Economic Analysis of the Investments in Battery Energy Storage Systems: Review and Current Perspectives
Abstract
:1. Introduction
- RQ1: What are the main characteristics of the literature regarding economic analysis of BESS?
- RQ2: What are the main tools and approaches used for the economic analysis of BESS?
- RQ3: What are the key paper clusters presented by the referred literature?
- RQ4: What are the key research opportunities for this literature?
2. Materials and Methods
- Paper title: “economic* feasibility” or “economic* assessment” or “economic* viability” or “economic* analysis” or “economic* evaluation” or “financial feasibility” or “financial assessment” or “financial viability” or “financial analysis” or “financial evaluation” or “techno-economic” or “investment*”
- Paper title: “battery storage” or “energy storage” or “storage system*”
- Paper title or keywords or abstract: batter*
3. Results and Discussions
3.1. Sample Characterization
3.2. Indicators and Criteria Used for the Economic Analysis of BESS
3.3. Predominant Cluster Framework
- PV systems with battery storage for residential areas;
- comparison between energy storage technologies;
- power quality improvement.
3.3.1. PV Systems with Battery Storage for Residential Areas
3.3.2. Comparison between Energy Storage Technologies
3.3.3. Power Quality Improvement
4. Research Agenda
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
BESS | Battery Energy Storage Systems |
Capex | Capital Expenditures |
DCF | Discounted Cash Flow |
DPB | Discounted Payback |
EAC | Equivalent Annual Cost |
ESS | Energy Storage Systems |
IRR | Internal Rate of Return |
LCCA | Life Cycle Costs Analysis |
LCOE | Levelized Cost of Electricity |
MCS | Monte Carlo Simulation |
NPC | Net Present Cost |
NPV | Net Present Value |
O&M | Operation and Maintenance |
Opex | Operating Expenditures |
PB | Payback |
PV | Photovoltaic |
RES | Renewable Energy Sources |
RO | Real Options |
RQ | Research Question |
SLR | Systematic Literature Review |
WACC | Weighted Average Cost of the Capital |
References
- Rocha, L.C.S.; Aquila, G.; de Oliveira Pamplona, E.; de Paiva, A.P.; Chieregatti, B.G.; Lima, J.d.S.B. Photovoltaic electricity production in Brazil: A stochastic economic viability analysis for small systems in the face of net metering and tax incentives. J. Clean. Prod. 2017, 168, 1448–1462. [Google Scholar] [CrossRef]
- Fagiani, R.; Barquín, J.; Hakvoort, R. Risk-based assessment of the cost-efficiency and the effectivity of renewable energy support schemes: Certificate markets versus feed-in tariffs. Energy Policy 2013, 55, 648–661. [Google Scholar] [CrossRef]
- Ma, T.; Yang, H.; Lu, L. Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island. Energy Convers. Manag. 2014, 79, 387–397. [Google Scholar] [CrossRef]
- Das, C.K.; Bass, O.; Kothapalli, G.; Mahmoud, T.S.; Habibi, D. Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality. Renew. Sustain. Energy Rev. 2018, 91, 1205–1230. [Google Scholar] [CrossRef]
- Bakirtzis, E.A.; Simoglou, C.K.; Biskas, P.N.; Bakirtzis, A.G. Storage management by rolling stochastic unit commitment for high renewable energy penetration. Electr. Power Syst. Res. 2018, 158, 240–249. [Google Scholar] [CrossRef]
- Mallapragada, D.S.; Sepulveda, N.A.; Jenkins, J.D. Long-run system value of battery energy storage in future grids with increasing wind and solar generation. Appl. Energy 2020, 275, 115390. [Google Scholar] [CrossRef]
- Divya, K.C.; Østergaard, J. Battery energy storage technology for power systems-An overview. Electr. Power Syst. Res. 2009, 79, 511–520. [Google Scholar] [CrossRef]
- Yekini Suberu, M.; Wazir Mustafa, M.; Bashir, N. Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renew. Sustain. Energy Rev. 2014, 35, 499–514. [Google Scholar] [CrossRef]
- Evans, A.; Strezov, V.; Evans, T.J. Assessment of utility energy storage options for increased renewable energy penetration. Renew. Sustain. Energy Rev. 2012, 16, 4141–4147. [Google Scholar] [CrossRef]
- Schoenung, S.M.; Eyer, J.M.; Iannucci, J.J.; Horgan, S.A. Energy storage for a competitive power market. Annu. Rev. Energy Environ. 1996, 21, 347–370. [Google Scholar] [CrossRef]
- DeCarolis, J. Energy storage options for North Carolina. Policy Br. 2019, 1–2. Available online: https://energy.ncsu.edu/storage/wp-content/uploads/sites/2/2019/02/NC-Storage-Study-FINAL.pdf (accessed on 11 December 2020).
