 139.52 | ND | 338.50 | |
1% | 1 | 5894.01 | 470.53 | 77.98 | 6442.53 |
3 | 5536.27 | 1055.42 | 613.10 | 7204.79 | |
5 | 119.66 | 1125.03 | ND | 1244.68 | |
7 | ND | 136.66 | ND | 188.40 | |
10 | ND | 133.73 | ND | 224.83 | |
2% | 1 | 4900.81 | 467.56 | ND | 5368.36 |
3 | 3539.47 | 1046.33 | 342.04 | 4927.83 | |
5 | 122.53 | 1080.15 | ND | 1261.34 | |
7 | 89.63 | 142.36 | ND | 306.34 | |
10 | ND | 121.14 | ND | 181.32 | |
4% | 1 | 3178.53 | 475.09 | ND | 3653.62 |
3 | 4240.03 | 1397.01 | 369.73 | 6006.76 | |
5 | 160.18 | 1107.15 | ND | 1267.33 | |
7 | 82.90 | 143.23 | ND | 316.81 | |
10 | 88.40 | 129.70 | ND | 288.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Guo, Y.; Wang, W.; Chen, L.; Sun, Y.; Xing, T.; Kong, X. Effect of Biochar Addition on the Microbial Community and Methane Production in the Rapid Degradation Process of Corn Straw. Energies 2021, 14, 2223. https://doi.org/10.3390/en14082223
Wang Z, Guo Y, Wang W, Chen L, Sun Y, Xing T, Kong X. Effect of Biochar Addition on the Microbial Community and Methane Production in the Rapid Degradation Process of Corn Straw. Energies. 2021; 14(8):2223. https://doi.org/10.3390/en14082223
Chicago/Turabian StyleWang, Zhi, Ying Guo, Weiwei Wang, Liumeng Chen, Yongming Sun, Tao Xing, and Xiaoying Kong. 2021. "Effect of Biochar Addition on the Microbial Community and Methane Production in the Rapid Degradation Process of Corn Straw" Energies 14, no. 8: 2223. https://doi.org/10.3390/en14082223
APA StyleWang, Z., Guo, Y., Wang, W., Chen, L., Sun, Y., Xing, T., & Kong, X. (2021). Effect of Biochar Addition on the Microbial Community and Methane Production in the Rapid Degradation Process of Corn Straw. Energies, 14(8), 2223. https://doi.org/10.3390/en14082223