A Case Study of Thermal Evolution in the Vicinity of Geothermal Probes Following a Distributed TRT Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Site
2.1.1. European Centres of Excellence (ECoEs) for Shallow Geothermal Applications in Civil and Historical Buildings
2.1.2. Test Site Description
2.2. Temperature Monitoring
2.3. Geoelectrical Survey
2.4. Lithological Column
2.5. Applied Heat Load
3. Results
3.1. Electrical Resistivities
3.2. Thermal Properties of the Investigated Area
3.3. Temperature Variations in the Vicinity of the BHE
4. Discussion
5. Conclusions
- Diurnal temperature fluctuations were relevant in the near-surface coarse fill layer and, to some extent, in the subjacent transition zone down to the capillary fringe of the groundwater level. Short-term variations in the atmospheric temperature at the surface were found to influence the temperature profile down to a depth of around 1.5 m.
- The main textural soil classes were distinguished by ERT, and the results showed that the recorded localised temperature profiles were transferable laterally to other parts of the ERT transect.
- A significant thermal effect in the vicinity of the helical BHE was observed less than two hours after the heat load application. This early onset was attributable to the high thermal conductivity of the grouting used in this study.
- When a heat load with an inlet temperature of 40–50 °C was injected, the temperature in the vicinity (distance of about 20 cm) of the geothermal system was around 18 °C lower, while the difference between the inlet and outlet temperatures (T_in–T_out) was about 8 °C.
- The high-resolution distributed temperature sensing technique used in this study produced a detailed temperature profile in which the two argillaceous layers of low thermal diffusivity were identified by the corresponding peaks in the temperature profile. The low thermal diffusivity values in these regions were explained by the generally lower thermal conductivities of the surrounding fine-grained soil materials. At any one time, the relative temperature difference within a single temperature profile was about 3–4 °C, which was related to the ground texture.
- An increased fraction of organic matter in the argillaceous domains might also contribute to the lower thermal conductivity of these layers.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Badenes, B.B.; Pla, M.; Ángel, M.; Lemus-Zúñiga, L.-G.; Mauleón, B.S.; Urchueguía, J.F. On the Influence of Operational and Control Parameters in Thermal Response Testing of Borehole Heat Exchangers. Energies 2017, 10, 1328. [Google Scholar] [CrossRef] [Green Version]
- VDI. Technical Rule 4640-1. Thermal Use of the Underground; Fundamentals, Approvals, Environmental Aspects; VDI, Beuth Publishing House: Berlin, Germany, 2010. [Google Scholar]
- Hakala, P.; Martinkauppi, A.; Martinkauppi, I.; Leppäharju, N.; Korhonen, K. Evaluation of the Distributed Thermal Response Test (DTRT): Nupurinkartano as a case study. In Report of Investigation 211; Geological Survey of Finland: Espoo, Finland, 2014; ISBN 978-952-217-306-5. [Google Scholar]
- Belliardi, M.; Soma, L.; Pasquali, R.; Sanner, B.; Zarrella, A.; De Carli, M.; Galgaro, A.; Perego, R.; Pera, S.; Badenes, B.; et al. Recommendations for the Planning and Implementation of New GSHP Systems in Dens Urban Environments and Related Tool. Deliverable D6.3. 2020; Available online: https://geo4civhic.eu/wp-content/uploads/2020/03/GEO4CIVHIC-D6.3.pdf (accessed on 3 May 2021).
