Comparison of Hydrocarbon-Degrading Consortia from Surface and Deep Waters of the Eastern Mediterranean Sea: Characterization and Degradation Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Enrichment of Hydrocarbon-Degrading Microbial Consortia
2.3. Time-Series Biodegradation Experiment
2.4. Hydrocarbon Extraction and GC-MS Analysis
2.5. Kinetic Evaluation
2.6. DNA Extraction
2.7. 16S rRNA Amplicon Sequencing and Bioinformatic Analysis
2.8. Statistical Analysis
3. Results
3.1. Hydrocarbon Degradation
3.2. Microbial Diversity Analysis
3.2.1. Microbial Community Structure
3.2.2. Alpha Diversity
3.2.3. Beta Diversity
3.3. Identification of Influential Taxa Based on DESeq2 Analysis
3.4. Levin’s Niche Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Microbial Diversity Analysis of Consortia between Transfers
References
- Krom, M.D.; Emeis, K.C.; Van Cappellen, P. Why is the Eastern Mediterranean phosphorus limited? Prog. Oceanogr. 2010, 85, 236–244. [Google Scholar] [CrossRef]
- Techtmann, S.M.; Fortney, J.L.; Ayers, K.A.; Joyner, D.C.; Linley, T.D.; Pfiffner, S.M.; Hazen, T.C. The Unique Chemistry of Eastern Mediterranean Water Masses Selects for Distinct Microbial Communities by Depth. PLoS ONE 2015, 10, e0120605. [Google Scholar] [CrossRef] [PubMed]
- Kostianoy, A.G.; Carpenter, A. History, Sources and Volumes of Oil Pollution in the Mediterranean Sea. In Oil Pollution in the Mediterranean Sea: Part I. The Handbook of Environmental Chemistry, 1st ed.; Carpenter, A., Kostianoy, A., Eds.; Springer: Cham, Switzerland, 2018; Volume 83, pp. 9–31. [Google Scholar]
- Hazen, T.C.; Techtmann, S.M. Oil Biodegradation in Deep Marine Basins. In Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation, 1st ed.; Steffan, R.J., Ed.; Springer: Cham, Switzerland, 2019; pp. 71–88. [Google Scholar]
- Muehlenbachs, L.; Cohen, M.A.; Gerarden, T. The impact of water depth on safety and environmental performance in offshore oil and gas production. Energy Policy 2013, 55, 699–705. [Google Scholar] [CrossRef]
- Alves, T.; Kokinou, E.; Zodiatis, G.; Radhakrishnan, H.; Panagiotakis, C. Multidisciplinary oil spill modeling to protect coastal communities and the environment of the Eastern Mediterranean Sea. Sci. Rep. 2016, 6, 36882. [Google Scholar] [CrossRef] [PubMed]
- Atlas, R.M.; Hazen, T.C. Oil Biodegradation and Bioremediation: A Tale of the Two Worst Spills in U.S. History. Environ. Sci. Technol. 2011, 45, 6709–6715. [Google Scholar] [CrossRef] [Green Version]
- Joye, S.B. Deepwater Horizon, 5 years on. Science 2015, 349, 592–593. [Google Scholar] [CrossRef]
- Daly, K.L.; Passow, U.; Chanton, J.; Hollander, D. Assessing the impacts of oil-associated marine snow formation and sedimentation during and after the Deepwater Horizon oil spill. Anthropocene 2016, 13, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Passow, U.; Ziervogel, K.; Asper, V.L.; Diercks, A.R. Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ. Res. Lett. 2012, 7, 035301. [Google Scholar] [CrossRef] [Green Version]
- Hazen, T.C.; Dubinsky, E.A.; DeSantis, T.Z.; Andersen, G.L.; Piceno, Y.M.; Singh, N.; Jansson, J.K.; Probst, A.; Borglin, S.E.; Fortney, J.L.; et al. Deep-Sea Oil Plume Enriches Indigenous Oil-Degrading Bacteria. Science 2010, 330, 204–208. [Google Scholar] [CrossRef] [Green Version]
- Mason, O.U.; Hazen, T.C.; Borglin, S.; Chain, P.S.; Dubinsky, E.A.; Fortney, J.L.; Han, J.; Holman, H.-Y.N.; Hultman, J.; Lamendella, R.; et al. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J. 2012, 6, 1715–1727. [Google Scholar] [CrossRef]
- Kleindienst, S.; Grim, S.L.; Sogin, M.L.; Bracco, A.; Crespo-Medina, M.; Joye, S.B. Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume. ISME J. 2016, 10, 400–415. [Google Scholar] [CrossRef] [Green Version]
