How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review
Abstract
:1. Introduction
1.1. Energy Metering
1.2. Smart Meter Technology
- Providing more accurate and accessible energy consumption data, allowing customers to better understand their energy use and make appropriate adjustments. This includes the non-intrusive load monitoring as well, where only a single meter’s data is needed to analyze the appliances’ consumption patterns.
- Utilities or other providers can better tailor programs and refine their services according to this consumption data, and, with a better understanding of consumption patterns, can secure the energy supply, reduce costs, ensure electric grids remain stable, or even identify affected areas during emergency situations such as blackouts [4].
- Finally, SM allows energy to be produced and consumed in an efficient manner, thereby helping the planet limit greenhouse gas (GHG) emissions to combat climate change. More advanced SMs can even control household appliances and help customers better regulate their energy consumption on the basis of times of lesser demand or on the basis of when electricity prices are cheapest, an idea known as demand response (DR) [4].
1.3. Why Are SMs Not as Effective as Originally Intended?
1.4. Privacy Concerns
1.5. The Importance of Studying Occupant Behavior
1.6. Aim and Structure of the Current Review
2. Literature Review Methodology
3. Demographics of Occupants, Household Characteristics, and Their Relationship to Energy Use
3.1. Socio-Demographics and Energy Use
3.2. Connection to Occupant Behavior Research
4. Occupant Energy Profiling Methods and Results
4.1. Occupant Energy Profiling
4.2. Clustering
4.3. Energy Profiles
5. Socio-Psychological Influence
5.1. Overview
5.2. Theories and Models
6. Conclusions and Recommendation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avancini, D.B.; Rodrigues, J.J.P.C.; Martins, S.G.B.; Rabêlo, R.A.L.; Al-Muhtadi, J.; Solic, P. Energy Meters Evolution in Smart Grids: A Review. J. Clean. Prod. 2019, 217, 702–715. [Google Scholar] [CrossRef]
- Sun, Q.; Li, H.; Ma, Z.; Wang, C.; Campillo, J.; Zhang, Q.; Wallin, F.; Guo, J. A Comprehensive Review of Smart Energy Meters in Intelligent Energy Networks. IEEE Internet Things J. 2016, 3, 464–479. [Google Scholar] [CrossRef]
- Darby, S.J. Smart Meters and Residential Customers. In Smart Grid Handbook; Wiley: Hoboken, NJ, USA, 2016; pp. 1–13. [Google Scholar]
- Depuru, S.S.; Wang, L.; Devabhaktuni, V. Smart Meters for Power Grid: Challenges, Issues, Advantages and Status. Renew. Sustain. Energy Rev. 2011, 15, 2736–2742. [Google Scholar] [CrossRef]
- Iqbal, H.K.; Malik, F.H.; Muhammad, A.; Qureshi, M.A.; Abbasi, M.N.; Chishti, A.R. A critical review of state-of-the-art non-intrusive load monitoring datasets. Electr. Power Syst. Res. 2021, 192, 106921. [Google Scholar] [CrossRef]
- Smart Energy International. Global Trends in Smart Metering. Available online: https://www.smart-energy.com/magazine-article/global-trends-in-smart-metering (accessed on 22 March 2021).
- The European Parliament; The Council of the European Union. Directive 2009.72/EC of the European Parliament and of the Council of 13 July 2009 concerning common rules for the internal market in electricity and repealing Directive 2003/54/EC. Off. J. Eur. Unions 2009, L211, 55–93. [Google Scholar]
- Gangale, F.; Vasiljevska, J.; Covrig, F.; Mengolini, A.; Fulli, G. Smart Grid Projects Outlook 2017: Facts, Figures and Trends in Europe; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Energy Information Administration (EIA). Frequently Asked Questions (FAQs)—U.S. Available online: https://www.eia.gov/tools/faqs/faq.php?id=108&t=3 (accessed on 22 March 2021).
