Multi-Criteria Method for the Selection of Renewable Energy Sources in the Polish Industrial Sector
Abstract
:1. Introduction
- (1)
- (2)
- (3)
- (4)
2. Literature Review
3. Materials
4. Methods
4.1. Obtain and Transform Experts’ Assessments
4.2. Using the FAHP Method
4.2.1. Development of the Combined Matrix
4.2.2. Create the Fuzzy Matrix of Pairwise Comparisons
4.2.3. Calculation of the Relative Fuzzy Weight Values
4.2.4. Calculation of the Possibility Degree
4.2.5. Determine the Least Possible Degree
4.2.6. Calculation of the Weight Vector and Normalized Nonfuzzy Weight Vector
4.3. Using the TOPSIS Method
4.3.1. Construction of the Decision Matrix and Adopting RES Weights
4.3.2. Calculation of the Normalized Decision Matrix
4.3.3. Calculation of the Weighted Normalized Decision Matrix
4.3.4. Determining the Positive Ideal and Negative Ideal Solutions
4.3.5. Calculation of the Separation Measures
4.3.6. Calculation of the Relative Proximity to the Positive Ideal Solution
4.4. Using the Qualitative Price Analysis (ACJ)
4.4.1. Estimate of the Average (Annual) Cost of Meeting the Demand for Electricity with RES
4.4.2. Conversion of the Value of Relative Proximity of the Positive Ideal Solution
4.4.3. Calculation of the Cost–Quality Index
4.4.4. Calculation of the Relative Cost
4.4.5. Calculation of the Cost–Quality Proportionality Index
4.4.6. Calculation of the Decision Interpretation Index
4.4.7. Calculation of the Relative Cost Index
4.4.8. Calculation of the Settlement Index for Technical Preference
4.4.9. Calculation of the Settlement Index for Economic Preference
4.4.10. Calculation of the Decision Settlement Index
4.5. Determination of RES Preferences for Use in Industry in the Context of Electricity
5. Results
5.1. Obtain and Transform Experts’ Assessments
5.2. Using the FAHP Method
5.3. Using the TOPSIS Method
5.4. Using the Qualitative Price Analysis (ACJ)
5.5. Determination of RES Preferences for Use in Industry in the Context of Electricity
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pacana, A.; Siwiec, D.; Bednárová, L. Method of Choice: A Fluorescent Penetrant Taking into Account Sustainability Criteria. Sustainability 2020, 12, 5854. [Google Scholar] [CrossRef]
- Bukosa, B.; Deutscher, N.M.; Fisher, J.A.; Kubistin, D.; Paton-Walsh, C.; Griffith, D.W.T. Simultaneous shipborne measurements of CO2, CH4 and CO and their application to improving greenhouse-gas flux estimates in Australia. Atmos. Chem. Phys. Discuss. 2019, 19, 7055–7072. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Mu, C. Effects on Greenhouse Gas (CH4, CO2, N2O) Emissions of Conversion from Over-Mature Forest to Secondary Forest and Korean Pine Plantation in Northeast China. Forests 2019, 10, 788. [Google Scholar] [CrossRef] [Green Version]
- Uprety, S.; Cao, C. Radiometric Comparison of 1.6-μm CO2 Absorption Band of Greenhouse Gases Observing Satellite (GOSAT) TANSO-FTS with Suomi-NPP VIIRS SWIR Band. J. Atmos. Ocean. Technol. 2016, 33, 1443–1453. [Google Scholar] [CrossRef]
- Liebermann, R.; Breuer, L.; Houska, T.; Kraus, D.; Moser, G.; Kraft, P. Simulating Long-Term Development of Greenhouse Gas Emissions, Plant Biomass, and Soil Moisture of a Temperate Grassland Ecosystem under Elevated Atmospheric CO2. Agronomy 2019, 10, 50. [Google Scholar] [CrossRef] [Green Version]
- Adiaha, M.S.; Buba, A.H.; Tangban, E.E. Mitigating Global Greenhouse Gas Emission: The Role of Trees as a Clean Mechanism For CO2 Sequestration. J. Agric. Sci. Sri Lanka 2020, 15, 101. [Google Scholar] [CrossRef] [Green Version]
- Liczmańska-Kopcewicz, K.; Pypłacz, P.; Wiśniewska, A. Resonance of Investments in Renewable Energy Sources in Industrial Enterprises in the Food Industry. Energies 2020, 13, 4285. [Google Scholar] [CrossRef]
- Wamsler, C.; Schäpke, N.; Fraude, C.; Stasiak, D.; Bruhn, T.; Lawrence, M.; Schroeder, H.; Mundaca, L. Enabling new mindsets and transformative skills for negotiating and activating climate action: Lessons from UNFCCC conferences of the parties. Environ. Sci. Policy 2020, 112, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Khanna, N.; Liu, X.; Teng, F.; Wang, X. China’s Non-CO2 Greenhouse Gas Emissions: Future Trajectories and Mitigation Options and Potential. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.; Zhao, X.; Meng, J. Non-CO2 Greenhouse Gas Emissions in China 2012: Inventory and Supply Chain Analysis. Earth’s Futur. 2018, 6, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Liu, X. A Grey Neural Network and Input-Output Combined Forecasting Model and Its Application in Primary Energy Related CO2 Emissions Estimation by Sector in China. Energy Proc. 2013, 36, 815–824. [Google Scholar] [CrossRef] [Green Version]
- Stan Środowiska w Polsce Raport 2018. Główny Inspektorat Ochrony Środowiska, Biblioteka Monitoringu Środowiska, Inspekcja Ochrony Środowiska, Warszawa. 2018. Available online: https://www.gios.gov.pl/images/dokumenty/pms/raporty/Stan_srodowiska_w_Polsce-Raport_2018.pdf (accessed on 17 October 2020).