- Yergeau, E.; Maynard, C.; Sanschagrin, S.; Champagne, J.; Juck, D.; Lee, K.; Greer, C.W. Microbial Community Composition, Functions, and Activities in the Gulf of Mexico 1 Year after the Deepwater Horizon Accident. Appl. Environ. Microbiol. 2015, 81, 5855–5866. [Google Scholar] [CrossRef] [Green Version]
- King, G.; Kostka, J.; Hazen, T.; Sobecky, P. Microbial Responses to theDeepwater HorizonOil Spill: From Coastal Wetlands to the Deep Sea. Annu. Rev. Mar. Sci. 2015, 7, 377–401. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Nigro, L.M.; Gutierrez, T.; D’ambrosio, L.; Joye, S.B.; Highsmith, R.; Teske, A. Pulsed blooms and persistent oil-degrading bacterial populations in the water column during and after the Deepwater Horizon blowout. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2016, 129, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Redmond, M.C.; Valentine, D.L. Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proc. Natl. Acad. Sci. USA 2011, 109, 20292–20297. [Google Scholar] [CrossRef] [Green Version]
- Hazen, T.C. Lessons from the 2010 Deepwater Horizon Accident in the Gulf of Mexico. In Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Handbook of Hydrocarbon and Lipid Microbiology; Wilkes, H., Ed.; Springer: Cham, Switzerland, 2018; pp. 1–19. [Google Scholar]
- Rahav, E.; Silverman, J.; Raveh, O.; Hazan, O.; Rubin-Blum, M.; Zeri, C.; Gogou, A.; Kralj, M.; Pavlidou, A.; Kress, N. The deep water of Eastern Mediterranean Sea is a hotspot for bacterial activity. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2019, 164, 135–143. [Google Scholar] [CrossRef]
- Liu, J.; Techtmann, S.M.; Woo, H.L.; Ning, D.; Fortney, J.L.; Hazen, T.C. Rapid Response of Eastern Mediterranean Deep Sea Microbial Communities to Oil. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Velaoras, D.; Papadopoulos, V.P.; Kontoyiannis, H.; Cardin, V.; Civitarese, G. Water masses and hydrography during April and June 2016 in the Cretan Sea and Cretan Passage (Eastern Mediterranean Sea). Deep. Sea Res. Part II Top. Stud. Oceanogr. 2019, 164, 25–40. [Google Scholar] [CrossRef]
- Zahed, M.A.; Aziz, H.A.; Isa, M.H.; Mohajeri, L. Effect of Initial Oil Concentration and Dispersant on Crude Oil Biodegradation in Contaminated Seawater. Bull. Environ. Contam. Toxicol. 2010, 84, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Bacosa, H.P.; Kang, A.; Lu, K.; Liu, Z. Initial oil concentration affects hydrocarbon biodegradation rates and bacterial community composition in seawater. Mar. Pollut. Bull. 2021, 162, 111867. [Google Scholar] [CrossRef]
- Natarajan, V.P.; Zhang, X.; Morono, Y.; Inagaki, F.; Wang, F. A Modified SDS-Based DNA Extraction Method for High Quality Environmental DNA from Seafloor Environments. Front. Microbiol. 2016, 7, 986. [Google Scholar] [CrossRef] [Green Version]
- Sundberg, C.; Al-Soud, W.A.; Larsson, M.; Alm, E.; Yekta, S.S.; Svensson, B.H.; Sørensen, S.J.; Karlsson, A. 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol. Ecol. 2013, 85, 612–626. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 15 April 2021).
- Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVAribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Schliep, K.P. Phangorn: Phylogenetic analysis in R. Bioinformatics 2011, 27, 592–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, E.S. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 2016, 8, 352–359. [Google Scholar] [CrossRef] [Green Version]
- McMurdie, P.J.; Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer: New York, NY, USA, 2016. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Smith, G.M. Analysing Ecological Data, 1st ed.; Springer: New York, NY, USA, 2007. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package Version 2.5-7. 2020. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 11 November 2020).