- Mielke, P.; Bauer, D.; Homuth, S.; Götz, E.A.; Sass, I. Thermal effect of a borehole thermal energy store on the subsurface. Geotherm. Energy 2014, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Comina, C.; Giordano, N.; Ghidone, G.; Fischanger, F. Time-Lapse 3D Electric Tomography for Short-time Monitoring of an Experimental Heat Storage System. Geosciences 2019, 9, 167. [Google Scholar] [CrossRef] [Green Version]
- Gultekin, A.; Aydin, M.; Sisman, A. Effects of arrangement geometry and number of boreholes on thermal interaction coefficient of multi-borehole heat exchangers. Appl. Energy 2019, 237, 163–170. [Google Scholar] [CrossRef]
- Luo, J.; Rohn, J.; Xiang, W.; Bayer, M.; Priess, A.; Wilkmann, L.; Steger, H.; Zorn, R. Experimental investigation of a borehole field by enhanced geothermal response test and numerical analysis of performance of the borehole heat exchangers. Energy 2015, 84, 473–484. [Google Scholar] [CrossRef]
- Witte, H.J. Error analysis of thermal response tests. Appl. Energy 2013, 109, 302–311. [Google Scholar] [CrossRef]
- Firmbach, L.; Giordano, N.; Comina, C.; Mandrone, G.; Kolditz, O.; Vienken, T.; Dietrich, P. Experimental heat flow propa-gation within porous media using electrical resistivity tomography x (ERT). In Proceedings of the European Geothermal Con-gress, Pisa, Italy, 3–7 June 2013; pp. 3–7. [Google Scholar]
- Urchueguía, J.F.; Lemus-Zúñiga, L.G.; Oliver-Villanueva, J.V.; Badenes, B.; Mateo Pla, M.A.; Cuevas, J.M. How Reliable Are Standard Thermal Response Tests? An Assessment Based on Long-Term Thermal Response Tests Under Different Operational Conditions. Energies 2018, 11, 3347. [Google Scholar] [CrossRef] [Green Version]
- Wilke, S.; Menberg, K.; Steger, H.; Blum, P. Advanced thermal response tests: A review. Renew. Sustain. Energy Rev. 2020, 119, 109575. [Google Scholar] [CrossRef]
- Fujii, H.; Okubo, H.; Nishi, K.; Itoi, R.; Ohyama, K.; Shibata, K. An improved thermal response test for U-tube ground heat exchanger based on optical fiber thermometers. Geothermics 2009, 38, 399–406. [Google Scholar] [CrossRef]
- Lehr, C.; Sass, I. Thermo-optical parameter acquisition and characterization of geologic properties: A 400-m deep BHE in a karstic alpine marble aquifer. Environ. Earth Sci. 2014, 72, 1403–1419. [Google Scholar] [CrossRef]
- Kühl, J.U.; Lehr, C. Geothermische Messungen für die oberflächennahe Geothermie. In Handbuch Oberflächennahe Geothermie; Bauer, M., Freeden, W., Jacobi, H., Neu, T., Eds.; Springer Spektrum: Berlin, Germany, 2018; pp. 613–635. [Google Scholar] [CrossRef]
- Arato, A.; Boaga, J.; Comina, C.; De Seta, M.; Di Sipio, E.; Galgaro, A.; Giordano, N.; Mandrone, G. Geophysical monitoring for shallow geothermal applications—Two Italian case histories. First Break 2015, 33, 75–79. [Google Scholar] [CrossRef]
- Luo, J.; Rohn, J.; Xiang, W.; Bertermann, D.; Blum, P. A review of ground investigations for ground source heat pump (GSHP) systems. Energy Build. 2016, 117, 160–175. [Google Scholar] [CrossRef]
- Eskilson, P.; Claesson, J. Simulation model for thermally interacting heat extraction boreholes. Numer. Heat Transf. 1988, 13, 149–165. [Google Scholar] [CrossRef]
- Hellström, G.; Sanner, B. Software for dimensioning of deep boreholes for heat extraction. In Proceedings of the International Conference on Thermal Energy Storage (Proc. Calorstock), Espoo, Finland, 22–25 August 1994; pp. 195–202. [Google Scholar]
