Techno-Economic Analysis of Waste Heat Utilization in Data Centers: Application of Absorption Chiller Systems
Abstract
:1. Introduction
2. Methodology
Analytical Model
3. Results and Discussion
3.1. Energy Performance
3.2. Economic Performance
3.3. Environmental Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CC | Conventional Compression Chiller |
AC | Absorption Chiller |
CACS | Cold-Aisle Containment System |
IoT | Internet of Things |
IT | Information Technology |
ORC | Organic Rankine Cycle |
EA | Enclosed Aisle |
OA | Open Aisle |
GHG | Greenhouse Gas |
References
- Huang, P.; Copertaro, B.; Zhang, X.; Shen, J.; Löfgren, I.; Rönnelid, M.; Fahlen, J.; Andersson, D.; Svanfeldt, M. A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating. Appl. Energy 2020, 258, 114109. [Google Scholar] [CrossRef]
- Koomey, J. Growth in Data Center Electricity Use 2005 to 2010; Anal. Press: City, Country, 2011; pp. 1–24. Available online: https://alejandrobarros.com/wp-content/uploads/old/Growth_in_Data_Center_Electricity_use_2005_to_2010.pdf (accessed on 1 January 2020).
- Dandres, T.; Moghaddam, R.F.; Nguyen, K.K.; Lemieux, Y.; Samson, R.; Cheriet, M. Consideration of marginal electricity in real-time minimization of distributed data centre emissions. J. Clean. Prod. 2017, 143, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Rong, H.; Zhang, H.; Xiao, S.; Li, C.; Hu, C. Optimizing energy consumption for data centers. Renew. Sustain. Energy Rev. 2016, 58, 674–691. [Google Scholar] [CrossRef]
- Van Heddeghem, W.; Lambert, S.; Lannoo, B.; Colle, D.; Pickavet, M.; Demeester, P. Trends in worldwide ICT electricity consumption from 2007 to 2012. Comput. Commun. 2014, 50, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Shao, S.; Zhang, H.; Tian, C. Development and composition of a data center heat recovery system and evaluation of annual operation performance. Energy 2019, 189, 116200. [Google Scholar] [CrossRef]
- Ebrahimi, K.; Jones, G.F.; Fleischer, A.S. A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities. Renew. Sustain. Energy Rev. 2014, 31, 622–638. [Google Scholar] [CrossRef]
- Samadiani, E.; Joshi, Y. Energy efficient thermal management of data centers via open multi-scale design: A review of research questions and approaches. J. Enhanc. Heat Transf. 2011, 18, 15–30. [Google Scholar] [CrossRef]
- van de Bor, D.; Ferreira, C.I.; Kiss, A.A. Low grade waste heat recovery using heat pumps and power cycles. Energy 2015, 89, 864–873. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Gao, J.; Zhang, Z.; Liu, Z.; Olabi, A.G. Performance Analysis of a Novel Cascade Absorption Refrigeration for Low-Grade Waste Heat Recovery. ACS Sustain. Chem. Eng. 2018, 6, 8350–8363. [Google Scholar] [CrossRef]
- Amiri, L.; Madadian, E.; Hassani, F.P. Energo- and exergo-technical assessment of ground-source heat pump systems for geothermal energy production from underground mines. Environ. Technol. 2018, 40, 3534–3546. [Google Scholar] [CrossRef]
- Amiri, L.; De Brito, M.A.R.; Baidya, D.; Kuyuk, A.F.; Ghoreishi-Madiseh, S.A.; Sasmito, A.P.; Hassani, F.P. Numerical investigation of rock-pile based waste heat storage for remote communities in cold climates. Appl. Energy 2019, 252, 113475. [Google Scholar] [CrossRef]
- Zimmermann, S.; Meijer, I.; Tiwari, M.K.; Paredes, S.; Michel, B.; Poulikakos, D. Aquasar: A hot water cooled data center with direct energy reuse. Energy 2012, 43, 237–245. [Google Scholar] [CrossRef]
- Davies, G.; Maidment, G.; Tozer, R. Using data centres for combined heating and cooling: An investigation for London. Appl. Therm. Eng. 2016, 94, 296–304. [Google Scholar] [CrossRef]