- Krajowy Raport Inwentaryzacyjny. Available online: https://www.kobize.pl/uploads/materialy/materialy_do_pobrania/krajowa_inwentaryzacja_emisji/NIR_2018_raport_syntetyczny_PL.pdf (accessed on 20 December 2020).
- Węgiel Zabija. Analiza Kosztów Zdrowotnych Emisji Zanieczyszczeń z Polskiego Sektora Energetycznego. Greenpeace. 2013. Available online: https://www.banktrack.org/download/greenpeace_wegiel_zabija_report/raportgp_wegiel_zabija.pdf (accessed on 17 October 2020).
- Environment. Statistic Poland, Warsaw. 2019. Available online: https://stat.gov.pl (accessed on 20 April 2020).
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1–14. [Google Scholar] [CrossRef]
- Fridleifsson, I.B. Geothermal energy for the benefit of the people. Renew. Sustain. Energy Rev. 2001, 5, 299–312. [Google Scholar] [CrossRef] [Green Version]
- Tutak, M.; Brodny, J.; Siwiec, D.; Ulewicz, R.; Bindzár, P. Studying the Level of Sustainable Energy Development of the European Union Countries and Their Similarity Based on the Economic and Demographic Potential. Energies 2020, 13, 6643. [Google Scholar] [CrossRef]
- Sabishchenko, O.; Rębilas, R.; Sczygiol, N.; Urbański, M. Ukraine Energy Sector Management Using Hybrid Renewable Energy Systems. Energies 2020, 13, 1776. [Google Scholar] [CrossRef] [Green Version]
- Mikita, M.; Kolcun, M.; Spes, M.; Vojtek, M.; Ivančák, M. Impact of electrical power load time management at sizing and cost of hybrid renewable power system. Pol. J. Manag. Stud. 2017, 15, 154–162. [Google Scholar] [CrossRef]
- Janekova, J.; Fabianova, J.; Rosova, A. Environmental and economic aspects in decision making of the investment project “wind park”. Pol. J. Manag. Stud. 2016, 13, 90–100. [Google Scholar] [CrossRef]
- Energy from Renewable Sources in 2018. Statistics Poland, Warsaw. 2019. Available online: https://stat.gov.pl (accessed on 20 April 2020).
- Brodny, J.; Tutak, M. The analysis of similarities between the European Union countries in terms of the level and structure of the emissions of selected gases and air pollutants into the atmosphere. J. Clean. Prod. 2021, 279, 123641. [Google Scholar] [CrossRef]
- Kluczek, A. Multi-criteria decision analysis for simplified evaluation of clean energy technologies. Prod. Eng. Arch. 2019, 23, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Paska, J.; Surma, T.; Terlikowski, P.; Zagrajek, K. Electricity Generation from Renewable Energy Sources in Poland as a Part of Commitment to the Polish and EU Energy Policy. Energies 2020, 13, 4261. [Google Scholar] [CrossRef]
- Bajor, M. Innowacyjne metody pozyskiwania energii z odnawialnych źródeł energii. Zeszyty Naukowe Politechniki Śląskiej. Organ. Zarz. 2017, 114, 11–21. [Google Scholar]
- Ingaldi, M.; Klimecka-Tatar, D. People’s Attitude to Energy from Hydrogen—From the Point of View of Modern Energy Technologies and Social Responsibility. Energies 2020, 13, 6495. [Google Scholar] [CrossRef]
- Solé, J.; Samsó, R.; García-Ladona, E.; García-Olivares, A.; Ballabrera-Poy, J.; Madurell, T.; Turiel, A.; Osychenko, O.; Álvarez, D.; Bardi, U.; et al. Modelling the renewable transition: Scenarios and pathways for a decarbonized future using pymedeas, a new open-source energy systems model. Renew. Sustain. Energy Rev. 2020, 132, 110105. [Google Scholar] [CrossRef]
- Busu, M. Analyzing the Impact of the Renewable Energy Sources on Economic Growth at the EU Level Using an ARDL Model. Mathematics 2020, 8, 1367. [Google Scholar] [CrossRef]
- Solangi, Y.A.; Longsheng, C.; Shah, S.A.A.; AlSanad, A.; Ahmad, M.; Akbar, M.A.; Gumaei, A.; Ali, S. Analyzing Renewable Energy Sources of a Developing Country for Sustainable Development: An Integrated Fuzzy Based-Decision Methodology. Processes 2020, 8, 825. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Y.-T.; Wang, J.-Q.; Li, L.; Cheng, P.-F. Multistage Decision Framework for the Selection of Renewable Energy Sources Based on Prospect Theory and PROMETHEE. Int. J. Fuzzy Syst. 2020, 22, 1535–1551. [Google Scholar] [CrossRef]
- Yi, S.-K.; Sin, H.-Y.; Heo, E. Selecting sustainable renewable energy source for energy assistance to North Korea. Renew. Sustain. Energy Rev. 2011, 15, 554–563. [Google Scholar] [CrossRef]
- Skoczko, I.; Szatyłowicz, E.; Barszczewska, I.; Biedrzycki, T.; Mielniczuk, P.; Wysocka, M.; Załuska, M.; Myszkowska, A.; Osipiuk, J.; Boguszewska, M.; et al. Wykorzystanie i rozwój odnawialnych źródeł energii. In Inżynieria Środowiska—Młodym Okiem Tom 33 Ekoinżynieria; Skoczko, I., Siemieniuk, A., Osipiuk, J., Myszkowska, A., Eds.; Oficyna Wydawnicza Politechniki Białostockiej: Miasto Białystok, Poland, 2017; pp. 172–189. [Google Scholar]