- Shonder, J.A.; Baxter, V.; Thornton, J.; Hughes, P. A new comparison of vertical ground heat exchanger design methods for residential applications. ASHRAE Tran. 1999, 105, 1179. [Google Scholar]
- Schulte, D.O.; Rühaak, W.; Welsch, B.; Sass, I. BASIMO—Borehole heat exchanger array simulation and optimization tool. Energy Procedia 2016, 97, 210–217. [Google Scholar] [CrossRef] [Green Version]
- Cullin, J.R.; Spitler, J.D.; Montagud, C.; Ruiz-Calvo, F.; Rees, S.J.; Naicker, S.S.; Konečný, P.; Southard, L.E. Validation of vertical ground heat exchanger design methodologies. Sci. Technol. Built Environ. 2015, 21, 137–149. [Google Scholar] [CrossRef]
- Pla, M.A.M.; Badenes, B.; Lemus, L.; Urchueguía, J.F. Assessing the Shallow Geothermal Laboratory at Universitat Politècnica de Valéncia. In Proceedings of the European Geothermal Congress, Den Haag, The Netherlands, 11–14 June 2019. [Google Scholar]
- Aranzabal, N.; Martos, J.; Stokuca, M.; Pallard, W.M.; Acuña, J.; Soret, J.; Blum, P. Novel instruments and methods to estimate depth-specific thermal properties in borehole heat exchangers. Geothermics 2020, 86, 101813. [Google Scholar] [CrossRef]
- Raymond, J.; Therrien, R.; Gosselin, L. Borehole temperature evolution during thermal response tests. Geothermics 2011, 40, 69–78. [Google Scholar] [CrossRef]
- Acuña, J.; Palm, B. Distributed thermal response tests on pipe-in-pipe borehole heat exchangers. Appl. Energy 2013, 109, 312–320. [Google Scholar] [CrossRef]
- Beier, R.A.; Acuña, J.; Mogensen, P.; Palm, B. Borehole resistance and vertical temperature profiles in coaxial borehole heat exchangers. Appl. Energy 2013, 102, 665–675. [Google Scholar] [CrossRef]
- Pambou, C.H.K.; Raymond, J.; Lamarche, L. Improving thermal response tests with wireline temperature logs to evaluate ground thermal conductivity profiles and groundwater fluxes. Heat Mass Transf. 2019, 55, 1829–1843. [Google Scholar] [CrossRef]
- Corwin, D.; Lesch, S. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- Costabel, S.; Yaramanci, U. Relative hydraulic conductivity in the vadose zone from magnetic resonance sounding—Brooks-Corey parameterization of the capillary fringe. Geophysics 2011, 76, G61–G71. [Google Scholar] [CrossRef]
- Friedman, S.P. Soil properties influencing apparent electrical conductivity: A review. Comput. Electron. Agric. 2005, 46, 45–70. [Google Scholar] [CrossRef]
- McCutcheon, M.; Farahani, H.; Stednick, J.; Buchleiter, G.; Green, T. Effect of soil water on apparent soil electrical conductivity and texture relationships in a dryland field. Biosyst. Eng. 2006, 94, 19–32. [Google Scholar] [CrossRef]
- Bai, W.; Kong, L.; Guo, A. Effects of physical properties on electrical conductivity of compacted lateritic soil. J. Rock Mech. Geotech. Eng. 2013, 5, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, S.; Maślakowski, M.; Tucholka, P. Determination of the correlation between the electrical resistivity of non-cohesive soils and the degree of compaction. J. Appl. Geophys. 2014, 110, 43–50. [Google Scholar] [CrossRef]
- Hermans, T.; Vandenbohede, A.; Lebbe, L.; Nguyen, F. A shallow geothermal experiment in a sandy aquifer monitored using electric resistivity tomography. Geophysics 2012, 77, B11–B21. [Google Scholar] [CrossRef] [Green Version]
- Cultrera, M.; Boaga, J.; Di Sipio, E.; Dalla Santa, G.; De Seta, M.; Galgaro, A. Modelling an induced thermal plume with data from electrical resistivity tomography and distributed temperature sensing: A case study in northeast Italy. Hydrogeol. J. 2017, 26, 837–851. [Google Scholar] [CrossRef]