- Consolidated Edison: Annual Report 2017. Available online: https://investor.conedison.com/static-files/e6da6a2e-296c-4d5e-8150-0284e29fe7e7 (accessed on 22 March 2021).
- Depuru, S.S.; Wang, L.; Devabhaktuni, V. A Conceptual Design Using Harmonics to Reduce Pilfering of Electricity. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008. [Google Scholar]
- Central Europe; European Regional Development Fund. Energy Savings in Urban Quarters through Rehabilitation and New Ways of Energy Supply (EnSURE): Best Practice for Energy Efficient Urban Development in Europe. 2011. Available online: https://issuu.com/mut_tudaskozpont/docs/ensure_broschu___re_download_eng (accessed on 22 March 2021).
- Central Europe; European Regional Development Fund. Energy Savings in Urban Quarters through Rehabilitation and New Ways of Energy Supply (ENSURE): Manual of Energy-Efficient Urban Development. 2013. Available online: https://www.ludwigsburg.de/site/Ludwigsburg-Internet/get/params_E1049554286/3030507/EnSURE_Handbuch_Download.pdf (accessed on 22 March 2021).
- Dehdarian, A. Scenario-based System Dynamic Modeling for the Cost Recovery of New Energy Technology Deployment: The Case of Smart Metering Roll-out. J. Clean. Prod. 2018, 178, 791–803. [Google Scholar] [CrossRef]
- Ndiaye, D.; Gabriel, K. Principal Component Analysis of the Electricity Consumption in Residential Dwellings. Energy Build. 2011, 43, 446–453. [Google Scholar] [CrossRef]
- McDaniel, P.; McLaughlin, S. Security and Privacy Challenges in the Smart Grid. IEEE Security Privacy Mag. 2009, 7, 75–77. [Google Scholar] [CrossRef]
- Horne, C.; Darras, B.; Bean, E.; Srivastava, A.; Frickel, S. Privacy, Technology, and Norms: The Case of Smart Meters. Soc. Sci. Res. 2015, 51, 64–76. [Google Scholar] [CrossRef]
- Erlinghagen, S.; Lichtensteiger, B.; Markard, J. Smart meter communication standards in Europe—A comparison. Renew. Sustain. Energy Rev. Renew. Sustain. Energy Rev. 2015, 43, 1249–1262. [Google Scholar] [CrossRef]
- Markard, J.; Erlinghagen, S. Technology users and standardization: Game changing strategies in the field of smart meter technology. Technol. Forecast. Soc. Chang. 2017, 118, 226–235. [Google Scholar] [CrossRef]
- Mogles, N.; Walker, I.; Ramallo-González, A.P.; Lee, J.H.; Natarajan, S.; Padget, J.; Gabe-Thomas, E.; Lovett, T.; Ren, G.; Hyniewska, S.; et al. How Smart Do Smart Meters Need to Be? Build. Environ. 2017, 125, 439–450. [Google Scholar] [CrossRef]
- D’Oca, S.; Corgnati, S.P.; Buso, T. Smart Meters and Energy Savings in Italy: Determining the Effectiveness of Persuasive Communication in Dwellings. Energy Res. Soc. Sci. 2014, 3, 131–142. [Google Scholar] [CrossRef]
- Raussechenr, G.; Strielkowski, W.; Štreimikienė, D. Smart Meters and Household Electricity Consumption: A Case Study in Ireland. Energy Environ. 2017, 29, 131–146. [Google Scholar]
- Buchanan, K.; Russo, R.; Anderson, B. Feeding Back about Eco-Feedback: How Do Consumers Use and Respond to Energy Monitors? Energy Policy 2014, 73, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Nachreiner, M.; Mack, B.; Matthies, E.; Tampe-Mai, K. An Analysis of Smart Metering Information Systems: A Psychological Model of Self-Regulated Behavioural Change. Energy Res. Soc. Sci. 2015, 9, 85–97. [Google Scholar] [CrossRef]
