The Effects of Using Pretreated Cotton Gin Trash on the Production of Biogas from Anaerobic Co-Digestion with Cow Manure and Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pretreatment of CGT
2.2. Experimental Setup
2.3. Analytical Methods
2.4. Gas Analysis
3. Results
3.1. Composition of Biomass
3.2. Biogas Production
3.3. Biogas Composition
3.4. Substrate Composition
4. Conclusions
- The pretreatments significantly affected the chemical structure of CGT;
- Pretreatments of cotton gin trash increased biogas production;
- Among the pretreatments, hot water and ultra-sonication combined showed high biogas production and biogenic methane content;
- The chemical structure remained consistent during the AcoD process;
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, S.; Echeverria, D.; Venditti, R.; Jameel, H.; Yao, Y. Supply Chain of Waste Cotton Recycling and Reuse: A Review. AATCC J. Res. 2020, 7, 19–31. [Google Scholar] [CrossRef]
- Twizerimana, M.; Marimi, M.; Bura, X.; Nganyi, E.O. Biogas Production from Co-digestion of Cotton Yarn Waste and Human Urine. J. Energy Res. Rev. 2020, 6, 20–29. [Google Scholar] [CrossRef]
- Kumar, A.; Samadder, S. Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review. Energy 2020, 197, 117253. [Google Scholar] [CrossRef]
- Hanif, M.U.; Zwawi, M.; Capareda, S.C.; Iqbal, H.; Algarni, M.; Felemban, B.F.; Bahadar, A.; Waqas, A. Influence of Pyrolysis Temperature on Product Distribution and Characteristics of Anaerobic Sludge. Energies 2019, 13, 79. [Google Scholar] [CrossRef] [Green Version]
- Luo, T.; Khoshnevisan, B.; Pan, J.; Ge, Y.; Mei, Z.; Xue, J.; Fu, Y.; Liu, H. How exothermic characteristics of rice straw during anaerobic digestion affects net energy production. Energy 2020, 212, 118772. [Google Scholar] [CrossRef]
- Saleem, M.; Hanif, M.U.; Bahadar, A.; Iqbal, H.; Capareda, S.C.; Waqas, A. The Effects of Hot Water and Ultrasonication Pretreatment of Microalgae (Nannochloropsis oculata) on Biogas Production in Anaerobic Co-Digestion with Cow Manure. Processes 2020, 8, 1558. [Google Scholar] [CrossRef]
- Lay, J.J.; Li, Y.Y.; Noike, T.; Endo, J.; Ishimoto, S. Analysis of environmental factors affecting methane production from high-solids organic waste. Water Sci. Technol. 1997, 36, 493–500. [Google Scholar] [CrossRef]
- Karki, R.; Chuenchart, W.; Surendra, K.; Shrestha, S.; Raskin, L.; Sung, S.; Hashimoto, A.; Khanal, S.K. Anaerobic co-digestion: Current status and perspectives. Bioresour. Technol. 2021, 330, 125001. [Google Scholar] [CrossRef]
- Gao, X.; Tang, X.; Zhao, K.; Balan, V.; Zhu, Q. Biogas Production from Anaerobic Co-Digestion of Spent Mushroom Substrate with Different Livestock Manure. Energies 2021, 14, 570. [Google Scholar] [CrossRef]
- Gonzalez-Piedra, S.; Hernández-García, H.; Perez-Morales, J.; Acosta-Domínguez, L.; Bastidas-Oyanedel, J.-R.; Hernandez-Martinez, E. A Study on the Feasibility of Anaerobic Co-Digestion of Raw Cheese Whey with Coffee Pulp Residues. Energies 2021, 14, 3611. [Google Scholar] [CrossRef]
- Orangun, A.; Kaur, H.; Kommalapati, R. Batch Anaerobic Co-Digestion and Biochemical Methane Potential Analysis of Goat Manure and Food Waste. Energies 2021, 14, 1952. [Google Scholar] [CrossRef]
- Isci, A.; Demirer, G. Biogas production potential from cotton wastes. Renew. Energy 2007, 32, 750–757. [Google Scholar] [CrossRef]
- Haque, A.N.M.A.; Remadevi, R.; Naebe, M. A review on cotton gin trash: Sustainable commodity for material fabrication. J. Clean. Prod. 2020, 281, 125300. [Google Scholar] [CrossRef]
- Plácido, J.; Imam, T.; Capareda, S. Evaluation of ligninolytic enzymes, ultrasonication and liquid hot water as pretreatments for bioethanol production from cotton gin trash. Bioresour. Technol. 2013, 139, 203–208. [Google Scholar] [CrossRef]
- Allah, W.A.; Tawfik, M.; Sagade, A.A.; Gorjian, S.; Metwally, K.; El-Shal, H. Methane production enhancement of a family-scale biogas digester using cattle manure and corn stover under cold climates. Sustain. Energy Technol. Assess. 2021, 45, 101163. [Google Scholar] [CrossRef]