- Hermans, T.; Nguyen, F.; Robert, T.; Revil, A. Geophysical methods for monitoring temperature changes in shallow low enthalpy geothermal systems. Energies 2014, 7, 5083–5118. [Google Scholar] [CrossRef] [Green Version]
- Hermans, T.; Wildemeersch, S.; Jamin, P.; Orban, P.; Brouyère, S.; Dassargues, A.; Nguyen, F. Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT. Geothermics 2015, 53, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Robert, T.; Paulus, C.; Bolly, P.Y.; Koo Seen Lin, E.; Hermans, T. Heat as a proxy to image dynamic processes with 4D electrical resistivity tomography. Geosciences 2019, 9, 414. [Google Scholar] [CrossRef] [Green Version]
- Nouveau, M.; Grandjean, G.; Leroy, P.; Philippe, M.; Hedri, E.; Boukcim, H. Electrical and thermal behavior of unsaturated soils: Experimental results. J. Appl. Geophys. 2016, 128, 115–122. [Google Scholar] [CrossRef]
- Logsdon, S.D.; Green, T.R.; Bonta, J.V.; Seyfried, M.S.; Evett, S.R. Comparison of Electrical and Thermal Conductivities for Soils from Five States. Soil Sci. 2010, 175, 573–578. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, H.; Bertermann, D. Mediate relation between electrical and thermal conductivity of soil. Géoméch. Geophys. Geo-Energy Geo-Resour. 2020, 6, 1–16. [Google Scholar] [CrossRef]
- Bertermann, D.; Schwarz, H. Bulk density and water content-dependent electrical resistivity analyses of different soil classes on a laboratory scale. Environ. Earth Sci. 2018, 77, 570. [Google Scholar] [CrossRef]
- Aranzabal, N.; Martos, J.; Steger, H.; Blum, P.; Soret, J. Temperature measurements along a vertical borehole heat exchanger: A method comparison. Renew. Energy 2019, 143, 1247–1258. [Google Scholar] [CrossRef]
- GGU Gesellschaft für Geophysikalische Untersuchungen mbH. Die Widerstandsgeoelektrik. 2011. Available online: https://www.ggukarlsruhe.de/PDFs/Verfahren/GGU_Die_Widerstandsgeoelektrik_WID98-C.pdf (accessed on 18 January 2021).
- Bertermann, D.; Müller, J.; Freitag, S.; Schwarz, H. Comparison between Measured and Calculated Thermal Conductivities within Different Grain Size Classes and Their Related Depth Ranges. Soil Syst. 2018, 2, 50. [Google Scholar] [CrossRef] [Green Version]
- Chanzy, A.; Gaudu, J.-C.; Marloie, O. Correcting the temperature influence on soil capacitance sensors using diurnal temperature and water content cycles. Sensors 2012, 12, 9773–9790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stahr, K.; Kandeler, E.; Herrmann, L.; Streck, T. Bodenkunde und Standortlehre (Soil Science and Location Theory), 8.4 Wärmehaushalt; Eugen Ulmer KG: Stuttgart, Germany, 2020; ISBN 978-3-8252-5345-5. [Google Scholar]
- Illawathure, C.; Cheema, M.; Kavanagh, V.; Galagedara, L. Distinguishing Capillary Fringe Reflection in a GPR Profile for Precise Water Table Depth Estimation in a Boreal Podzolic Soil Field. Water 2020, 12, 1670. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E.; Karl, T.R. Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Clim. 1999, 12, 2451–2473. [Google Scholar] [CrossRef]
- Bujok, P.; Grycz, D.; Klempa, M.; Kunz, A.; Porzer, M.; Pytlik, A.; Rozehnal, Z.; Vojčinák, P. Assessment of the influence of shortening the duration of TRT (thermal response test) on the precision of measured values. Energy 2014, 64, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Abu-Hamdeh, N.H.; Reeder, R.C. Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter. Soil Sci. Soc. Am. J. 2000, 64, 1285–1290. [Google Scholar] [CrossRef]