- Green, S. Systematic Reviews and Meta-Analysis. Singap. Med. J. 2005, 46, 270. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Khan, K.S.; Kunz, R.; Kleijnen, J.; Antes, G. Five steps to conducting a systematic review. J. R. Soc. Med. 2003, 96, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; Clark, J.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Hoppmann, J.; Volland, J.; Schmidt, T.S.; Hoffmann, V.H. The economic viability of battery storage for residential solar photovoltaic systems—A review and a simulation model. Renew. Sustain. Energy Rev. 2014, 39, 1101–1118. [Google Scholar] [CrossRef]
- Diaf, S.; Belhamel, M.; Haddadi, M.; Louche, A. Technical and economic assessment of hybrid photovoltaic/wind system with battery storage in Corsica island. Energy Policy 2008, 36, 743–754. [Google Scholar] [CrossRef]
- Uddin, K.; Gough, R.; Radcliffe, J.; Marco, J.; Jennings, P. Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom. Appl. Energy 2017, 206, 12–21. [Google Scholar] [CrossRef]
- Bradbury, K.; Pratson, L.; Patiño-Echeverri, D. Economic viability of energy storage systems based on price arbitrage potential in real-time U.S. electricity markets. Appl. Energy 2014, 114, 512–519. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Zafirakis, D.; Kavadias, K. Techno-economic comparison of energy storage systems for island autonomous electrical networks. Renew. Sustain. Energy Rev. 2009, 13, 378–392. [Google Scholar] [CrossRef]
- Zheng, M.; Meinrenken, C.J.; Lackner, K.S. Smart households: Dispatch strategies and economic analysis of distributed energy storage for residential peak shaving. Appl. Energy 2015, 147, 246–257. [Google Scholar] [CrossRef] [Green Version]
- Dufo-López, R.; Bernal-Agustín, J.L. Techno-economic analysis of grid-connected battery storage. Energy Convers. Manag. 2015, 91, 394–404. [Google Scholar] [CrossRef]
- Heymans, C.; Walker, S.B.; Young, S.B.; Fowler, M. Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling. Energy Policy 2014, 71, 22–30. [Google Scholar] [CrossRef]
- Amrollahi, M.H.; Bathaee, S.M.T. Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response. Appl. Energy 2017, 202, 66–77. [Google Scholar] [CrossRef]
- Shihab, A.; Mandil, C.; Rostand, A.; Forrest, R. Introduction to Energy Poverty; A.T. Kearney Energy Transition Institute: Amsterdam, The Netherlands, 2018; Volume 95. [Google Scholar]
- Fathima, H.; Palanisamy, K. Optimized Sizing, Selection, and Economic Analysis of Battery Energy Storage for Grid-Connected Wind-PV Hybrid System. Model. Simul. Eng. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Aderemi, B.A.; Daniel Chowdhury, S.P.; Olwal, T.O.; Abu-Mahfouz, A.M. Techno-economic feasibility of hybrid solar photovoltaic and battery energy storage power system for a mobile cellular base station in Soshanguve, South Africa. Energies 2018, 11, 1572. [Google Scholar] [CrossRef] [Green Version]
- Kantor, I.; Rowlands, I.H.; Parker, P.; Lazowski, B. Economic feasibility of residential electricity storage systems in Ontario, Canada considering two policy scenarios. Energy Build. 2015, 86, 222–232. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. Photovoltaic energy systems with battery storage for residential areas: An economic analysis. J. Clean. Prod. 2016, 131, 460–474. [Google Scholar] [CrossRef]
- Parra, D.; Walker, G.S.; Gillott, M. Are batteries the optimum PV-coupled energy storage for dwellings? Techno-economic comparison with hot water tanks in the UK. Energy Build. 2016, 116, 614–621. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. The economic feasibility of residential energy storage combined with PV panels: The role of subsidies in Italy. Energies 2017, 10, 1434. [Google Scholar] [CrossRef]
- Hemmati, R. Technical and economic analysis of home energy management system incorporating small-scale wind turbine and battery energy storage system. J. Clean. Prod. 2017, 159, 106–118. [Google Scholar] [CrossRef]
- Barcellona, S.; Piegari, L.; Musolino, V.; Ballif, C. Economic viability for residential battery storage systems in grid-connected PV plants. IET Renew. Power Gener. 2018, 12, 135–142. [Google Scholar] [CrossRef]
- Carriço, J.; Fernandes, J.; Fernandes, C.; Branco, P. Technical and economic assessment of a 450 W autonomous photovoltaic system with lithium iron phosphate battery storage. J. Sustain. Dev. Energy, Water Environ. Syst. 2018, 6, 129–149. [Google Scholar] [CrossRef] [Green Version]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M.; Stornelli, V. Solar Photovoltaic Panels Combined with Energy Storage in a Residential Building: An Economic Analysis. Sustainability 2018, 10, 3117. [Google Scholar] [CrossRef] [Green Version]
- Masebinu, S.O.; Akinlabi, E.T.; Muzenda, E.; Aboyade, A.O. Techno-economic analysis of grid-tied energy storage. Int. J. Environ. Sci. Technol. 2018, 15, 231–242. [Google Scholar] [CrossRef]
- Tervo, E.; Agbim, K.; DeAngelis, F.; Hernandez, J.; Kim, H.K.; Odukomaiya, A. An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States. Renew. Sustain. Energy Rev. 2018, 94, 1057–1066. [Google Scholar] [CrossRef]
- Van der Stelt, S.; AlSkaif, T.; van Sark, W. Techno-economic analysis of household and community energy storage for residential prosumers with smart appliances. Appl. Energy 2018, 209, 266–276. [Google Scholar] [CrossRef]
- Von Appen, J.; Braun, M. Interdependencies between self-sufficiency preferences, techno-economic drivers for investment decisions and grid integration of residential PV storage systems. Appl. Energy 2018, 229, 1140–1151. [Google Scholar] [CrossRef]