- Krishnamurti, T.; Schwartz, D.; Davis, A.; Fischhoff, B.; de Bruin, W.B.; Lave, L.; Wang, J. Preparing for Smart Grid Technologies: A Behavioral Decision Research Approach to Understanding Consumer Expectations about Smart Meters. Energy Policy 2012, 41, 790–797. [Google Scholar] [CrossRef]
- Mah, D.N.-Y.; van der Vleuten, J.M.; Hills, P.; Tao, J. Consumer Perceptions of Smart Grid Development: Results of a Hong Kong Survey and Policy Implications. Energy Policy 2012, 49, 204–216. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-F.; Xu, X.; Arpan, L. Between the Technology Acceptance Model and Sustainable Energy Technology Acceptance Model: Investigating Smart Meter Acceptance in the United States. Energy Res. Soc. Sci. 2017, 25, 93–104. [Google Scholar] [CrossRef]
- Yildiz, B.; Bilbao, J.I.; Dore, J.; Sproul, A.B. Recent Advances in the Analysis of Residential Electricity Consumption and Applications of Smart Meter Data. Appl. Energy 2017, 208, 402–427. [Google Scholar] [CrossRef]
- Lisovich, M.A.; Mulligan, D.K.; Wicker, S.B. Inferring Personal Information from Demand-Response Systems. IEEE Security Privacy Mag. 2010, 8, 11–20. [Google Scholar] [CrossRef]
- McKenna, E.; Richardson, I.; Thomson, M. Smart Meter Data: Balancing Consumer Privacy Concerns with Legitimate Applications. Energy Policy 2012, 41, 807–814. [Google Scholar] [CrossRef] [Green Version]
- Jokar, P.; Arianpoo, N.; Leung, V.C. Electricity Theft Detection in AMI Using Customers’ Consumption Patterns. IEEE Trans. Smart Grid 2016, 7, 216–226. [Google Scholar] [CrossRef]
- Chen, D.; Kalra, S.; Irwin, D.; Shenoy, P.; Albrecht, J. Preventing Occupancy Detection from Smart Meters. IEEE Trans. Smart Grid 2015, 6, 2426–2434. [Google Scholar] [CrossRef]
- European Court of Human Rights; Council of Europe European. Convention on Human Rights. Available online: https://www.echr.coe.int/documents/convention_eng.pdf (accessed on 22 March 2021).
- Oyez: United States v. Miller. Available online: www.oyez.org/cases/1975/74-1179.n.d. (accessed on 7 March 2019).
- Oyez: Kyllo v. United States. Available online: www.oyez.org/cases/2000/99-8508.n.d. (accessed on 7 March 2019).
- The Austin Chronicle: APD Pot-Hunters Are Data-Mining at AE. Available online: https://www.austinchronicle.com/news/2007-11-16/561535/ (accessed on 3 July 2019).
- Mulligan, D.K.; Lerner, J.I.; Jones, E.; King, J.; Sislin, C.; Wilson, B.; Hall, J.; Law, S. Privacy and the law in demand response energy systems. In Samuelson Law, Technology and Public Policy Clinic; University of California: Berkeley, CA, USA, 2006. [Google Scholar]
- European Commission: What Are My Rights? Available online: https://ec.europa.eu/info/law/law-topic/data-protection/reform/rights-citizens/my-rights/what-are-my-rights_en (accessed on 3 July 2019).
- Energy Information Administration (EIA). Frequently Asked Questions (FAQs)—U.S. Available online: https://www.eia.gov/tools/faqs/faq.php?id=86&t=1 (accessed on 22 March 2021).
- IEA: Tracking Buildings 2020. Available online: https://www.iea.org/reports/tracking-buildings-2020 (accessed on 22 March 2021).