- Nigim, K.; Munier, N.; Green, J. Pre-feasibility MCDM tools to aid communities in prioritizing local viable renewable energy sources. Renew. Energy 2004, 29, 1775–1791. [Google Scholar] [CrossRef]
- Wójcicki, Z. Znaczenie biomasy i innych odnawialnych zasobów energii. Probl. Agric. Eng. 2012, 4, 5–13. [Google Scholar]
- Rasheed, M.B.; Qureshi, M.A.; Javaid, N.; Alquthami, T. Dynamic Pricing Mechanism With the Integration of Renewable Energy Source in Smart Grid. IEEE Access 2020, 8, 16876–16892. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M.; Saki, S.A. Forecasting the Structure of Energy Production from Renewable Energy Sources and Biofuels in Poland. Energies 2020, 13, 2539. [Google Scholar] [CrossRef]
- Lipiński, T. Double Modification of AlSi9Mg Alloy With Boron, Titanium And Strontium. Arch. Met. Mater. 2015, 60, 2415–2419. [Google Scholar] [CrossRef] [Green Version]
- Lipiński, T.; Wach, A. Dimensional Structure of Non-Metallic Inclusions in High-Grade Medium Carbon Steel Melted in an Electric Furnace and Subjected to Desulfurization. Solid State Phenom. 2014, 223, 46–53. [Google Scholar] [CrossRef]
- Radek, N.; Bartkowiak, K. Laser Treatment of Electro-Spark Coatings Deposited in the Carbon Steel Substrate with using Nanostructured WC-Cu Electrodes. Phys. Proc. 2012, 39, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Jonšta, P.; Váňová, P.; Brožová, S.; Pustějovská, P.; Sojka, J.; Jonšta, Z.; Ingaldi, M. Hydrogen Embrittlement of Welded Joint Made of Supermartensitic Stainless Steel in Environment Containing Sulfane. Arch. Met. Mater. 2016, 61, 709–712. [Google Scholar] [CrossRef]
- Pacana, A.; Czerwińska, K.; Bednárová, L. Discrepancies analysis of casts of diesel engine piston. Metalurgija 2018, 57, 324–326. [Google Scholar]
- Zhelykh, V.; Venhryn, I.; Kozak, K.; Shapoval, S. Solar collectors integrated into transparent facades. Prod. Eng. Arch. 2020, 26, 84–87. [Google Scholar] [CrossRef]
- Enescu, F.M.; Ionescu, V.M.; Marinescu, C.N.; Stirbu, C. System for monitoring and controlling renewable energy sources. In Proceedings of the ECAI 2017 International Conference-9th Edition Electronics, Computers and Artificial Intelligence, Targoviste, Romania, 29 June–1 July 2017. [Google Scholar]
- Rahim, N.-A.; Khyam, M.O.; Li, X.; Pesch, D. Sensor Fusion and State Estimation of IoT Enabled Wind Energy Conversion System. Sensors 2019, 19, 1566. [Google Scholar] [CrossRef] [Green Version]
- Hirschhorn, F. Reflections on the application of the Delphi method: Lessons from a case in public transport research. Int. J. Soc. Res. Methodol. 2019, 22, 309–322. [Google Scholar] [CrossRef]
- Tsai, H.-C.; Lee, A.-S.; Lee, H.-N.; Chen, C.-N.; Liu, Y.-C. An Application of the Fuzzy Delphi Method and Fuzzy AHP on the Discussion of Training Indicators for the Regional Competition, Taiwan National Skills Competition, in the Trade of Joinery. Sustainability 2020, 12, 4290. [Google Scholar] [CrossRef]
- Chang, D.-Y. Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 1996, 95, 649–655. [Google Scholar] [CrossRef]
- Sofyalioğlu, Ç.; Öztürk, Ş. Application of Grey Relational Analysis with Fuzzy AHP to FMEA Method. Doğuş Üniv. Derg. 2012, 1, 114–130. [Google Scholar] [CrossRef]
- Chen, C.-T. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 2000, 114, 1–9. [Google Scholar] [CrossRef]
- Wu, C.; Qin, Z.; Huang, J.; Zhou, R. Characterization of Microbial Community in Daqu by PLFA Method. Food Sci. Technol. Res. 2014, 20, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Stecyk, A.; Szczeciński, U. Zastosowanie metody PROMETHEE II do wyboru kursu e-learningowego w przedsiębiorstwie. E-mentor 2019, 2019, 39–45. [Google Scholar] [CrossRef]
- Michalska, E. Ocena Efektywności Wariantów Decyzyjnych Na Gruncie Teorii Perspektywy. Zesz. Nauk. Politech. Śląskiej Organ. Zarz. 2017, 113, 315–325. [Google Scholar]
- KrishanKumar, R.; Mishra, A.R.; Ravichandran, K.S.; Peng, X.; Zavadskas, E.K.; Cavallaro, F.; Mardani, A. A Group Decision Framework for Renewable Energy Source Selection under Interval-Valued Probabilistic linguistic Term Set. Energies 2020, 13, 986. [Google Scholar] [CrossRef] [Green Version]
- Halkos, G.E.; Gkampoura, E.-C. Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources. Energies 2020, 13. [Google Scholar] [CrossRef]
- Wu, Z.; Abdul-Nour, G. Comparison of Multi-Criteria Group Decision-Making Methods for Urban Sewer Network Plan Selection. CivilEng 2020, 1, 3. [Google Scholar] [CrossRef]
- Roszkowska, E. Multi-Criteria Decision Making Models by Applying the TOPSIS Method to Crisp and Interval Data. Available online: http://www.mcdm.ue.katowice.pl/files/papers/mcdm11(6)_11.pdf (accessed on 19 October 2020).