- Côté, J.; Konrad, J.-M. A generalized thermal conductivity model for soils and construction materials. Can. Geotech. J. 2005, 42, 443–458. [Google Scholar] [CrossRef]
- Zhu, D.; Ciais, P.; Krinner, G.; Maignan, F.; Puig, A.J.; Hugelius, G. Controls of soil organic matter on soil thermal dynamics in the northern high latitudes. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarrella, A.; Emmi, G.; Graci, S.; De Carli, M.; Cultrera, M.; Santa, G.D.; Galgaro, A.; Bertermann, D.; Müller, J.; Pockelé, L.; et al. Thermal response testing results of different types of borehole heat exchangers: An analysis and comparison of interpretation methods. Energies 2017, 10, 801. [Google Scholar] [CrossRef] [Green Version]
- Borinaga-Treviño, R.; Pascual-Muñoz, P.; Castro-Fresno, D.; Blanco-Fernandez, E. Borehole thermal response and thermal resistance of four different grouting materials measured with a TRT. Appl. Therm. Eng. 2013, 53, 13–20. [Google Scholar] [CrossRef]
Potential Depth (Res2DInv Output) [m] | ER Values before Shutting down the Heat Load [Ohm∙m] | ER Values before Shutting after the Heat Load [Ohm∙m] | ||||
---|---|---|---|---|---|---|
14.5 m | 16.0 m | 17.5 m | 14.5 m | 16.0 m | 17.5 m | |
0.3 | 88 | 175 | 56 | 101 | 233 | 62 |
0.5 | 88 | 173 | 57 | 101 | 206 | 62 |
0.8 | 89 | 123 | 57 | 102 | 84 | 63 |
1.2 | 90 | 74 | 56 | 103 | 43 | 63 |
1.5 | 22 | 22 | 24 | 20 | 19 | 22 |
1.9 | 12 | 13 | 15 | 14 | 14 | 15 |
2.3 | 12 | 13 | 14 | 14 | 14 | 14 |
2.9 | 12 | 13 | 14 | 14 | 14 | 14 |
3.4 | 13 | 13 | 14 | 14 | 14 | 14 |
4.0 | 14 | 14 | 14 | 14 | 14 | 14 |
Lithologic Column | VDI 4640-1 | Bertermann et al., 2018 | ||
---|---|---|---|---|
Depth [m] | Layer | Volumetric Heat Capacity [MJ/(m3∙K)] | Thermal Conductivity (Recommended Value) [W/(m∙K)] | Thermal Conductivity [W/(m∙K)] |
0.0–1.0 | (1) Fill | 1.6–2.2 1 | 1.4 1 | - |
1.0–2.0 | (2) Clayey silt | 2.0–2.8 | 1.8 | 1.2–1.4 |
2.0–4.6 | (3) Soft organic clay | 2.0–2.8 | (clay/silt) 1.8 (peat) 0.4 | 1.0–1.2 |
4.6–5.1 | (4) Fine sand | 2.2–2.8 | 2.4 | 2.2–2.4 |
5.1–5.4 | (5) Mud 2 | 1.5–2.5 | 2.4 | 1.4–1.6 |
5.4–7.8 | (6) Clays–Silty clays | 2.0–2.8 | 1.8 | 1.2–1.4 |
7.8–10.6 | (7) Gravelly sand | 2.2–2.8 | 2.4 | 2.2–2.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwarz, H.; Badenes, B.; Wagner, J.; Cuevas, J.M.; Urchueguía, J.; Bertermann, D. A Case Study of Thermal Evolution in the Vicinity of Geothermal Probes Following a Distributed TRT Method. Energies 2021, 14, 2632. https://doi.org/10.3390/en14092632
Schwarz H, Badenes B, Wagner J, Cuevas JM, Urchueguía J, Bertermann D. A Case Study of Thermal Evolution in the Vicinity of Geothermal Probes Following a Distributed TRT Method. Energies. 2021; 14(9):2632. https://doi.org/10.3390/en14092632
Chicago/Turabian StyleSchwarz, Hans, Borja Badenes, Jan Wagner, José Manuel Cuevas, Javier Urchueguía, and David Bertermann. 2021. "A Case Study of Thermal Evolution in the Vicinity of Geothermal Probes Following a Distributed TRT Method" Energies 14, no. 9: 2632. https://doi.org/10.3390/en14092632
APA StyleSchwarz, H., Badenes, B., Wagner, J., Cuevas, J. M., Urchueguía, J., & Bertermann, D. (2021). A Case Study of Thermal Evolution in the Vicinity of Geothermal Probes Following a Distributed TRT Method. Energies, 14(9), 2632. https://doi.org/10.3390/en14092632