- Yoshino, H.; Hong, T.; Nord, N. IEA EBC Annex 53: Total Energy Use in Buildings—Analysis and Evaluation Methods. Energy Build. 2017, 152, 124–136. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Bai, X.; Mills, F.P.; Pezzey, J.C.V. Rethinking the Role of Occupant Behavior in Building Energy Performance: A Review. Energy Build. 2018, 172, 279–294. [Google Scholar] [CrossRef]
- Delzendeh, E.; Wu, S.; Lee, A.; Zhou, Y. The Impact of Occupants’ Behaviours on Building Energy Analysis: A Research Review. Renew. Sustain. Energy Rev. 2017, 80, 1061–1071. [Google Scholar] [CrossRef]
- Hong, T.; Yan, D.; D’Oca, S.; Chen, C.-F. Ten Questions Concerning Occupant Behavior in Buildings: The Big Picture. Build. Environ. 2017, 114, 518–530. [Google Scholar] [CrossRef] [Green Version]
- Janda, K.B. Buildings Don’t Use Energy: People Do. Arch. Sci. Rev. 2011, 54, 15–22. [Google Scholar] [CrossRef]
- Balvedi, B.F.; Ghisi, E.; Lamberts, R. A Review of Occupant Behaviour in Residential Buildings. Energy Build. 2018, 174, 495–505. [Google Scholar] [CrossRef]
- Schakib-Ekbatan, K.; Çakıcı, F.Z.; Schweiker, M.; Wagner, A. Does the Occupant Behavior Match the Energy Concept of the Building? Analysis of a German Naturally Ventilated Office Building. Build. Environ. 2015, 84, 142–150. [Google Scholar] [CrossRef]
- Yan, D.; O’Brien, W.; Hong, T.; Feng, X.; Burak Gunay, H.; Tahmasebi, F.; Mahdavi, A. Occupant Behavior Modeling for Building Performance Simulation: Current State and Future Challenges. Energy Build. 2015, 107, 264–278. [Google Scholar] [CrossRef] [Green Version]
- D’Oca, S.; Chen, C.-F.; Hong, T.; Belafi, Z. Synthesizing Building Physics with Social Psychology: An Interdisciplinary Framework for Context and Occupant Behavior in Office Buildings. Energy Res. Soc. Sci. 2017, 34, 240–251. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; Version 6.2 (Updated February 2021); Cochrane: London, UK, 2021; Available online: https://training.cochrane.org/handbook/current (accessed on 22 March 2021).
- Staddon, S.C.; Cycil, C.; Goulden, M.; Leygue, C.; Spence, A. Intervening to Change Behaviour and Save Energy in the Workplace: A Systematic Review of Available Evidence. Energy Res. Soc. Sci. 2016, 17, 30–51. [Google Scholar] [CrossRef]
- Jones, R.V.; Fuertes, A.; Lomas, K.J. The Socio-Economic, Dwelling and Appliance Related Factors Affecting Electricity Consumption in Domestic Buildings. Renew. Sustain. Energy Rev. 2015, 43, 901–917. [Google Scholar] [CrossRef] [Green Version]
- Huebner, G.; Shipworth, D.; Hamilton, I.; Chalabi, Z.; Oreszczyn, T. Understanding Electricity Consumption: A Comparative Contribution of Building Factors, Socio-Demographics, Appliances, Behaviours and Attitudes. Appl. Energy 2016, 177, 692–702. [Google Scholar] [CrossRef] [Green Version]
- McLoughlin, F.; Duffy, A.; Conlon, M. Characterising Domestic Electricity Consumption Patterns by Dwelling and Occupant Socio-Economic Variables: An Irish Case Study. Energy Build. 2012, 48, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Kavousian, A.; Rajagopal, R.; Fischer, M. Determinants of Residential Electricity Consumption: Using Smart Meter Data to Examine the Effect of Climate, Building Characteristics, Appliance Stock, and Occupants’ Behavior. Energy 2013, 55, 184–194. [Google Scholar] [CrossRef]