- Siwiec, D.; Bednárová, L.; Pacana, A. Metoda doboru penetrantów dla przemysłowych badań nieniszczących. Przem. Chem. 2020, 99, 771–773. [Google Scholar] [CrossRef]
- Kolman, R.R. Quality Engineering; PWE: Warsaw, Poland, 1992; pp. 1–292. (In Polish) [Google Scholar]
- Ulewicz, R.; Nový, F. Quality management systems in special processes. Transp. Res. Proc. 2019, 40, 113–118. [Google Scholar] [CrossRef]
- Amineha, H.; Kosach, N. Assessment of Consumers’ Satisfaction with the Automotive Product Quality. Int. J. Environ. Sci. Educ. 2016, 11, 8726–8739. [Google Scholar]
- Joanna, M.; Marek, G.; Władysław, M. The concept of the qualitology and grey system theory application in marketing information quality cognition and assessment. Cent. Eur. J. Oper. Res. 2019, 28, 817–840. [Google Scholar] [CrossRef] [Green Version]
- Kijewska, J.; Mierzwiak, R. The Empirical Verification of the Kolman’s Universal Interpretative Scale. Przeds. Zarz. 2014, 15, 335–350. [Google Scholar]
- Kosacka, M.; Golinska-Dawson, P.; Mierzwiak, R. Sustainability Classification for SMEs from the Remanufacturing Sector. Chiang Mai Univ. J. Nat. Sci. 2015, 14, 321–338. [Google Scholar] [CrossRef]
- Jahanshahloo, G.; Lotfi, F.H.; Izadikhah, M. Extension of the TOPSIS method for decision-making problems with fuzzy data. Appl. Math. Comput. 2006, 181, 1544–1551. [Google Scholar] [CrossRef]
- Jahanshahloo, G.; Lotfi, F.H.; Izadikhah, M. An algorithmic method to extend TOPSIS for decision-making problems with interval data. Appl. Math. Comput. 2006, 175, 1375–1384. [Google Scholar] [CrossRef]
- Hussain, H.I.; Slusarczyk, B.; Kamarudin, F.; Thaker, H.M.T.; Szczepańska-Woszczyna, K. An Investigation of an Adaptive Neuro-Fuzzy Inference System to Predict the Relationship among Energy Intensity, Globalization, and Financial Development in Major ASEAN Economies. Energies 2020, 13, 850. [Google Scholar] [CrossRef] [Green Version]
- Osocha, P.; Ulewicz, R.; Szataniak, P.; Pietraszek, M.; Kołomycki, M.; Radek, N.; Pasieczyński, Ł. The Empirical Assessment of the Convergence Rate for the Bootstrap Estimation in Design of Experiment Approach. Solid State Phenom. 2015, 235, 16–23. [Google Scholar] [CrossRef]
- Kusumawardani, R.P.; Agintiara, M. Application of Fuzzy AHP-TOPSIS Method for Decision Making in Human Resource Manager Selection Process. Procedia Comput. Sci. 2015, 72, 638–646. [Google Scholar] [CrossRef] [Green Version]
- Esmaili-Dooki, A.; Bolhasani, P.; Fallah, M. An Integrated Fuzzy AHP and Fuzzy TOPSIS Approach for Ranking and Selecting the Chief Inspectors of Bank: A Case Study. J. Appl. Res. Ind. Eng. 2016, 4, 8–23. [Google Scholar] [CrossRef]
- Basahel, A.; Taylan, O. Using fuzzy ahp and fuzzy topsis approaches for assessing safety conditions at worksites in construction industry. Int. J. Saf. Secur. Eng. 2016, 6, 728–745. [Google Scholar] [CrossRef]
- Gawilk, R. Stratification of research target group and selection of experts for AHP-based decision making model. In The Application of Analytic Hierarchy Process for Analyzing Material and Non-material Determinants of Life Quality of Young Europeans. Miscellanea Oeconomicae 2016, 3, 193–200. [Google Scholar]
- SoonHu, S. A decision model for evaluating third-party logistics providers using fuzzy analytic hierarchy process. Afr. J. Bus. Manag. 2010, 4, 339–349. [Google Scholar]
- Chan, F.T.; Kumar, N. Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega 2007, 35, 417–431. [Google Scholar] [CrossRef]
- Wang, L.; Chu, J.; Wu, J. Selection of optimum maintenance strategies based on a fuzzy analytic hierarchy process. Int. J. Prod. Econ. 2007, 107, 151–163. [Google Scholar] [CrossRef]
- Libby, R.; Blashfield, R.K. Performance of a composite as a function of the number of judges. Organ. Behav. Hum. Perform. 1978, 21, 121–129. [Google Scholar] [CrossRef]
- Baby, S. AHP Modeling for Multicriteria Decision-Making and to Optimise Strategies for Protecting Coastal Landscape Resources. Int. J. Innov. Manag. Technol. 2013, 4, 218–227. [Google Scholar] [CrossRef] [Green Version]
- Harputlugil, T. Analytic Hierarchy Process (AHP) as an Assessment Approach for Architectural Design: Case Study of Ar-chitectural Design Studio. Int. J. Archit. Plan. 2018, 6, 217–245. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y. Questionnaire Design for Survey Research: Employing Weighting Method. ISAHP 2005. Available online: http://www.isahp.org/2009Proceedings/Final_Papers/76_SatoY_QuestionnaireDesign_REV_FIN.pdf (accessed on 6 November 2020).