- Oliva, H.S.; Passey, R.; Abdullah, M.A. A semi-empirical financial assessment of combining residential photovoltaics, energy efficiency and battery storage systems. Renew. Sustain. Energy Rev. 2019, 105, 206–214. [Google Scholar] [CrossRef]
- Dong, S.; Kremers, E.; Brucoli, M.; Rothman, R.; Brown, S. Techno-enviro-economic assessment of household and community energy storage in the UK. Energy Convers. Manag. 2020, 205. [Google Scholar] [CrossRef]
- Foles, A.; Fialho, L.; Collares-Pereira, M. Techno-economic evaluation of the Portuguese PV and energy storage residential applications. Sustain. Energy Technol. Assess. 2020, 39, 100686. [Google Scholar] [CrossRef]
- Nousdilis, A.I.; Kryonidis, G.C.; Kontis, E.O.; Barzegkar-Ntovom, G.A.; Panapakidis, I.P.; Christoforidis, G.C.; Papagiannis, G.K. Impact of policy incentives on the promotion of integrated PV and battery storage systems: A techno-economic assessment. IET Renew. Power Gener. 2020, 14, 1174–1183. [Google Scholar] [CrossRef]
- Shaw-Williams, D.; Susilawati, C.; Walker, G.; Varendorff, J. Towards net-zero energy neighbourhoods utilising high rates of residential photovoltaics with battery storage: A techno-economic analysis. Int. J. Sustain. Energy 2020, 39, 190–206. [Google Scholar] [CrossRef]
- Wang, Y.; Das, R.; Putrus, G.; Kotter, R. Economic evaluation of photovoltaic and energy storage technologies for future domestic energy systems—A case study of the UK. Energy 2020, 203. [Google Scholar] [CrossRef]
- Pereira, L.; Cavaleiro, J.; Barros, L. Economic assessment of solar-powered residential battery energy storage systems: The case of madeira island, portugal. Appl. Sci. 2020, 10, 7366. [Google Scholar] [CrossRef]
- Deotti, L.; Guedes, W.; Dias, B.; Soares, T. Technical and Economic Analysis of Battery Storage for Residential Solar Photovoltaic Systems in the Brazilian Regulatory Context. Energies 2020, 13, 6517. [Google Scholar] [CrossRef]
- Dumont, O.; Carmo, C.; Georges, E.; Quoilin, S.; Lemort, V. Economic assessment of electric energy storage for load shifting in positive energy building. Int. J. Energy Environ. Eng. 2017, 8, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Al-Foraih, R.; Sreekanth, K.J.; Al-Mulla, A. A techno-economic analysis of the integration of energy storage technologies in electric power systems. J. Renew. Sustain. Energy 2018, 10, 054102. [Google Scholar] [CrossRef]
- Tohidi, Y.; Gibescu, M. Stochastic optimisation for investment analysis of flow battery storage systems. IET Renew. Power Gener. 2019, 13, 555–562. [Google Scholar] [CrossRef]
- Gagliano, A.; Nocera, F.; Tina, G. Performances and economic analysis of small photovoltaic–electricity energy storage system for residential applications. Energy Environ. 2020, 31, 155–175. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, X.; Chen, H.; Xu, Y.; Tan, C. Techno-economic and social analysis of energy storage for commercial buildings. Energy Convers. Manag. 2014, 78, 125–136. [Google Scholar] [CrossRef]
- Barberis, S.; Rivarolo, M.; Traverso, A.; Massardo, A.F. Thermo-economic analysis of the energy storage role in a real polygenerative district. J. Energy Storage 2016, 5, 187–202. [Google Scholar] [CrossRef]
- Liao, Q.; Sun, B.; Liu, Y.; Sun, J.; Zhou, G. A techno-economic analysis on NaS battery energy storage system supporting peak shaving. Int. J. Energy Res. 2016, 40, 241–247. [Google Scholar] [CrossRef]
- Pandžić, H. Optimal battery energy storage investment in buildings. Energy Build. 2018, 175, 189–198. [Google Scholar] [CrossRef]
- Liao, Q.; Zhang, Y.; Tao, Y.; Ye, J.; Li, C. Economic analysis of an industrial photovoltaic system coupling with battery storage. Int. J. Energy Res. 2019, 43, 6461–6474. [Google Scholar] [CrossRef]
- Beltran, H.; Harrison, S.; Egea-Àlvarez, A.; Xu, L. Techno-economic assessment of energy storage technologies for inertia response and frequency support from wind farms. Energies 2020, 13, 3421. [Google Scholar] [CrossRef]
- Martinez-Bolanos, J.R.; Udaeta, M.E.M.; Gimenes, A.L.V.; Silva, V.O. da Economic feasibility of battery energy storage systems for replacing peak power plants for commercial consumers under energy time of use tariffs. J. Energy Storage 2020, 29, 101373. [Google Scholar] [CrossRef]
- Rallo, H.; Canals Casals, L.; De La Torre, D.; Reinhardt, R.; Marchante, C.; Amante, B. Lithium-ion battery 2nd life used as a stationary energy storage system: Ageing and economic analysis in two real cases. J. Clean. Prod. 2020, 272. [Google Scholar] [CrossRef]
- Tsai, C.-T.; Ocampo, E.M.; Beza, T.M.; Kuo, C.-C. Techno-Economic and Sizing Analysis of Battery Energy Storage System for Behind-the-Meter Application. IEEE Access 2020, 8, 203734–203746. [Google Scholar] [CrossRef]
- Koutroulis, E.; Kolokotsa, D.; Stravrakakis, G. Optimal design and economic evaluation of a battery energy storage system for the maximization of the energy generated by wind farms in isolated electric grids. Wind Eng. 2009, 33, 55–81. [Google Scholar] [CrossRef]
- Papadopoulos, D.P.; Maltas, E.Z. Design, Operation and Economic Analysis of Autonomous Hybrid PV-Diesel Power Systems Including Battery Storage. J. Electr. Eng. 2010, 61, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Tang, Y.; Shi, J.; Dou, J.; Zhou, S.; Jin, T. Techno-economic evaluation of hybrid energy storage technologies for a solar-wind generation system. Phys. C Supercond. Its Appl. 2013, 484, 272–275. [Google Scholar] [CrossRef]