- Paulson, J.N.; Talukder, H.; Pop, M.; Bravo, H.C. Robust methods for differential abundance analysis in marker gene surveys. Nat. Methods 2013, 10, 1200–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- McMurdie, P.J.; Holmes, S. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLoS Comput. Biol. 2014, 10, e1003531. [Google Scholar] [CrossRef] [Green Version]
- Finn, D.R.; Yu, J.; Ilhan, Z.; Fernandes, V.M.C.; Penton, C.R.; Krajmalnik-Brown, R.; Garcia-Pichel, F.; Vogel, T.M. MicroNiche: An R package for assessing microbial niche breadth and overlap from amplicon sequencing data. FEMS Microbiol. Ecol. 2020, 96, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Warnes, G.R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Huber, W.; Liaw, A.; Lumley, T.; Maechler, M.; Magnusson, A.; Moeller, S.; et al. Gplots: Various R Programming Tools for Plotting Data. R Package Version 3.1.1. 2020. Available online: https://cran.r-project.org/web/packages/gplots/index.html (accessed on 13 January 2021).
- Liu, J.; Bacosa, H.P.; Liu, Z. Potential Environmental Factors Affecting Oil-Degrading Bacterial Populations in Deep and Surface Waters of the Northern Gulf of Mexico. Front. Microbiol. 2017, 7, 2131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Techtmann, S.M.; Zhuang, M.; Campo, P.; Holder, E.; Elk, M.; Hazen, T.C.; Conmy, R.; Domingo, J.W.S. Corexit 9500 Enhances Oil Biodegradation and Changes Active Bacterial Community Structure of Oil-Enriched Microcosms. Appl. Environ. Microbiol. 2017, 83, e03462-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potts, L.D.; Calderon, L.J.P.; Gontikaki, E.; Keith, L.; Gubry-Rangin, C.; Anderson, J.; Witte, U. Effect of spatial origin and hydrocarbon composition on bacterial consortia community structure and hydrocarbon biodegradation rates. FEMS Microbiol. Ecol. 2018, 94, 127. [Google Scholar] [CrossRef]
- Bargiela, R.; Mapelli, F.; Rojo, D.; Chouaia, B.; Tornés, J.; Borin, S.; Richter, M.; Del Pozo, M.V.; Cappello, S.; Gertler, C.; et al. Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature. Sci. Rep. 2015, 5, 11651. [Google Scholar] [CrossRef]
- Duran, R.; Cravo-Laureau, C. Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol. Rev. 2016, 40, 814–830. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, R.M.W.; Gontikaki, E.; Anderson, J.A.; Witte, U. The Variable Influence of Dispersant on Degradation of Oil Hydrocarbons in Subarctic Deep-Sea Sediments at Low Temperatures (0–5 °C). Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Calderon, L.J.P.; Gontikaki, E.; Potts, L.D.; Shaw, S.; Gallego, A.; Anderson, J.A.; Witte, U. Pressure and temperature effects on deep-sea hydrocarbon-degrading microbial communities in subarctic sediments. Microbiology 2019, 8, e00768. [Google Scholar] [CrossRef]
- Bagi, A.; Pampanin, D.M.; Brakstad, O.G.; Kommedal, R. Estimation of hydrocarbon biodegradation rates in marine environments: A critical review of the Q10 approach. Mar. Environ. Res. 2013, 89, 83–90. [Google Scholar] [CrossRef]
- Miller, J.I.; Techtmann, S.; Joyner, D.; Mahmoudi, N.; Fortney, J.; Fordyce, J.A.; Garajayeva, N.; Askerov, F.S.; Cravid, C.; Kuijper, M.; et al. Microbial Communities across Global Marine Basins Show Important Compositional Similarities by Depth. mBio 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Yuan, J.; Shao, Z.; Lai, Q.; Zheng, T. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge. Front. Microbiol. 2015, 6, 853. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Wang, H.; Li, R.; Mao, X. Thalassospira xianhensis sp. nov., a polycyclic aromatic hydrocarbon-degrading marine bacterium. Int. J. Syst. Evol. Microbiol. 2010, 60, 1125–1129. [Google Scholar] [CrossRef]