- Łuczak, A. Ocena ważności czynników strategicznych w gminie wiejskiej z wykorzystaniem rozmytego analitycznego procesu hierarchicznego. J. Agribus. Rural Dev. 2012, 4, 43–56. [Google Scholar]
- Jianzhong, X.; Assenova, A.; Erokhin, V. Renewable Energy and Sustainable Development in a Resource-Abundant Country: Challenges of Wind Power Generation in Kazakhstan. Sustainability 2018, 10, 3315. [Google Scholar] [CrossRef] [Green Version]
- Pacana, A.; Siwiec, D.; Bednárová, L. Analysis of the incompatibility of the product with fluorescent method. Metalurgija 2019, 58, 337–340. Available online: https://hrcak.srce.hr/218422 (accessed on 28 April 2020).
- Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Exp. Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Rozporządzenie Ministra Klimatu z Dnia 24 Kwietnia 2020 r. w Sprawie Ceny Referencyjnej Energii Elektrycznej z Odnawialnych Źródeł Energii w 2020 r. Oraz Okresów Obowiązujących Wytwórców, Którzy Wygrali Aukcje w 2020 r. Available online: http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20200000798/O/D20200798.pdf (accessed on 20 October 2020).
- Siderska, J. Analysis of the possibilities of using artificial neural networks to model social capital values in IT companies. Econ. Manag. 2013, 1, 84–97. [Google Scholar]
- Luta, P. Wybrane Możliwości Zastosowań Sieci Neuronowych i Program Statistica Neural Networks. StatSoft. Available online: https://media.statsoft.pl/_old_dnn/downloads/wybrane_mozliwosci_zastosowan_sieci_neuronowych.pdf (accessed on 26 October 2020).
- Gil, M.Á.; González-Rodríguez, G. Fuzzy vs. Likert Scale in Statistics. In Computational Intelligence; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2012; Volume 271, pp. 407–420. [Google Scholar]
- Dudek, A.; Jefmański, B. The fuzzy TOPSIS method and its implementation in the R programme. Inform. Èkon. 2015, 1, 19–27. [Google Scholar] [CrossRef]
- The Expert Choice Software. Available online: https://www.expertchoice.com/2021 (accessed on 30 January 2021).
- Yadav, V.; Karmakar, S.; Kalbar, P.P.; Dikshit, A. PyTOPS: A Python based tool for TOPSIS. SoftwareX 2019, 9, 217–222. [Google Scholar] [CrossRef]
No. | Renewable Energy Source | Rating (19) |
1 | Solid biofuels | |
2 | Solar energy | |
3 | Hydropower | |
4 | Wind energy | |
5 | Biogas | |
6 | Liquid biofuels | |
7 | Geothermal energy | |
8 | Renewable municipal waste |
Classic Saaty Scale | Description | Triangular Fuzzy Number | Triangular Fuzzy Reciprocal Number |
---|---|---|---|
1 | Equally important | (1.1.1) | (1.1.1) |
2 | Moderately important | (1.2.3) | (1/3.1/2.1) |
3 | Moderately more important | (2.3.4) | (1/4.1/3.1/2) |
4 | Moderately to definitely more important | (3.4.5) | (1/5.1/4.1/3) |
5 | Much more important | (4.5.6) | (1/6.1/5.1/4) |
6 | Preferred to very much more important | (5.6.7) | (1/7.1/6.1/5) |
7 | Very much more important | (6.7.8) | (1/8.1/7.1/6) |
8 | Preferred to extremely important | (7.8.9) | (1/9.1/8.1/7) |
9 | Extremely important | (8.9.9) | (1/9.1/9.1/8) |
No. | Renewable Energy Source | The Sum of the Respondents’ Ratings, Given on a 1–9 Scale | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
1 | Solid biofuels | 20 | 2 | 2 | 2 | 1 | 1 | 2 | 4 | 6 |
2 | Solar energy | 7 | 1 | 2 | 3 | 5 | 5 | 1 | 3 | 13 |
3 | Hydropower | 33 | 0 | 2 | 1 | 2 | 0 | 0 | 1 | 1 |