- Wang, K.; Yun, S.; Xing, T.; Li, B.; Abbas, Y.; Liu, X. Binary and ternary trace elements to enhance anaerobic digestion of cattle manure: Focusing on kinetic models for biogas production and digestate utilization. Bioresour. Technol. 2020, 323, 124571. [Google Scholar] [CrossRef]
- Ma, G.; Ndegwa, P.; Harrison, J.H.; Chen, Y. Methane yields during anaerobic co-digestion of animal manure with other feedstocks: A meta-analysis. Sci. Total Environ. 2020, 728, 138224. [Google Scholar] [CrossRef]
- Prabhu, A.V.; Raja, S.A.; Avinash, A.; Pugazhendhi, A. Parametric optimization of biogas potential in anaerobic co-digestion of biomass wastes. Fuel 2020, 288, 119574. [Google Scholar] [CrossRef]
- Mirmohamadsadeghi, S.; Karimi, K.; Azarbaijani, R.; Yeganeh, L.P.; Angelidaki, I.; Nizami, A.-S.; Bhat, R.; Dashora, K.; Vijay, V.K.; Aghbashlo, M.; et al. Pretreatment of lignocelluloses for enhanced biogas production: A review on influencing mechanisms and the importance of microbial diversity. Renew. Sustain. Energy Rev. 2020, 135, 110173. [Google Scholar] [CrossRef]
- Tiehm, A.; Nickel, K.; Zellhorn, M.; Neis, U. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res. 1997, 35, 2003–2009. [Google Scholar] [CrossRef]
- Luna-Avelar, K.D.; Barrena, R.; Font, X.; Sánchez, A.; Santos-Ballardo, D.U.; Germán-Báez, L.J.; Valdez-Ortiz, A. A preliminary assessment of anaerobic co-digestion potential of mango and microalgal residue biomass using a design of experiments approach: Effect of thermal, physical and biological pretreatments. Food Bioprod. Process. 2021, 128, 143–152. [Google Scholar] [CrossRef]
- Gunaseelan, V.N. Anaerobic digestion of biomass for methane production: A review. Biomass Bioenergy 1997, 13, 83–114. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, Y.Y.; Kim, T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 2016, 199, 42–48. [Google Scholar] [CrossRef]
- Rajput, A.A.; Zeshan; Hassan, M. Enhancing biogas production through co-digestion and thermal pretreatment of wheat straw and sunflower meal. Renew. Energy 2021, 168, 1–10. [Google Scholar] [CrossRef]
- Mladenovska, Z.; Hartmann, H.; Kvist, T.; Sales-Cruz, M.; Gani, R.; Ahring, B.K. Thermal pretreatment of the solid fraction of manure: Impact on the biogas reactor performance and microbial community. Water Sci. Technol. 2006, 53, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-H.; Jeong, E.; Oh, S.-E.; Shin, H.-S. Combined (alkaline+ultrasonic) pretreatment effect on sewage sludge disintegration. Water Res. 2010, 44, 3093–3100. [Google Scholar] [CrossRef]
- González-Arias, J.; Baena-Moreno, F.M.; Gonzalez-Castaño, M.; Arellano-García, H.; Lichtfouse, E.; Zhang, Z. Unprofitability of small biogas plants without subsidies in the Brandenburg region. Environ. Chem. Lett. 2021, 19, 1823–1829. [Google Scholar] [CrossRef]
- González-Arias, J.; Baena-Moreno, F.M.; Pastor-Pérez, L.; Sebastia-Saez, D.; Fernández, L.M.G.; Reina, T. Biogas upgrading to biomethane as a local source of renewable energy to power light marine transport: Profitability analysis for the county of Cornwall. Waste Manag. 2021, 137, 81–88. [Google Scholar] [CrossRef]
- Bonetta, S.; Bonetta, S.; Ferretti, E.; Fezia, G.; Gilli, G.; Carraro, E. Agricultural Reuse of the Digestate from Anaerobic Co-Digestion of Organic Waste: Microbiological Contamination, Metal Hazards and Fertilizing Performance. Water Air Soil Pollut. 2014, 225, 2046. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Hyman, D.; Payne, C.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Wolfe, J. Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples, Laboratory Analytical Procedure. Technical Report NREL/TP-510-42621, National Renewable Energy Laboratory 2008. Available online: https://www.nrel.gov/docs/gen/fy08/42621.pdf (accessed on 11 December 2021).