- Escalante Soberanis, M.A.; Mithrush, T.; Bassam, A.; Mérida, W. A sensitivity analysis to determine technical and economic feasibility of energy storage systems implementation: A flow battery case study. Renew. Energy 2018, 115, 547–557. [Google Scholar] [CrossRef]
- Bai, B.; Xiong, S.; Song, B.; Xiaoming, M. Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China. Renew. Sustain. Energy Rev. 2019, 109, 213–229. [Google Scholar] [CrossRef]
- Chagnard, A.; Francois, B. Technical and economic analysis of a regulatory call for PV plants with energy storage in French Islands. Renew. Energy Power Qual. J. 2019, 17, 394–398. [Google Scholar] [CrossRef]
- Chiacchio, F.; Famoso, F.; Cedola, L. Grid-Connected Photovoltaic Power Plant with a and the South of Italy. Energies 2019, 12, 2356. [Google Scholar] [CrossRef] [Green Version]
- Esparcia, E.A.; Castro, M.T.; Buendia, R.E.; Ocon, J.D. Long-discharge flywheel versus battery energy storage for microgrids: A techno-economic comparison. Chem. Eng. Trans. 2019, 76, 949–954. [Google Scholar] [CrossRef]
- Gbadegesin, A.O.; Sun, Y.; Nwulu, N.I. Techno-economic analysis of storage degradation effect on levelised cost of hybrid energy storage systems. Sustain. Energy Technol. Assess. 2019, 36, 100536. [Google Scholar] [CrossRef]
- Lata-García, J.; Jurado, F.; Fernández-Ramírez, L.M.; Parra, P.; Larco, V. Techno-economic analysis of several energy storage options for off-grid renewable energy systems. Acta Polytech. Hungarica 2019, 16, 119–141. [Google Scholar] [CrossRef]
- Lorenzi, G.; da Silva Vieira, R.; Santos Silva, C.A.; Martin, A. Techno-economic analysis of utility-scale energy storage in island settings. J. Energy Storage 2019, 21, 691–705. [Google Scholar] [CrossRef]
- Iliadis, P.; Ntomalis, S.; Atsonios, K.; Nesiadis, A.; Nikolopoulos, N.; Grammelis, P. Energy management and techno-economic assessment of a predictive battery storage system applying a load levelling operational strategy in island systems. Int. J. Energy Res. 2020. [Google Scholar] [CrossRef]
- Kelly, J.J.; Leahy, P.G. Sizing Battery Energy Storage Systems: Using Multi-Objective Optimization to Overcome the Investment Scale Problem of Annual Worth. IEEE Trans. Sustain. Energy 2020, 11, 2305–2314. [Google Scholar] [CrossRef]
- Kelly, J.J.; Leahy, P.G. Optimal investment timing and sizing for battery energy storage systems. J. Energy Storage 2020, 28. [Google Scholar] [CrossRef]
- Kiptoo, M.K.; Lotfy, M.E.; Adewuyi, O.B.; Conteh, A.; Howlader, A.M.; Senjyu, T. Integrated approach for optimal techno-economic planning for high renewable energy-based isolated microgrid considering cost of energy storage and demand response strategies. Energy Convers. Manag. 2020, 215, 112917. [Google Scholar] [CrossRef]
- Krishnamoorthy, M.; Periyanayagam, A.D.V.R.; Santhan Kumar, C.; Praveen Kumar, B.; Srinivasan, S.; Kathiravan, P. Optimal Sizing, Selection, and Techno-Economic Analysis of Battery Storage for PV/BG-based Hybrid Rural Electrification System. IETE J. Res. 2020, 1–16. [Google Scholar] [CrossRef]
- Shabani, M.; Dahlquist, E.; Wallin, F.; Yan, J. Techno-economic comparison of optimal design of renewable-battery storage and renewable micro pumped hydro storage power supply systems: A case study in Sweden. Appl. Energy 2020, 279. [Google Scholar] [CrossRef]
- Li, M.-J.; Zhao, W.; Chen, X.; Tao, W.-Q. Economic analysis of a new class of vanadium redox-flow battery for medium- and large-scale energy storage in commercial applications with renewable energy. Appl. Therm. Eng. 2017, 114, 802–814. [Google Scholar] [CrossRef]
- Sobieski, D.W.; Bhavaraju, M.P. An economic assessment of battery storage in electric utility systems. IEEE Trans. Power Appar. Syst. 1985, PAS-104, 3453–3459. [Google Scholar] [CrossRef]
- Su, W.-F.; Huang, S.-J. Economic analysis for demand-side hybrid photovoltaic and battery energy storage system. IEEE Trans. Ind. Appl. 2001, 37, 171–177. [Google Scholar] [CrossRef]
- Rudolf, V.; Papastergiou, K.D. Financial analysis of utility scale photovoltaic plants with battery energy storage. Energy Policy 2013, 63, 139–146. [Google Scholar] [CrossRef]
- Han, X.; Ji, T.; Zhao, Z.; Zhang, H. Economic evaluation of batteries planning in energy storage power stations for load shifting. Renew. Energy 2015, 78, 643–647. [Google Scholar] [CrossRef]
- Bakke, I.; Fleten, S.-E.; Hagfors, L.I.; Hagspiel, V.; Norheim, B.; Wogrin, S. Investment in electric energy storage under uncertainty: A real options approach. Comput. Manag. Sci. 2016, 13, 483–500. [Google Scholar] [CrossRef] [Green Version]
- Maghouli, P.; Soroudi, A.; Keane, A. Robust computational framework for mid-term techno-economical assessment of energy storage. IET Gener. Transm. Distrib. 2016, 10, 822–831. [Google Scholar] [CrossRef] [Green Version]
- Quaia, S. Economic evaluation of energy-storage systems for grid-scale applications. Part 1: Methodological approach and selection of candidate technologies. Elektroteh. Vestnik/Electrotech. Rev. 2016, 83, 243–250. [Google Scholar]
- Quaia, S. Economic evaluation of energy-storage systems for grid-scale applications. Part 2: Analysis and results. Elektroteh. Vestnik/Electrotech. Rev. 2016, 83, 251–258. [Google Scholar]
- Tamura, S. Economic Analysis of Hybrid Battery Energy Storage Systems Applied to Frequency Control in Power System. Electr. Eng. Jpn. (Engl. Transl. Denki Gakkai Ronbunshi) 2016, 195, 24–31. [Google Scholar] [CrossRef]