4 | Wind energy | 28 | 1 | 0 | 3 | 1 | 1 | 4 | 1 | 1 |
5 | Biogas | 25 | 0 | 1 | 2 | 4 | 3 | 2 | 2 | 1 |
6 | Liquid biofuels | 24 | 1 | 3 | 4 | 3 | 2 | 0 | 2 | 1 |
7 | Geothermal energy | 30 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 4 |
8 | Renewable municipal waste | 28 | 1 | 2 | 5 | 2 | 1 | 0 | 0 | 1 |
Renewable Energy Source | |||
Solid biofuels | 1.00 | 2.25 | 9.00 |
Solar energy | 1.00 | 4.47 | 9.00 |
Hydropower | 1.00 | 1.25 | 9.00 |
Wind energy | 1.00 | 1.59 | 9.00 |
Biogas | 1.00 | 1.80 | 9.00 |
Liquid biofuels | 1.00 | 1.72 | 9.00 |
Geothermal energy | 1.00 | 1.46 | 9.00 |
Renewable municipal waste | 1.00 | 1.48 | 9.00 |
Renewable Energy Source | Volumes of Electricity from RES Converted to Power (GWh) | Volumes of the Amount of Potential RES Electrical Resource (%) |
---|---|---|
Solid biofuels | 5333.20 | 69.30 |
Solar energy | 300.50 | 0.90 |
Hydropower | 1970.00 | 1.90 |
Wind energy | 12798.80 | 12.40 |
Biogas | 1127.60 | 3.20 |
Liquid biofuels | 2.00 | 10.20 |
Geothermal energy | 0.00 | 0.30 |
Renewable municipal waste | 85.00 | 1.10 |
Renewable Energy Source | Volumes of Electricity from RES Converted to Power | Volumes of the Amount of Potential RES Electrical Resource |
---|---|---|
Solid biofuels | 0.38 | 0.97 |
Solar energy | 0.02 | 0.01 |
Hydropower | 0.14 | 0.03 |
Wind energy | 0.91 | 0.17 |
Biogas | 0.08 | 0.04 |
Liquid biofuels | 0.00 | 0.14 |
Geothermal energy | 0.00 | 0.00 |
Renewable municipal waste | 0.01 | 0.02 |
Renewable Energy Source | Volumes of Electricity from RES Converted to Power | Volumes of the Amount of Potential RES Electrical Resource |
---|---|---|
Solid biofuels | 0.06 | 0.15 |
Solar energy | 0.00 | 0.00 |
Hydropower | 0.01 | 0.00 |
Wind energy | 0.09 | 0.02 |
Biogas | 0.01 | 0.01 |
Liquid biofuels | 0.00 | 0.02 |
Geothermal energy | 0.00 | 0.00 |
Renewable municipal waste | 0.00 | 0.00 |
0.09 | 0.15 | |
0.00 | 0.00 |
Renewable Energy Source | Rj | Ranking | ||
---|---|---|---|---|
Solid biofuels | 0.03 | 0.16 | 0.83 | 1 |
Solar energy | 0.17 | 0.00 | 0.02 | 6 |
Hydropower | 0.16 | 0.01 | 0.05 | 5 |
Wind energy | 0.13 | 0.09 | 0.41 | 2 |
Biogas | 0.16 | 0.01 | 0.07 | 4 |
Liquid biofuels | 0.15 | 0.02 | 0.11 | 3 |
Geothermal energy | 0.17 | 0.00 | 0.00 | 8 |
Renewable municipal waste | 0.17 | 0.00 | 0.01 | 7 |
Renewable Energy Source | The Average Cost (MWh/Year) | The Average Cost (TJ/Year) |
---|---|---|
Solid biofuels | 7,753,336,114.42 | 127,800,000 |
Solar energy | 70,071,230.14 | 1,155,000 |
Hydropower | 11,618,578,466.05 | 191,511,668 |
Wind energy | 7,753,336,114.42 | 11,934,000 |
Biogas | 294,626,772.35 | 4,856,400 |
Liquid biofuels | 7,753,336,114.42 | 17,081,475 |
Geothermal energy | 27,603,817.93 | 455,000 |
Renewable municipal waste | 115,875,367.59 | 1,910,000 |
Renewable Energy Source | Solid Biofuels | Solar Energy | Hydropower | Wind Energy | Biogas | Liquid Biofuels | Geothermal Energy | Renewable Municipal Waste |
---|---|---|---|---|---|---|---|---|
Average costs (MWh/year) | 7,753,336,114.42 | 70,071,230.14 | 11,618,578,466.05 | 7,753,336,114.42 | 294,626,772.35 | 7,753,336,114.42 | 27,603,817.93 | 115,875,367.59 |
0.83 | 0.02 | 0.05 | 0.41 | 0.07 | 0.11 | 0.00 | 0.01 | |
(%) | 83.44 | 2.35 | 5.14 | 40.92 | 7.48 | 10.96 | 0.01 | 0.98 |
92,920,978.96 | 29,801,251.34 | 2,260,692,697.12 | 189,474,142.79 | 39,390,867.89 | 707,196,446.02 | 2,760,381,793.00 | 118,667,408.68 | |