- Thomas, G.E.; Cameron, T.C.; Campo, P.; Clark, D.R.; Coulon, F.; Gregson, B.H.; Hepburn, L.J.; McGenity, T.J.; Miliou, A.; Whitby, C.; et al. Bacterial Community Legacy Effects Following the Agia Zoni II Oil-Spill, Greece. Front. Microbiol. 2020, 11, 1706. [Google Scholar] [CrossRef]
- Yang, S.; Li, M.; Lai, Q.; Li, G.; Shao, Z. Alcanivorax mobilis sp. nov., a new hydrocarbon-degrading bacterium isolated from deep-sea sediment. Int. J. Syst. Evol. Microbiol. 2018, 68, 1639–1643. [Google Scholar] [CrossRef]
- Lai, Q.; Wang, J.; Gu, L.; Zheng, T.; Shao, Z. Alcanivorax marinus sp. nov., isolated from deep-sea water. Int. J. Syst. Evol. Microbiol. 2013, 63, 4428–4432. [Google Scholar] [CrossRef]
- Lai, Q.; Zhou, Z.; Li, G.; Li, G.; Shao, Z. Alcanivorax nanhaiticus sp. nov., isolated from deep sea sediment. Int. J. Syst. Evol. Microbiol. 2016, 66, 3651–3655. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.; Dubinsky, E.A.; Probst, A.J.; Wang, J.; Sieber, C.; Tom, L.M.; Gardinali, P.R.; Banfield, J.F.; Atlas, R.M.; Andersen, G.L. Simulation of Deepwater Horizon oil plume reveals substrate specialization within a complex community of hydrocarbon degraders. Proc. Natl. Acad. Sci. USA 2017, 114, 7432–7437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gontikaki, E.; Potts, L.; Anderson, J.; Witte, U. Hydrocarbon-degrading bacteria in deep-water subarctic sediments (Faroe-Shetland Channel). J. Appl. Microbiol. 2018, 125, 1040–1053. [Google Scholar] [CrossRef] [Green Version]
- Imron, M.F.; Titah, H.S. Optimization of diesel biodegradation by Vibrio alginolyticus using Box-Behnken design. Environ. Eng. Res. 2018, 23, 374–382. [Google Scholar] [CrossRef]
- Hedlund, B.P.; Staley, J.T. Vibrio cyclotrophicus sp. nov., a polycyclic aromatic hydrocarbon (PAH)-degrading marine bacterium. Int. J. Syst. Evol. Microbiol. 2001, 51, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, J. Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern Gulf of Mexico after the Deepwater Horizon oil spill. Microbiologyopen 2013, 2, 492–504. [Google Scholar] [CrossRef]
- Tao, Z.; Bullard, S.; Arias, C. High Numbers of Vibrio vulnificus in Tar Balls Collected from Oiled Areas of the North-Central Gulf of Mexico Following the 2010 BP Deepwater Horizon Oil Spill. EcoHealth 2011, 8, 507–511. [Google Scholar] [CrossRef]
- Suja, L.D.; Summers, S.; Gutierrez, T. Role of EPS, Dispersant and Nutrients on the Microbial Response and MOS Formation in the Subarctic Northeast Atlantic. Front. Microbiol. 2017, 8, 676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostka, J.E.; Prakash, O.; Overholt, W.A.; Green, S.J.; Freyer, G.; Canion, A.; Delgardio, J.; Norton, N.; Hazen, T.C.; Huettel, M. Hydrocarbon-Degrading Bacteria and the Bacterial Community Response in Gulf of Mexico Beach Sands Impacted by the Deepwater Horizon Oil Spill. Appl. Environ. Microbiol. 2011, 77, 7962–7974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Kostka, J.E. Hydrocarbon-Degrading Microbial Communities Are Site Specific, and Their Activity Is Limited by Synergies in Temperature and Nutrient Availability in Surface Ocean Waters. Appl. Environ. Microbiol. 2019, 85, 00443-19. [Google Scholar] [CrossRef] [Green Version]