- Thompson, C.C.; Konstantinos Oikonomou, P.E.; Etemadi, A.H.; Sorger, V.J. Optimization of Data Center Battery Storage Investments for Microgrid Cost Savings, Emissions Reduction, and Reliability Enhancement. IEEE Trans. Ind. Appl. 2016, 52, 2053–2060. [Google Scholar] [CrossRef]
- Lin, B.; Wu, W. Economic viability of battery energy storage and grid strategy: A special case of China electricity market. Energy 2017, 124, 423–434. [Google Scholar] [CrossRef]
- Fleer, J.; Zurmühlen, S.; Meyer, J.; Badeda, J.; Stenzel, P.; Hake, J.-F.; Sauer, D.U. Techno-economic evaluation of battery energy storage systems on the primary control reserve market under consideration of price trends and bidding strategies. J. Energy Storage 2018, 17, 345–356. [Google Scholar] [CrossRef]
- Pandžić, K.; Pandžić, H.; Kuzle, I. Coordination of Regulated and Merchant Energy Storage Investments. IEEE Trans. Sustain. Energy 2018, 9, 1244–1254. [Google Scholar] [CrossRef]
- Perkins, G. Techno-economic comparison of the levelised cost of electricity generation from solar PV and battery storage with solar PV and combustion of bio-crude using fast pyrolysis of biomass. Energy Convers. Manag. 2018, 171, 1573–1588. [Google Scholar] [CrossRef]
- Segundo Sevilla, F.R.; Parra, D.; Wyrsch, N.; Patel, M.K.; Kienzle, F.; Korba, P. Techno-economic analysis of battery storage and curtailment in a distribution grid with high PV penetration. J. Energy Storage 2018, 17, 73–83. [Google Scholar] [CrossRef]
- Yianni, C.; Efthymiou, V.; Georghiou, G. Economic viability of battery energy storage for the provision of frequency regulation service. J. Power Technol. 2018, 98, 403. [Google Scholar]
- Zurita, A.; Mata-Torres, C.; Valenzuela, C.; Felbol, C.; Cardemil, J.M.; Guzmán, A.M.; Escobar, R.A. Techno-economic evaluation of a hybrid CSP+PV plant integrated with thermal energy storage and a large-scale battery energy storage system for base generation. Sol. Energy 2018, 173, 1262–1277. [Google Scholar] [CrossRef]
- Ehsan, A.; Yang, Q. Coordinated Investment Planning of Distributed Multi-Type Stochastic Generation and Battery Storage in Active Distribution Networks. IEEE Trans. Sustain. Energy 2019, 10, 1813–1822. [Google Scholar] [CrossRef]
- Engels, J.; Claessens, B.; Deconinck, G. Techno-economic analysis and optimal control of battery storage for frequency control services, applied to the German market. Appl. Energy 2019, 242, 1036–1049. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.T.; Jin, Y.G.; Yoon, Y.T. An economic analysis of load leveling with battery energy storage systems (BESS) in an electricity market environment: The Korean case. Energies 2019, 12, 1608. [Google Scholar] [CrossRef] [Green Version]
- Bahloul, M.; Khadem, S.K. An analytical approach for techno-economic evaluation of hybrid energy storage system for grid services. J. Energy Storage 2020, 31. [Google Scholar] [CrossRef]
- Jumare, I.A. Energy storage with salt water battery: A preliminary design and economic assessment. J. Energy Storage 2020, 27, 101130. [Google Scholar] [CrossRef]
- Mostafa, M.H.; Abdel Aleem, S.H.E.; Ali, S.G.; Ali, Z.M.; Abdelaziz, A.Y. Techno-economic assessment of energy storage systems using annualized life cycle cost of storage (LCCOS) and levelized cost of energy (LCOE) metrics. J. Energy Storage 2020, 29. [Google Scholar] [CrossRef]
- Raugei, M.; Peluso, A.; Leccisi, E.; Fthenakis, V. Life-Cycle Carbon Emissions and Energy Return on Investment for 80% Domestic Renewable Electricity with Battery Storage in California (U.S.A.). Energies 2020, 13, 3934. [Google Scholar] [CrossRef]
- Sun, B.; He, X.; Zhang, W.; Li, Y.; Gong, M.; Yang, Y.; Su, X.; Zhu, Z.; Gao, W. Control strategies and economic analysis of an LTO battery energy storage system for AGC ancillary service. Energies 2020, 13, 505. [Google Scholar] [CrossRef] [Green Version]
- Rawa, M.; Abusorrah, A.; Al-Turki, Y.; Mekhilef, S.; Mostafa, M.H.; Ali, Z.M.; Aleem, S.H.E.A. Optimal allocation and economic analysis of battery energy storage systems: Self-consumption rate and hosting capacity enhancement for microgrids with high renewable penetration. Sustainability 2020, 12, 10144. [Google Scholar] [CrossRef]
- Kirli, D.; Kiprakis, A. Techno-economic potential of battery energy storage systems in frequency response and balancing mechanism actions. J. Eng. 2020, 2020, 774–782. [Google Scholar] [CrossRef]
- Pavić, I.; Luburić, Z.; Pandžić, H.; Capuder, T.; Andročec, I. Defining and evaluating use cases for battery energy storage investments: Case study in Croatia. Energies 2019, 12, 376. [Google Scholar] [CrossRef] [Green Version]
- Davitian, H.; Leigh, R.W. On the economic assessment and optimization of energy storage systems. Energy 1979, 4, 1099–1105. [Google Scholar] [CrossRef]
- Aquila, G.; Souza Rocha, L.C.; de Oliveira Pamplona, E.; de Queiroz, A.R.; Rotela, P., Jr.; Balestrassi, P.P.; Fonseca, M.N. Proposed method for contracting of wind-photovoltaic projects connected to the Brazilian electric system using multiobjective programming. Renew. Sustain. Energy Rev. 2018, 97, 377–389. [Google Scholar] [CrossRef]
- Perianes-Rodriguez, A.; Waltman, L.; van Eck, N.J. Constructing bibliometric networks: A comparison between full and fractional counting. J. Informetr. 2016, 10, 1178–1195. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. Measuring Scholarly Impact; Ding, Y., Rousseau, R., Wolfram, D., Eds.; Springer International Publishing: Cham, Switzerland, 2014; ISBN 978-3-319-10376-1. [Google Scholar]