p | 0.33 | 1.00 | 0.00 | 0.33 | 0.98 | 0.33 | 1.00 | 0.99 |
e | 2.50 | 0.02 | 0.00 | 1.23 | 0.08 | 0.33 | 0.00 | 0.01 |
d | 0.80 | 0.01 | 0.00 | 0.59 | 0.04 | 0.16 | 0.00 | 0.00 |
c | 0.98 | 0.99 | 0.18 | 0.93 | 0.99 | 0.74 | 0.00 | 0.96 |
0.85 | 0.18 | 0.06 | 0.56 | 0.21 | 0.23 | 0.00 | 0.17 | |
0.90 | 0.50 | 0.10 | 0.73 | 0.52 | 0.45 | 0.00 | 0.48 | |
0.87 | 0.34 | 0.08 | 0.65 | 0.37 | 0.34 | 0.00 | 0.32 | |
Ranking | 1 | 4 | 6 | 2 | 3 | 4 | 7 | 5 |
Decision | distinctive | unsatisfactory | bad | satisfactory | unsatisfactory | unsatisfactory | bad | unsatisfactory |
Renewable Energy Source | FAHP | TOPSIS | ACJ | |||
---|---|---|---|---|---|---|
Comparison of Results | Ranking | Rj | Ranking | rd | Ranking | |
Solid biofuels | 0.15 | 2 | 0.83 | 1 | 0.87 | 1 |
Solar energy | 0.17 | 1 | 0.02 | 6 | 0.34 | 4 |
Hydropower | 0.06 | 7 | 0.05 | 5 | 0.08 | 6 |
Wind energy | 0.10 | 6 | 0.41 | 2 | 0.65 | 2 |
Biogas | 0.14 | 3 | 0.07 | 4 | 0.37 | 3 |
Liquid biofuels | 0.14 | 3 | 0.11 | 3 | 0.34 | 4 |
Geothermal energy | 0.12 | 5 | 0.00 | 8 | 0.00 | 7 |
Renewable municipal waste | 0.13 | 4 | 0.01 | 7 | 0.32 | 5 |
Renewable Energy Source | 1 | 2 | 3 | 4 | rd |
---|---|---|---|---|---|
Solid biofuels | 0.15 | 69.30 | 5333.20 | 7,753,336,114.42 | 0.87 |
Solar energy | 0.17 | 0.90 | 300.50 | 70,071,230.14 | 0.34 |
Hydropower | 0.06 | 1.90 | 1970.00 | 11,618,578,466.05 | 0.08 |
Wind energy | 0.10 | 12.40 | 12,798.80 | 7,753,336,114.42 | 0.65 |
Biogas | 0.14 | 3.20 | 1127.60 | 294,626,772.35 | 0.37 |
Liquid biofuels | 0.14 | 10.20 | 2.00 | 7,753,336,114.42 | 0.34 |
Geothermal energy | 0.12 | 0.30 | 0.00 | 27,603,817.93 | 0.00 |
Renewable municipal waste | 0.13 | 1.10 | 85.00 | 115,875,367.59 | 0.32 |
Network | 1 | 2 | 3 | 4 |
---|---|---|---|---|
MLP 4-4-1 | 2.84 | 2.26 | 1.70 | 1.05 |
Renewable Energy Source | Solid Biofuels | Solar Energy | Hydropower | Wind Energy | ||||||||
Solid biofuels | 1.00 | 1.00 | 1.00 | 0.11 | 0.22 | 1.00 | 1.00 | 2.25 | 9.00 | 1.00 | 2.25 | 9.00 |
Solar energy | 1.00 | 4.47 | 9.00 | 1.00 | 1.00 | 1.00 | 1.00 | 4.47 | 9.00 | 1.00 | 4.47 | 9.00 |
Hydropower | 0.11 | 0.44 | 1.00 | 0.11 | 0.22 | 1.00 | 1.00 | 1.00 | 1.00 | 0.11 | 0.63 | 1.00 |
Wind energy | 0.11 | 0.44 | 1.00 | 0.11 | 0.22 | 1.00 | 1.00 | 1.59 | 9.00 | 1.00 | 1.00 | 1.00 |
Biogas | 0.11 | 0.44 | 1.00 | 0.11 | 0.22 | 1.00 | 1.00 | 1.80 | 9.00 | 1.00 | 1.80 | 9.00 |
Liquid biofuels | 0.11 | 0.44 | 1.00 | 0.11 | 0.22 | 1.00 | 1.00 | 1.72 | 9.00 | 1.00 | 1.72 | 9.00 |
Geothermal energy | 0.11 | 0.44 | 1.00 | 0.11 | 0.22 | 1.00 | 1.00 | 1.46 | 9.00 | 1.00 | 1.59 | 9.00 |
Renewable municipal waste | 0.11 | 0.44 | 1.00 | 0.11 | 0.22 | 1.00 | 1.00 | 1.48 | 9.00 | 1.00 | 1.59 | 9.00 |
Renewable Energy Source | Biogas | Liquid Biofuels | Geothermal Energy | Renewable Municipal Waste | ||||||||
Solid biofuels | 1.00 | 2.25 | 9.00 | 1.00 | 2.25 | 9.00 | 1.00 | 2.25 | 9.00 | 1.00 | 2.25 | 9.00 |
Solar energy | 1.00 | 4.47 | 9.00 | 1.00 | 4.47 | 9.00 | 1.00 | 4.47 | 9.00 | 1.00 | 4.47 | 9.00 |
Hydropower | 0.11 | 0.56 | 1.00 | 0.11 | 0.58 | 1.00 | 0.11 | 0.69 | 1.00 | 0.11 | 0.67 | 1.00 |
Wind energy | 0.11 | 0.56 | 1.00 | 0.11 | 0.58 | 1.00 | 0.11 | 0.63 | 1.00 | 0.11 | 0.63 | 1.00 |
Biogas | 1.00 | 1.00 | 1.00 | 1.00 | 1.80 | 9.00 | 1.00 | 1.80 | 9.00 | 1.00 | 1.80 | 9.00 |