- Fang, H.; Xia, J.; Zhu, K.; Su, Y.; Jiang, Y. Industrial waste heat utilization for low temperature district heating. Energy Policy 2013, 62, 236–246. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, T.; Ma, L.; Zhang, J. Investigations of Ventilation Airflow Characteristics on a Longwall Face—A Computational Approach. Energies 2018, 11, 1564. [Google Scholar] [CrossRef] [Green Version]
- Xie, M.; Wang, J.; Liu, J. Evaluation metrics of thermal management in data centers based on exergy analysis. Appl. Therm. Eng. 2019, 147, 1083–1095. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.; Dai, Y.; Wu, G.; Cao, Y.; Huang, D. Numerical investigation of drag reduction by heat-enhanced cavitation. Appl. Therm. Eng. 2015, 75, 193–202. [Google Scholar] [CrossRef]
- Gupta, R.; Moazamigoodarzi, H.; MirhoseiniNejad, S.; Down, D.G.; Puri, I.K. Workload management for air-cooled data centers: An energy and exergy based approach. Energy 2020, 209, 118485. [Google Scholar] [CrossRef]
- Ahmadi, V.E.; Erden, H.S. A parametric CFD study of computer room air handling bypass in air-cooled data centers. Appl. Therm. Eng. 2020, 166, 114685. [Google Scholar] [CrossRef]
- Nadjahi, C.; Louahlia, H.; Lemasson, S. A review of thermal management and innovative cooling strategies for data center. Sustain. Comput. Inform. Syst. 2018, 19, 14–28. [Google Scholar] [CrossRef]
- Schmidt, R.; Cruz, E. Cluster of High-Powered Racks Within a Raised-Floor Computer Data Center: Effect of Perforated Tile Flow Distribution on Rack Inlet Air Temperatures. J. Electron. Packag. 2004, 126, 510–518. [Google Scholar] [CrossRef]
- Erden, H.S.; Koz, M.; Yildirim, M.T.; Khalifa, H.E. Experimental Demonstration and Flow Network Model Verification of Induced CRAH Bypass for Cooling Optimization of Enclosed-Aisle Data Centers. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 1795–1803. [Google Scholar] [CrossRef]
- Demetriou, D.W.; Khalifa, H.E. Optimization of Enclosed Aisle Data Centers Using Bypass Recirculation. J. Electron. Packag. 2012, 134, 020904. [Google Scholar] [CrossRef]
- Yu, J.; Jiang, Y.; Yan, Y. A simulation study on heat recovery of data center: A case study in Harbin, China. Renew. Energy 2019, 130, 154–173. [Google Scholar] [CrossRef]
- Ebrahimi, K.; Jones, G.F.; Fleischer, A.S. The viability of ultra low temperature waste heat recovery using organic Rankine cycle in dual loop data center applications. Appl. Therm. Eng. 2017, 126, 393–406. [Google Scholar] [CrossRef]
- Araya, S.; Jones, G.F.; Fleischer, A.S. Organic Rankine Cycle as a Waste Heat Recovery System for Data Centers: Design and Construction of a Prototype. In Proceedings of the 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm); Institute of Electrical and Electronics Engineers (IEEE), San Diego, CA, USA, 29 May–1 June 2018; pp. 850–858. [Google Scholar]
- Araya, S.; Wemhoff, A.P.; Jones, G.F.; Fleischer, A.S. Study of a Lab-Scale Organic Rankine Cycle for the Ultra-Low-Temperature Waste Heat Recovery Associated WITH Data Centers. J. Electron. Packag. 2020, 143. [Google Scholar] [CrossRef]
- Thermax. Hot Water Driven Vapor Absorption Machine. Instrumentation. Available online: https://www.trane.com/content/dam/Trane/Commercial/global/products-systems/equipment/chillers/absorption-liquid/hotwater_drivenabsorptionchillers.pdf (accessed on 1 January 2020).
- VAMTEC|YAZAKI Hot Water Absorption Chiller. Available online: https://www.vamtec.com/absorption-chiller/ (accessed on 1 January 2020).