- Waltman, L.; van Eck, N.J.; Noyons, E.C.M. A unified approach to mapping and clustering of bibliometric networks. J. Informetr. 2010, 4, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Kabir, M.N.; Mishra, Y.; Ledwich, G.; Xu, Z.; Bansal, R.C. Improving voltage profile of residential distribution systems using rooftop PVs and Battery Energy Storage systems. Appl. Energy 2014, 134, 290–300. [Google Scholar] [CrossRef]
- Ciez, R.E.; Whitacre, J.F. The cost of lithium is unlikely to upend the price of Li-ion storage systems. J. Power Sources 2016, 320, 310–313. [Google Scholar] [CrossRef] [Green Version]
- Nykvist, B.; Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Chang. 2015, 5, 329–332. [Google Scholar] [CrossRef]
- Boicea, V.A. Energy storage technologies: The past and the present. Proc. IEEE 2014, 102, 1777–1794. [Google Scholar] [CrossRef]
- Sabihuddin, S.; Kiprakis, A.E.; Mueller, M. A numerical and graphical review of energy storage technologies. Energies 2015, 8, 172–216. [Google Scholar] [CrossRef]
- Molina, M.G. Energy Storage and Power Electronics Technologies: A Strong Combination to Empower the Transformation to the Smart Grid. Proc. IEEE 2017, 105, 2191–2219. [Google Scholar] [CrossRef]
- Argyrou, M.C.; Christodoulides, P.; Kalogirou, S.A. Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications. Renew. Sustain. Energy Rev. 2018, 94, 804–821. [Google Scholar] [CrossRef]
- Enescu, D.; Chicco, G.; Porumb, R.; Seritan, G. Thermal energy storage for grid applications: Current status and emerging trends. Energies 2020, 13, 340. [Google Scholar] [CrossRef] [Green Version]
- Hossain, E.; Faruque, H.M.R.; Sunny, M.S.H.; Mohammad, N.; Nawar, N. A comprehensive review on energy storage systems: Types, comparison, current scenario, applications, barriers, and potential solutions, policies, and future prospects. Energies 2020, 13, 3651. [Google Scholar] [CrossRef]
- Wali, S.B.; Hannan, M.A.; Reza, M.S.; Ker, P.J.; Begum, R.A.; Rahman, M.S.A.; Mansor, M. Battery storage systems integrated renewable energy sources: A biblio metric analysis towards future directions. J. Energy Storage 2021, 35, 102296. [Google Scholar] [CrossRef]
- Zakeri, B.; Syri, S. Electrical energy storage systems: A comparative life cycle cost analysis. Renew. Sustain. Energy Rev. 2015, 42, 569–596. [Google Scholar] [CrossRef]
- Rodway, J.; Musilek, P.; Misak, S.; Prokop, L. Prediction of PV power quality: Total harmonic distortion of current. In Proceedings of the 2013 IEEE Electrical Power & Energy Conference, Halifax, NS, Canada, 21–23 August 2013; IEEE: New York, NY, USA, 2013; pp. 1–4. [Google Scholar]
- Akbari, H.; Browne, M.C.; Ortega, A.; Huang, M.J.; Hewitt, N.J.; Norton, B.; McCormack, S.J. Efficient energy storage technologies for photovoltaic systems. Sol. Energy 2019, 192, 144–168. [Google Scholar] [CrossRef]
- Schmidt, O.; Hawkes, A.; Gambhir, A.; Staffell, I. The future cost of electrical energy storage based on experience rates. Nat. Energy 2017, 2, 1–8. [Google Scholar] [CrossRef]
- Akinyele, D.O.; Rayudu, R.K. Review of energy storage technologies for sustainable power networks. Sustain. Energy Technol. Assess. 2014, 8, 74–91. [Google Scholar] [CrossRef]
- Bullich-Massagué, E.; Cifuentes-García, F.J.; Glenny-Crende, I.; Cheah-Mañé, M.; Aragüés-Peñalba, M.; Díaz-González, F.; Gomis-Bellmunt, O. A review of energy storage technologies for large scale photovoltaic power plants. Appl. Energy 2020, 274, 115213. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.K.; Hellany, A.; Nagrial, M.; Rizk, J. Power quality improvement factors: An overview. In Proceedings of the 2014 11th Annual High Capacity Optical Networks and Emerging/Enabling Technologies (Photonics for Energy), HONET-PfE 2014, Charlotte, NC, USA, 15–17 December 2014; pp. 138–144. [Google Scholar] [CrossRef]
- Mundackal, J.A.; Varghese, A.C.; Sreekala, P.; Reshmi, V. Grid power quality improvement and battery energy storage in wind energy systems. In Proceedings of the 2013 Annual International Conference on Emerging Research Areas and 2013 International Conference on Microelectronics, Communications and Renewable Energy, Kanjirapally, India, 4–6 June 2013. [Google Scholar] [CrossRef]
- Lam, K.H.; Lai, T.M.; Lo, W.C.; To, W.M. The application of dynamic modelling techniques to the grid-connected PV (photovoltaic) systems. Energy 2012, 46, 264–274. [Google Scholar] [CrossRef]
- Mahela, O.P.; Shaik, A.G. Power quality improvement in distribution network using DSTATCOM with battery energy storage system. Int. J. Electr. Power Energy Syst. 2016, 83, 229–240. [Google Scholar] [CrossRef]
- Fonseca, M.N.; de Oliveira Pamplona, E.; de Mello Valerio, V.E.; Aquila, G.; Rocha, L.C.S.; Rotela, P., Jr. Oil price volatility: A real option valuation approach in an African oil field. J. Pet. Sci. Eng. 2017, 150, 297–304. [Google Scholar] [CrossRef]
- Rocha, L.C.S.; Aquila, G.; Rotela, P., Jr.; de Paiva, A.P.; de Oliveira Pamplona, E.; Balestrassi, P.P. A stochastic economic viability analysis of residential wind power generation in Brazil. Renew. Sustain. Energy Rev. 2018, 90, 412–419. [Google Scholar] [CrossRef]
- Steffen, B. Estimating the cost of capital for renewable energy projects. Energy Econ. 2020, 88, 104783. [Google Scholar] [CrossRef]
Authors (Year) | Citations (Citation/Year) | Summary |
---|---|---|
Hoppmann et al. (2014) [17] | 248 (35.4) | The study proposes a simulation model that investigates the economic viability of BESS for residential PV in Germany under eight different electricity price scenarios from 2013 to 2022. The authors also provide a review of previous studies analyzing the economics of integrated PV-battery systems. |