Liquid biofuels | 0.11 | 0.56 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.72 | 9.00 | 1.00 | 1.72 | 9.00 |
Geothermal energy | 0.11 | 0.56 | 1.00 | 0.11 | 0.58 | 1.00 | 1.00 | 1.00 | 1.00 | 0.11 | 0.67 | 1.00 |
Renewable municipal waste | 0.11 | 0.56 | 1.00 | 0.11 | 0.58 | 1.00 | 1.00 | 1.48 | 9.00 | 1.00 | 1.00 | 1.00 |
Renewable Energy Source | ||||||
---|---|---|---|---|---|---|
Solid biofuels | 7.11 | 14.74 | 56.00 | 0.02 | 0.16 | 1.43 |
Solar energy | 8.00 | 32.32 | 64.00 | 0.03 | 0.35 | 1.64 |
Hydropower | 1.78 | 4.80 | 8.00 | 0.01 | 0.05 | 0.20 |
Wind energy | 2.67 | 5.65 | 16.00 | 0.01 | 0.06 | 0.41 |
Biogas | 6.22 | 10.65 | 48.00 | 0.02 | 0.12 | 1.23 |
Liquid biofuels | 5.33 | 9.11 | 40.00 | 0.02 | 0.10 | 1.02 |
Geothermal energy | 3.56 | 6.52 | 24.00 | 0.01 | 0.07 | 0.61 |
Renewable municipal waste | 4.44 | 7.36 | 32.00 | 0.02 | 0.08 | 0.82 |
Sum | 39.11 | 91.14 | 288.00 | 0.14 | 1.00 | 7.36 |
Results | - | |||||
0.00 | 0.01 | 0.03 |
Solid Biofuels | Solar Energy | Hydropower | Wind Energy | ||||
W1 | W2 | W3 | W4 | ||||
W1 ≥ W2 | 0.88 | W2 ≥ W1 | 1 | W3 ≥ W1 | 0.62 | W4 ≥ W1 | 0.79 |
W1 ≥ W3 | 1 | W2 ≥ W3 | 1 | W3 ≥ W2 | 0.37 | W4 ≥ W2 | 0.57 |
W1 ≥ W4 | 1 | W2 ≥ W4 | 1 | W3 ≥ W4 | 0.95 | W4 ≥ W3 | 1 |
W1 ≥ W5 | 1 | W2 ≥ W5 | 1 | W3 ≥ W5 | 0.74 | W4 ≥ W5 | 0.88 |
W1 ≥ W6 | 1 | W2 ≥ W6 | 1 | W3 ≥ W6 | 0.8 | W4 ≥ W6 | 0.91 |
W1 ≥ W7 | 1 | W2 ≥ W7 | 1 | W3 ≥ W7 | 0.91 | W4 ≥ W7 | 0.98 |
W1 ≥ W8 | 1 | W2 ≥ W8 | 1 | W3 ≥ W8 | 0.87 | W4 ≥ W8 | 0.95 |
min. | 0.88 | min. | 1 | min. | 0.37 | min. | 0.57 |
Biogas | Liquid Biofuels | Geothermal Energy | Renewable Municipal Waste | ||||
W5 | W6 | W7 | W8 | ||||
W5 ≥ W1 | 0.96 | W6 ≥ W1 | 0.94 | W7 ≥ W1 | 0.87 | W8 ≥ W1 | 0.91 |
W5 ≥ W2 | 0.83 | W6 ≥ W2 | 0.8 | W7 ≥ W2 | 0.67 | W8 ≥ W2 | 0.74 |
W5 ≥ W3 | 1 | W6 ≥ W3 | 1 | W7 ≥ W3 | 1 | W8 ≥ W3 | 1 |
W5 ≥ W4 | 1 | W6 ≥ W4 | 1 | W7 ≥ W4 | 1 | W8 ≥ W4 | 1 |
W5 ≥ W6 | 1 | W6 ≥ W5 | 0.98 | W7 ≥ W5 | 0.93 | W8 ≥ W5 | 0.96 |
W5 ≥ W7 | 1 | W6 ≥ W7 | 1 | W7 ≥ W6 | 0.95 | W8 ≥ W6 | 0.98 |
W5 ≥ W8 | 1 | W6 ≥ W8 | 1 | W7 ≥ W8 | 0.98 | W8 ≥ W7 | 1 |
min. | 0.83 | min. | 0.8 | min. | 0.67 | min. | 0.74 |
Renewable Energy Source | Ranking | |
---|---|---|
Solid biofuels | 0.15 | 2 |
Solar energy | 0.17 | 1 |
Hydropower | 0.06 | 7 |
Wind energy | 0.10 | 6 |
Biogas | 0.14 | 3 |
Liquid biofuels | 0.14 | 3 |
Geothermal energy | 0.12 | 5 |
Renewable municipal waste | 0.13 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulewicz, R.; Siwiec, D.; Pacana, A.; Tutak, M.; Brodny, J. Multi-Criteria Method for the Selection of Renewable Energy Sources in the Polish Industrial Sector. Energies 2021, 14, 2386. https://doi.org/10.3390/en14092386
Ulewicz R, Siwiec D, Pacana A, Tutak M, Brodny J. Multi-Criteria Method for the Selection of Renewable Energy Sources in the Polish Industrial Sector. Energies. 2021; 14(9):2386. https://doi.org/10.3390/en14092386
Chicago/Turabian StyleUlewicz, Robert, Dominika Siwiec, Andrzej Pacana, Magdalena Tutak, and Jarosław Brodny. 2021. "Multi-Criteria Method for the Selection of Renewable Energy Sources in the Polish Industrial Sector" Energies 14, no. 9: 2386. https://doi.org/10.3390/en14092386
APA StyleUlewicz, R., Siwiec, D., Pacana, A., Tutak, M., & Brodny, J. (2021). Multi-Criteria Method for the Selection of Renewable Energy Sources in the Polish Industrial Sector. Energies, 14(9), 2386. https://doi.org/10.3390/en14092386