- Qi, N.; Zhao, X.; Zhang, L.; Gao, M.; Yu, N.; Liu, Y. Performance assessment on anaerobic co-digestion of Cannabis ruderalis and blackwater: Ultrasonic pretreatment and kinetic analysis. Resour. Conserv. Recycl. 2021, 169, 105506. [Google Scholar] [CrossRef]
- Buswell, A.M.; Mueller, H.F. Mechanism of Methane Fermentation. Ind. Eng. Chem. 1952, 44, 550–552. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Li, B.S.-K.; Patel, K.; Wang, L.B. A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion. Int. J. Environ. Res. Public Health 2018, 15, 2224. [Google Scholar] [CrossRef] [Green Version]
- Scherzinger, M.; Kaltschmitt, M. Techno-economic assessment of common reed and sewage sludge co-fermentation improved by vapothermal pre-treatment. Clean Technol. Environ. Policy 2021, 23, 2741–2755. [Google Scholar] [CrossRef]
- Mainardis, M.; Buttazzoni, M.; Gievers, F.; Vance, C.; Magnolo, F.; Murphy, F.; Goi, D. Life cycle assessment of sewage sludge pretreatment for biogas production: From laboratory tests to full-scale applicability. J. Clean. Prod. 2021, 322, 129056. [Google Scholar] [CrossRef]
Day | Sampling Interval (Days) |
---|---|
1 | |
6 | 5 |
12 | 6 |
18 | 6 |
23 | 5 |
29 | 6 |
35 | 6 |
40 | 5 |
46 | 6 |
52 | 6 |
57 | 5 |
63 | 6 |
69 | 6 |
74 | 5 |
80 | 6 |
86 | 6 |
91 | 5 |
Composition | Cotton Gin Trash | Cow Manure | Sludge |
---|---|---|---|
Percentage Except for C/N and HHV | |||
Carbon | 40.23 | 36.13 | 25.89 |
Nitrogen | 2.36 | 2.3 | 5.97 |
Hydrogen | 5.23 | 4.67 | 3.83 |
Sulfur | 0.82 | 0.11 | 0.45 |
C/N | 17.05 | 16.01 | 6.52 |
VSS (% of TS) | 89.68 | 71.5 | 24.93 |
VCM | 73.1 | 70.12 | 62.85 |
Fixed Carbon | 16.7 | 12.1 | 22.74 |
Ash | 10.2 | 17.1 | 14.4 |
High Heating Value (MJ/kg) | 19.82 | 17.98 | 20.53 |
Pretreatment | VSSconsumed | Biogasproduced | CH4produced | ||
---|---|---|---|---|---|
(g) | (L) | (% of Biogas) | (L) | (L/g of VSS) | |
HW | 138.7 | 93.17 | 37.83 | 35.25 | 0.25 |
US | 129.5 | 79.66 | 37.58 | 29.94 | 0.23 |
HW+US | 145.2 | 103.99 | 52.4 | 54.49 | 0.37 |
NP | 131.7 | 87.685 | 31.6 | 27.71 | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanif, M.U.; Zwawi, M.; Algarni, M.; Bahadar, A.; Iqbal, H.; Capareda, S.C.; Hanif, M.A.; Waqas, A.; Hossain, N.; Siddiqui, M.T.H.; et al. The Effects of Using Pretreated Cotton Gin Trash on the Production of Biogas from Anaerobic Co-Digestion with Cow Manure and Sludge. Energies 2022, 15, 490. https://doi.org/10.3390/en15020490
Hanif MU, Zwawi M, Algarni M, Bahadar A, Iqbal H, Capareda SC, Hanif MA, Waqas A, Hossain N, Siddiqui MTH, et al. The Effects of Using Pretreated Cotton Gin Trash on the Production of Biogas from Anaerobic Co-Digestion with Cow Manure and Sludge. Energies. 2022; 15(2):490. https://doi.org/10.3390/en15020490
Chicago/Turabian StyleHanif, Muhammad Usman, Mohammed Zwawi, Mohammed Algarni, Ali Bahadar, Hamid Iqbal, Sergio C. Capareda, Muhammad Adnan Hanif, Adeel Waqas, Nazia Hossain, Muhammad Tahir Hussain Siddiqui, and et al. 2022. "The Effects of Using Pretreated Cotton Gin Trash on the Production of Biogas from Anaerobic Co-Digestion with Cow Manure and Sludge" Energies 15, no. 2: 490. https://doi.org/10.3390/en15020490
APA StyleHanif, M. U., Zwawi, M., Algarni, M., Bahadar, A., Iqbal, H., Capareda, S. C., Hanif, M. A., Waqas, A., Hossain, N., Siddiqui, M. T. H., Nizamuddin, S., & Jamil, A. (2022). The Effects of Using Pretreated Cotton Gin Trash on the Production of Biogas from Anaerobic Co-Digestion with Cow Manure and Sludge. Energies, 15(2), 490. https://doi.org/10.3390/en15020490