- Beckel, C.; Sadamori, L.; Santini, S. Towards Automatic Classification of Private Households Using Electricity Consumption Data. In Proceedings of the BuildSys’12: Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, Toronto, ON, Canada, 6 November 2012. [Google Scholar]
- McLoughlin, F.; Duffy, A.; Conlon, M. A Clustering Approach to Domestic Electricity Load Profile Characterisation Using Smart Metering Data. Appl. Energy 2015, 141, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Beckel, C.; Sadamori, L.; Staake, T.; Santini, S. Revealing Household Characteristics from Smart Meter Data. Energy 2014, 78, 397–410. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, S.; Weber, S.; Patel, M.K. Who Is Sensitive to DSM? Understanding the Determinants of the Shape of Electricity Load Curves and Demand Shifting: Socio-Demographic Characteristics, Appliance Use and Attitudes. Energy Policy 2019, 133, 110909. [Google Scholar] [CrossRef]
- Gouveia, J.P.; Seixas, J. Unraveling Electricity Consumption Profiles in Households through Clusters: Combining Smart Meters and Door-to-Door Surveys. Energy Build. 2016, 116, 666–676. [Google Scholar] [CrossRef]
- Darby, S.J. Metering: EU Policy and Implications for Fuel Poor Households. Energy Policy 2012, 49, 98–106. [Google Scholar] [CrossRef]
- Tong, X.; Li, R.; Li, F.; Kang, C. Cross-Domain Feature Selection and Coding for Household Energy Behavior. Energy 2016, 107, 9–16. [Google Scholar] [CrossRef]
- Rhodes, J.D.; Cole, W.J.; Upshaw, C.R.; Edgar, T.F.; Webber, M.E. Clustering Analysis of Residential Electricity Demand Profiles. Appl. Energy 2014, 135, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Berkhout, P.H.G.; Muskens, J.C.; Velthuijsen, J.W. Defining the Rebound Effect. Energy Policy 2000, 28, 425–432. [Google Scholar] [CrossRef]
- Sanquist, T.F.; Orr, H.; Shui, B.; Bittner, A.C. Lifestyle Factors in U.S. Residential Electricity Consumption. Energy Policy 2012, 42, 354–364. [Google Scholar] [CrossRef]
- D’Oca, S.; Hong, T.; Langevin, J. The Human Dimensions of Energy Use in Buildings: A Review. Renew. Sustain. Energy Rev. 2018, 81, 731–742. [Google Scholar] [CrossRef] [Green Version]
- Clauset, A.; Newman, M.E.J.; Moore, C. Finding community structure in very large networks. Phys. Rev. E Stat. Phys. Plasmas Fluids Related Interdiscip. Top. 2004, 70, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Tureczek, A.; Nielsen, P.; Madsen, H. Electricity Consumption Clustering Using Smart Meter Data. Energies 2018, 11, 859. [Google Scholar] [CrossRef] [Green Version]
- Viegas, J.L.; Vieira, S.M.; Melício, R.; Mendes, V.M.F.; Sousa, J.M.C. Classification of New Electricity Customers Based on Surveys and Smart Metering Data. Energy 2016, 107, 804–817. [Google Scholar] [CrossRef]
- Benítez, I.; Quijano, A.; Díez, J.-L.; Delgado, I. Dynamic Clustering Segmentation Applied to Load Profiles of Energy Consumption from Spanish Customers. Int. J. Electr. Power Energy Syst. 2014, 55, 437–448. [Google Scholar] [CrossRef]
- Haben, S.; Singleton, C.; Grindrod, P. Analysis and Clustering of Residential Customers Energy Behavioral Demand Using Smart Meter Data. IEEE Trans. Smart Grid 2016, 7, 136–144. [Google Scholar] [CrossRef]
- Quilumba, F.L.; Lee, W.-J.; Huang, H.; Wang, D.Y.; Szabados, R.L. Using Smart Meter Data to Improve the Accuracy of Intraday Load Forecasting Considering Customer Behavior Similarities. IEEE Trans. Smart Grid 2015, 6, 911–918. [Google Scholar] [CrossRef]