- Mas-Lladó, M.; Piña-Villalonga, J.M.; Brunet-Galmés, I.; Nogales, B.; Bosch, R. Draft Genome Sequences of Two Isolates of the Roseobacter Group, Sulfitobacter sp. Strains 3SOLIMAR09 and 1FIGIMAR09, from Harbors of Mallorca Island (Mediterranean Sea). Genome Announc. 2014, 2, e00350-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attramadal, K.J.; Minniti, G.; Øie, G.; Kjørsvik, E.; Østensen, M.-A.; Bakke, I.; Vadstein, O. Microbial maturation of intake water at different carrying capacities affects microbial control in rearing tanks for marine fish larvae. Aquaculture 2016, 457, 68–72. [Google Scholar] [CrossRef]
- Dalby, A.P.; Kormas, K.A.; Christaki, U.; Karayanni, H. Cosmopolitan heterotrophic microeukaryotes are active bacterial grazers in experimental oil-polluted systems. Environ. Microbiol. 2007, 10, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Radwan, S.S.; Khanafer, M.M.; Al-Awadhi, H.A. Ability of the So-Called Obligate Hydrocarbonoclastic Bacteria to Utilize Nonhydrocarbon Substrates Thus Enhancing Their Activities Despite their Misleading Name. BMC Microbiol. 2019, 19, 41. [Google Scholar] [CrossRef] [PubMed]
Community | Crude Oil Components | kapp (day−1) | t1/2 (days) |
---|---|---|---|
Deep14 | TPH | 0.1048 | 7 |
LA | 0.0943 | 7 | |
HA | 0.0180 | 38 | |
PAH | 0.0207 | 33 | |
Deep25 | TPH | 0.1064 | 6 |
LA | 0.0966 | 7 | |
HA | 0.0239 | 29 | |
PAH | 0.0224 | 31 | |
Surface25 | TPH | 0.0422 | 16 |
LA | 0.0382 | 18 | |
HA | 0.0091 | 76 | |
PAH | 0.0078 | 89 |
Genus | Levin’s BN | p-Value |
---|---|---|
Alcanivorax | 0.691 | 0.2537 |
Alteromonas | 0.858 | 0.5606 |
Halomonas | 0.664 | 0.1560 |
Idiomarina | 0.342 | 0.0000 ** |
Marinobacter | 0.447 | 0.0002 ** |
Pseudoalteromonas | 0.565 | 0.014 * |
Pseudomonas | 0.559 | 0.013 * |
Sulfitobacter | 0.427 | 0.0001 ** |
Thalassospira | 0.425 | 0.0001 ** |
Vibrio | 0.417 | 0.0001 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charalampous, G.; Fragkou, E.; Kormas, K.A.; Menezes, A.B.D.; Polymenakou, P.N.; Pasadakis, N.; Kalogerakis, N.; Antoniou, E.; Gontikaki, E. Comparison of Hydrocarbon-Degrading Consortia from Surface and Deep Waters of the Eastern Mediterranean Sea: Characterization and Degradation Potential. Energies 2021, 14, 2246. https://doi.org/10.3390/en14082246
Charalampous G, Fragkou E, Kormas KA, Menezes ABD, Polymenakou PN, Pasadakis N, Kalogerakis N, Antoniou E, Gontikaki E. Comparison of Hydrocarbon-Degrading Consortia from Surface and Deep Waters of the Eastern Mediterranean Sea: Characterization and Degradation Potential. Energies. 2021; 14(8):2246. https://doi.org/10.3390/en14082246
Chicago/Turabian StyleCharalampous, Georgia, Efsevia Fragkou, Konstantinos A. Kormas, Alexandre B. De Menezes, Paraskevi N. Polymenakou, Nikos Pasadakis, Nicolas Kalogerakis, Eleftheria Antoniou, and Evangelia Gontikaki. 2021. "Comparison of Hydrocarbon-Degrading Consortia from Surface and Deep Waters of the Eastern Mediterranean Sea: Characterization and Degradation Potential" Energies 14, no. 8: 2246. https://doi.org/10.3390/en14082246
APA StyleCharalampous, G., Fragkou, E., Kormas, K. A., Menezes, A. B. D., Polymenakou, P. N., Pasadakis, N., Kalogerakis, N., Antoniou, E., & Gontikaki, E. (2021). Comparison of Hydrocarbon-Degrading Consortia from Surface and Deep Waters of the Eastern Mediterranean Sea: Characterization and Degradation Potential. Energies, 14(8), 2246. https://doi.org/10.3390/en14082246