Bradbury et al. (2014) [20] | 158 (22.6) | The study investigates 14 types of ESS towards identifying ESS power and capacities that maximize the internal rate of return (IRR) based on price arbitrage potential in real-time U.S. electricity markets. For this, it shows the results of a linear optimization model. |
Diaf et al. (2008) [18] | 149 (11.5) | The paper provides a technical and economic assessment of hybrid PV/wind stand-alone system with BESS in Corsica island (France). For this, it uses the levelized cost of energy (LCOE), as economic submodel, together with system components submodel and technical submodel based on loss of power supply probability. |
Kaldellis et al. (2009) [21] | 145 (12.1) | The study conducts a technical and economic assessment to compare various RES and ESS configurations in the Aegean Archipelago Islands (Greece), supported by the supplementary or back-up use of existing thermal units. |
Ma et al. (2014) [3] | 143 (20.4) | The study compares two energy storage technologies, batteries and pumped hydro storage, for the power supply on an island in Hong Kong based on off-grid renewable energy storage. Life cycle costs analysis (LCCA), levelized costs for the renewable energy storage system, and the LCCA ratios between four scenarios are calculated and compared. |
Heymans et al. (2014) [24] | 114 (16.3) | The authors conduct an economic analysis of the reuse of Li-ion EV batteries for ESS in stationary settings, applying a Matlab simulation of a residential energy profile and regulated cost structure. |
Amrollahi and Bathaee (2017) [25] | 105 (26.3) | The study investigates demand response programs in the case of component size optimization of a hybrid PV/wind generation together with ESS in a stand-alone micro-grid. It considers component size optimization and relevant costs reduction. |
Zheng et al. (2015) [22] | 79 (13.2) | The study provides economic analysis of a range of storage technologies for peak shaving demand response under a realistic tariff (Con Edison, New York) in the context of US households. |
Dufo-Lopez and Bernal-Agustin (2015) [23] | 71 (11.8) | This paper evaluates a grid-connected system with storage under a time-of-use electricity tariff. It analyzes the total net present cost (NPC) of a system with storage and compares it with a system without storage. |
Uddin et al. (2017) [19] | 65 (16.3) | Collecting data of a coupled PV lithium-ion (Li-ion) battery system of a mid-sized UK family home for more than a year, the paper presents a cost-benefit analysis of this system considering also the battery degradation during fifty long-term experiments. |
Articles | Unit | Grid | Type Batteries | RES | Economic Indicators/Criteria | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NPV | NPC/LCCA | IRR | PB | DPB | EAC | LCOE | Others | |||||
Aderemi et al. [28] | A | 1 | unspecified | PV | NPC | LCOE | ||||||
Heymans et al. [24] | B | 2 | Li-ion (reused) | PV/wind | EAC | O | ||||||
Hoppmann et al. [17] | B | 2 | Lead-acid | PV | NPV | |||||||
Kantor et al. [29] | B | 2 | Li-ion (comparison) | unspecified | EAC | |||||||
Zheng et al. [22] | B | 2 | various (comparison) | unspecified | EAC | LCOE | ||||||
Cucchiella et al. [30] | B | 2 | Lead-acid | PV | NPV | |||||||
Parra et al. [31] | B | 2 | Lead-acid, Li-ion (comparison) | PV | IRR | LCOE | O | |||||
Amrollahi and Bathaee [25] | B | 1 | unspecified | PV/wind | NPC | EAC | ||||||
Cucchiella et al. [32] | B | 2 | Lead-acid | PV | NPV | |||||||
Hemmati [33] | B | 1, 2 | Li-ion | Wind | EAC | MCS | ||||||
Uddin et al. [19] | B | 2 | Li-ion | PV | PB | O | ||||||
Barcellona et al. [34] | B | 2 | Lead-acid, Li-ion (comparison) | PV | EAC | O | ||||||
Carrico et al. [35] | B | 1 | Li-ion | PV | O | |||||||
Cucchiella et al. [36] | B | 2 | Lead-acid | PV | NPV | |||||||
Masebinu et al. [37] | B | 2 | unspecified | unspecified | NPV | NPC | LCOE | MCS | ||||
Tervo et al. [38] | B | 2 | Li-ion | PV | LCOE | |||||||
Van der Stelt et al. [39] | B | 2 | Li-ion | PV | PB | LCOE | ||||||
Von Appen and Braun [40] | B | 2 | unspecified | PV | O | |||||||
Oliva et al. [41] | B | 2 | Li-ion | PV | NPV | PB | ||||||
Dong et al. [42] | B | 2 | Li-ion | PV | PB | |||||||
Foles et al. [43] | B | 1, 2 | Li-ion | PV | NPV | IRR | PB | LCOE | O | |||
Nousdilis et al. [44] | B | 2 | Li-ion | PV | NPV | IRR | ||||||
Shaw-Williams et al. [45] | B | 2 | Li-ion | PV | NPV | MCS | ||||||
Wang et al. [46] | B | 2 | Li-ion | PV | NPV | DPB | ||||||
Pereira et al. [47] | B | 1 | Li-ion | PV | PB | O | ||||||
Deotti et al. [48] | B | 2 | Li-ion | PV | NPV | IRR | PB | |||||
Dufo-Lopez and Bernal-Agustin [23] | B, C | 2 | Lead-acid, Li-ion (comparison) | unspecified | NPV | NPC | LCOE | |||||
Dumont et al. [49] | B, C | 2 | Li-ion | PV | PB | |||||||
Al-Foraih et al. [50] | B, C | 2 | various (comparison) | unspecified | NPV | PB | ||||||
Tohidi and Gibescu [51] | B, C | 2 | Flow | PV | EAC | |||||||
Gagliano et al. [52] | B, C | 2 | Li-ion | PV | NPV | IRR | PB | DPB | ||||
Yan et al. [53] | C | 2 | various (comparison) | unspecified | NPV | IRR | PB | |||||
Barberis et al. [54] | C | 1, 2 | various (comparison) | Solar (hybrid) | O | |||||||
Liao et al. [55] | C | 2 | NaS | unspecified | PB | O | ||||||
Pandzic [56] | C | 2 | various (hybrid) | unspecified | O, MCS | |||||||
Liao et al. [57] | C | 2 | various (comparison) | PV | NPV | O | ||||||