- Zhou, K.-L.; Yang, S.-L.; Shen, C. A Review of Electric Load Classification in Smart Grid Environment. Renew. Sustain. Energy Rev. 2013, 24, 103–110. [Google Scholar] [CrossRef]
- Fan, C.; Xiao, F.; Li, Z.; Wang, J. Unsupervised Data Analytics in Mining Big Building Operational Data for Energy Efficiency Enhancement: A Review. Energy Build. 2018, 159, 296–308. [Google Scholar] [CrossRef]
- Yu, Z.; Fung, B.C.M.; Haghighat, F.; Yoshino, H.; Morofsky, E. A Systematic Procedure to Study the Influence of Occupant Behavior on Building Energy Consumption. Energy Build. 2011, 43, 1409–1417. [Google Scholar] [CrossRef] [Green Version]
- Al-Wakeel, A.; Wu, J. K-Means Based Cluster Analysis of Residential Smart Meter Measurements. Energy Procedia 2016, 88, 754–760. [Google Scholar] [CrossRef] [Green Version]
- Zakovorotnyi, A.; Seerig, A. Building Energy Data Analysis by Clustering Measured Daily Profiles. Energy Procedia 2017, 122, 583–588. [Google Scholar] [CrossRef]
- Azaza, M.; Wallin, F. Smart Meter Data Clustering Using Consumption Indicators: Responsibility Factor and Consumption Variability. Energy Procedia 2017, 142, 2236–2242. [Google Scholar] [CrossRef]
- Panapakidis, I.P.; Papadopoulos, T.A.; Christoforidis, G.C.; Papagiannis, G.K. Pattern Recognition Algorithms for Electricity Load Curve Analysis of Buildings. Energy Build. 2014, 73, 137–145. [Google Scholar] [CrossRef]
- Gangale, F.; Mengolini, A.; Onyeji, I. Consumer Engagement: An Insight from Smart Grid Projects in Europe. Energy Policy 2013, 60, 621–628. [Google Scholar] [CrossRef]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Processes 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Yang, H.; Lee, H.; Zo, H. User Acceptance of Smart Home Services: An Extension of the Theory of Planned Behavior. Ind. Manag. Data Syst. 2017, 117, 68–89. [Google Scholar] [CrossRef]
- Wunderlich, P.; Viet, D.; Sarker, S. Examination of the Determination of Smart Meter Adoption: An User Perspective. In Proceedings of the Thirty Third International Conference on Information Systems, Orlando, FL, USA, 16–19 December 2012. [Google Scholar]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wang, N.; Guo, X.; Peng, Z. Understanding the Acceptance of Mobile Health Services: A Comparison and Integration of Alternative Models. J. Electron. Commerce Res. 2013, 14, 183–200. [Google Scholar]
- Cheung, R.; Vogel, D. Predicting User Acceptance of Collaborative Technologies: An Extension of the Technology Acceptance Model for e-Learning. Comput. Educ. 2013, 63, 160–175. [Google Scholar] [CrossRef]
- Kranz, J.; Gallenkamp, J.; Picot, A. Exploring the role of control—Smart Meter acceptance of residential consumers. In Proceedings of the Sixteenth Americas Conference on Information Systems, Lima, Preu, 12–15 August 2010. [Google Scholar]
- Broman Toft, M.; Schuitema, G.; Thøgersen, J. Responsible Technology Acceptance: Model Development and Application to Consumer Acceptance of Smart Grid Technology. Appl. Energy 2014, 134, 392–400. [Google Scholar] [CrossRef]
- Schwartz, S.H. Normative Influences on Altruism. Adv. Exp. Soc. Psychol. 1977, 10, 221–279. [Google Scholar]
- Thøgersen, J. Recycling and Morality. Environ. Behav. 1996, 28, 536–558. [Google Scholar] [CrossRef]
- Abrahamse, W.; Steg, L.; Gifford, R.; Vlek, C. Factors Influencing Car Use for Commuting and the Intention to Reduce It: A Question of Self-Interest or Morality? Transp. Res. Part F Traff. Psychol. Behav. 2009, 12, 317–324. [Google Scholar] [CrossRef]