- Marcinichen, J.B.; Olivier, J.A.; Thome, J.R. On-chip two-phase cooling of datacenters: Cooling system and energy recovery evaluation. Appl. Therm. Eng. 2012, 41, 36–51. [Google Scholar] [CrossRef] [Green Version]
- Haywood, A.; Sherbeck, J.; Phelan, P.; Varsamopoulos, G.; Gupta, S.K. Thermodynamic feasibility of harvesting data center waste heat to drive an absorption chiller. Energy Convers. Manag. 2012, 58, 26–34. [Google Scholar] [CrossRef]
- Dreibholz, T.; Becke, M.; Adhari, H. Report to Congress on Server and Data Center Energy Efficiency Public Law 109–431; Tdr.Wiwi.Uni-Due.De 109; 2007; p. 431. Available online: https://www.osti.gov/biblio/929723 (accessed on 1 January 2020).
- Corporation, I. Product Specifications, Processors; 2019. [Google Scholar]
- ASHRAE. Data Center Power Equipment Thermal Guidelines and Best Practices; Standard, 2016; pp. 1–60. [Google Scholar]
- EPA. AVERT, U.S. National Weighted Average CO2 Marginal Emission Rate, Year 2017 Data; U.S. Environmental Protection Agency, 2018.
Power Consumption | Conventional Compression Chiller (CC) | Proposed Waste Heat Recovery System | Energy Saving (kWh/Year) |
---|---|---|---|
4.5 MW | Cooling Electricity consumption (kWh/year) | 4,340,000 | |
= 9,855,000 | = 5,515,000 | ||
13.5 MW | Cooling Electricity consumption (kWh/year) | 13,025,000 | |
= 29,565,000 | = 16,540,000 |
Power Consumption | Conventional Compression Chiller (CC) | Proposed Waste Heat Recovery System |
---|---|---|
4.5 MW | Electricity cost ($/year) | |
9,855,000 kWh × 0.12 ($/kWh) = $1,182,600 | 9,855,000 kWh × 0.12 ($/kWh) = $1,182,600 | |
Cooling cost ($/year) | ||
$1,182,600 (typical value for energy usage of a data center which is proportional to the ones from server racks) | $1,182,600 × (Equation (10)) = $661,800 | |
Total annual cost ($/year) | ||
$2,365,200 | $1,844,400 | |
The prices of the chillers and cooling tower | ||
575 * × $2500 = $1,437,500 | ||
13.5 MW | Electricity cost ($/year) | |
29,565,000 kWh × 0.12 ($/kWh) = $3,547,800 | 29,565,000 kWh× 0.12($/kWh) = $3,547,800 | |
Cooling cost ($/year) | ||
$3,547,800 (typical value for energy usage of a data center which is proportional to the ones from server racks) | $3,547,800 × (Equation (10)) = $1,984,800 | |
Total annual cost ($/year) | ||
$7,095,600 | $5,532,600 | |
The prices of the chillers and cooling tower | ||
1600 * × $2500 = $4,000,000 |
Class | Humidity Range (%) | |
---|---|---|
A1 | 15–32 | 20–80 |
A2 | 10–35 | 20–80 |
A3 | 5–40 | 8–85 |
A4 | 5–45 | 8–90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amiri, L.; Madadian, E.; Bahrani, N.; Ghoreishi-Madiseh, S.A. Techno-Economic Analysis of Waste Heat Utilization in Data Centers: Application of Absorption Chiller Systems. Energies 2021, 14, 2433. https://doi.org/10.3390/en14092433
Amiri L, Madadian E, Bahrani N, Ghoreishi-Madiseh SA. Techno-Economic Analysis of Waste Heat Utilization in Data Centers: Application of Absorption Chiller Systems. Energies. 2021; 14(9):2433. https://doi.org/10.3390/en14092433
Chicago/Turabian StyleAmiri, Leyla, Edris Madadian, Navid Bahrani, and Seyed Ali Ghoreishi-Madiseh. 2021. "Techno-Economic Analysis of Waste Heat Utilization in Data Centers: Application of Absorption Chiller Systems" Energies 14, no. 9: 2433. https://doi.org/10.3390/en14092433
APA StyleAmiri, L., Madadian, E., Bahrani, N., & Ghoreishi-Madiseh, S. A. (2021). Techno-Economic Analysis of Waste Heat Utilization in Data Centers: Application of Absorption Chiller Systems. Energies, 14(9), 2433. https://doi.org/10.3390/en14092433