Beltran et al. [58] | C | 1 | Li-ion (comparison) | Wind | O | |||||||
Martinez-Bolanos et al. [59] | C | 2 | various (comparison) | unspecified | NPV | O | ||||||
Rallo et al. [60] | C | 2 | Li-ion (reused) | unspecified | O | |||||||
Tsai et al. [61] | C | 2 | Li-ion | unspecified | NPC | IRR | DPB | LCOE | O | |||
Diaf et al. [18] | D | 1 | unspecified | PV/wind | NPV | LCOE | ||||||
Kaldellis et al. [21] | D | 1 | various (comparison) | unspecified | O | |||||||
Koutroulis et al. [62] | D | 1 | Lead-acid | Wind | NPV | IRR | DPB | O | ||||
Papadopoulos and Maltas [63] | D | 1 | unspecified | PV (hybrid) | NPV | NPC | IRR | PB | LCOE | O | ||
Ren et al. [64] | D | 1 | Flow (comparison) | PV/wind | EAC | |||||||
Ma et al. [3] | D | 1 | Li-ion, Lead-acid (comparison) | PV/wind | NPC | LCOE | ||||||
Soberanis et al. [65] | D | 1 | Flow | PV/wind (hybrid) | NPC | O | ||||||
Bai et al. [66] | D | 2 | Li-ion (reused) | PV | NPV | LCOE | ||||||
Chagnard and Francois [67] | D | 1 | Li-ion | PV | NPV | IRR | DPB | O | ||||
Chiacchio et al. [68] | D | 2 | Li-ion | PV | NPV | DPB | MCS | |||||
Esparcia et al. [69] | D | 1 | Li-ion (comparison) | PV (hybrid) | LCOE | |||||||
Gbadegesin et al. [70] | D | 1 | Lead-acid, Li-ion (comparison) | PV/wind (hybrid) | LCOE | |||||||
Lata-Garcia et al. [71] | D | 1 | various (comparison) | PV/Hydro | NPC | EAC | LCOE | |||||
Lorenzi et al. [72] | D | 1 | Li-ion, Flow (comparison) | Various | NPV | DPB | ||||||
Iliadis et al. [73] | D | 1 | Li-ion | PV/wind (hybrid) | NPV | LCOE | O | |||||
Kelly and Leahy [74] | D | 2 | Li-ion | PV/wind | O | |||||||
Kelly and Leahy [75] | D | 1 | Li-ion | unspecified | NPV | RO | ||||||
Kiptoo et al. [76] | D | 1, 2 | Li-ion (comparison) | PV/wind | EAC | |||||||
Krishnamoorthy et al. [77] | D | 1 | various (comparison) | PV/biomass | NPC | LCOE | ||||||
Shabani et al. [78] | D | 1 | Lead-acid (comparison) | PV/wind | NPC | LCOE | ||||||
Li et al. [79] | D, E | 2 | various (comparison) | PV/wind | PB | O | ||||||
Sobieski et al. [80] | E | 2 | unspecified | unspecified | NPV | |||||||
Su et al. [81] | E | 1, 2 | unspecified | PV | NPV | IRR | PB | |||||
Rudolf and Papastergiou [82] | E | 2 | NaS, Li-ion (comparison) | PV | NPV | |||||||
Bradbury et al. [20] | E | 2 | various (comparison) | unspecified | IRR | |||||||
Fathima and Palanisamy [27] | E | 2 | various (comparison) | PV/wind (hybrid) | NPV | PB | DPB | EAC | O | |||
Han et al. [83] | E | 2 | various (comparison) | unspecified | O | |||||||
Bakke et al. [84] | E | 2 | Li-ion | unspecified | NPV | PB | RO | |||||
Maghouli et al. [85] | E | 2 | Lead-acid | Wind | EAC | O | ||||||
Quaia [86] | E | 2 | various (hybrid) | PV | NPV | PB | ||||||
Quaia [87] | E | 2 | various (hybrid) | PV | NPV | PB | ||||||
Tamura [88] | E | 2 | Lead-acid, Li-ion (comparison) | unspecified | O | |||||||
Thompson et al. [89] | E | 2 | unspecified | unspecified | O, MCS | |||||||
Lin and Wu [90] | E | 2 | various (comparison) | unspecified | NPV | O | ||||||
Fleer et al. [91] | E | 2 | Li-ion | unspecified | NPV | |||||||
Pandzic [92] | E | 2 | unspecified | Wind | EAC | O | ||||||
Perkins [93] | E | 2 | Li-ion | PV/biomass | LCOE | |||||||
Sevilla et al. [94] | E | 2 | Li-ion | PV | NPV | LCOE | O | |||||
Efthymiou et al. [95] | E | 2 | Li-ion | unspecified | NPV | IRR | DPB | O | ||||
Zurita et al. [96] | E | 2 | Li-ion | PV/Solar | LCOE | |||||||
Ehsan and Yang [97] | E | 2 | unspecified | PV/wind | NPV | MCS | ||||||
Engels et al. [98] | E | 2 | Li-ion | unspecified | NPV | PB | MCS | |||||
Kim et al. [99] | E | 2 | Flow | unspecified | O | |||||||
Bahloul and Khadem [100] | E | 2 | Li-ion (hybrid) | unspecified | EAC | O | ||||||
Jumare [101] | E | 2 | NaS | unspecified | NPV | IRR | PB | DPB | ||||
Mostafa et al. [102] | E | 2 | various (comparison) | unspecified | EAC | LCOE | O | |||||
Raugei et al. [103] | E | 2 | Li-ion | PV | O | |||||||
Sun et al. [104] | E | 2 | Li-ion | Thermal | PB | |||||||
Rawa et al. [105] | E | 2 | NaS | PV/wind | O | |||||||
Kirli and Kiprakis [106] | E | 2 | various (comparison) | unspecified | NPV | PB | LCOE | O | ||||
Pavic et al. [107] | various | 2 | Li-ion | unspecified | NPV | |||||||
Davitian and Leigh [108] | unspecified | unspecified | unspecified | unspecified | EAC | |||||||
Number of papers | 42 | 11 | 14 | 23 | 10 | 17 | 24 | 47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotella Junior, P.; Rocha, L.C.S.; Morioka, S.N.; Bolis, I.; Chicco, G.; Mazza, A.; Janda, K. Economic Analysis of the Investments in Battery Energy Storage Systems: Review and Current Perspectives. Energies 2021, 14, 2503. https://doi.org/10.3390/en14092503
Rotella Junior P, Rocha LCS, Morioka SN, Bolis I, Chicco G, Mazza A, Janda K. Economic Analysis of the Investments in Battery Energy Storage Systems: Review and Current Perspectives. Energies. 2021; 14(9):2503. https://doi.org/10.3390/en14092503
Chicago/Turabian StyleRotella Junior, Paulo, Luiz Célio Souza Rocha, Sandra Naomi Morioka, Ivan Bolis, Gianfranco Chicco, Andrea Mazza, and Karel Janda. 2021. "Economic Analysis of the Investments in Battery Energy Storage Systems: Review and Current Perspectives" Energies 14, no. 9: 2503. https://doi.org/10.3390/en14092503
APA StyleRotella Junior, P., Rocha, L. C. S., Morioka, S. N., Bolis, I., Chicco, G., Mazza, A., & Janda, K. (2021). Economic Analysis of the Investments in Battery Energy Storage Systems: Review and Current Perspectives. Energies, 14(9), 2503. https://doi.org/10.3390/en14092503