- Steg, L.; Vlek, C. Encouraging pro-Environmental Behaviour: An Integrative Review and Research Agenda. J. Environ. Psychol. 2009, 29, 309–317. [Google Scholar] [CrossRef]
- Stern, P.C. New Environmental Theories: Toward a Coherent Theory of Environmentally Significant Behavior. J. Soc. Issues 2000, 56, 407–424. [Google Scholar] [CrossRef]
- Dunlap, R.E.; Van Liere, K.D.; Mertig, A.G.; Jones, R.E. New Trends in Measuring Environmental Attitudes: Measuring Endorsement of the New Ecological Paradigm: A Revised NEP Scale. J. Soc. Issues 2000, 56, 425–442. [Google Scholar] [CrossRef]
- Chen, M.-F. An Examination of the Value-Belief-Norm Theory Model in Predicting pro-Environmental Behaviour in Taiwan. Asian J. Soc. Psychol. 2014, 18, 145–151. [Google Scholar] [CrossRef]
- Jansson, J.; Marell, A.; Nordlund, A. Exploring Consumer Adoption of a High Involvement Eco-Innovation Using Value-Belief-Norm Theory. J. Consum. Behav. 2011, 10, 51–60. [Google Scholar] [CrossRef]
- Van der Werff, E.; Steg, L. The Psychology of Participation and Interest in Smart Energy Systems: Comparing the Value-Belief-Norm Theory and the Value-Identity-Personal Norm Model. Energy Res. Soc. Sci. 2016, 22, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Huijts, N.M.A.; Molin, E.J.E.; Steg, L. Psychological Factors Influencing Sustainable Energy Technology Acceptance: A Review-Based Comprehensive Framework. Renew. Sustain. Energy Rev. 2012, 16, 525–531. [Google Scholar] [CrossRef]
- Beals, R.L. Resistance and Adaptation to Technological Change: Some Anthropological Views. Hum. Factors J. Hum. Factors Ergon. Soc. 1968, 10, 579–588. [Google Scholar] [CrossRef]
- Rodriguez-Pose, A. Innovation Prone and Innovation Averse Societies: Economic Performance in Europe. Growth Chang. 1999, 30, 75–105. [Google Scholar] [CrossRef]
Variable | Result |
---|---|
Dwelling type | |
Size of house |
|
Home ownership | |
# of occupants | |
Household composition | |
Age of occupants |
|
Location |
|
Income | |
Employment status |
|
Appliance types |
|
Recent energy retrofits |
|
Theory | Variables | Reference |
---|---|---|
Theory of Planned Behavior |
| [81,82,83] |
Technology Acceptance Model |
| [27,84,85,86,87,88] |
Norm Activation Model |
| [88,89,90,91,92] |
Value–Belief–Norm Theory |
| [93,94,95,96,97] |
Sustainable Energy Technology Acceptance Model and extended theory variables |
| [27,98] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adams, J.N.; Bélafi, Z.D.; Horváth, M.; Kocsis, J.B.; Csoknyai, T. How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review. Energies 2021, 14, 2502. https://doi.org/10.3390/en14092502
Adams JN, Bélafi ZD, Horváth M, Kocsis JB, Csoknyai T. How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review. Energies. 2021; 14(9):2502. https://doi.org/10.3390/en14092502
Chicago/Turabian StyleAdams, Jacqueline Nicole, Zsófia Deme Bélafi, Miklós Horváth, János Balázs Kocsis, and Tamás Csoknyai. 2021. "How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review" Energies 14, no. 9: 2502. https://doi.org/10.3390/en14092502
APA StyleAdams, J. N., Bélafi, Z. D., Horváth, M., Kocsis, J. B., & Csoknyai, T. (2021). How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review. Energies, 14(9), 2502. https://doi.org/10.3390/en14092502