Cooling Design for PEM Fuel-Cell Stacks Employing Air and Metal Foam: Simulation and Experiment
Abstract
:1. Introduction
2. Simulations and Numerical Investigations
2.1. Numerical Determination of Metal Foam Porosity and Pore Density
2.2. Stack Cooling Simulations
2.3. Numerical Solution
2.4. Meshing and Mesh Independence
3. Experiment
3.1. Experimental Stack Model
3.2. Metal Foam and Test Section
3.3. Experimental Setup
3.4. Measurements Error
4. Results, Comparisons, and Discussion
4.1. Local Temperatures
4.2. Pumping Power
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Reddy, R.G. Polymer electrolyte membrane fuel cell with metal foam in the gas flow-filed of bipolar/end plates. J. New Mater. Electrochem. Syst. 2003, 6, 231–236. [Google Scholar]
- EG&G Services Parsons Inc. Fuel Cell Handbook, 5th ed.; US Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory: Morgantown, WV, USA, 2000.
- Boyd, B.; Hooman, K. Air-cooled micro-porous heat exchangers for thermal management of fuel cells. Int. Commun. Heat Mass Transf. 2012, 39, 363–367. [Google Scholar] [CrossRef]
- Kusie, J.; Knight, J.; Morton, J. News Release; Ministry of Transportation and Infrastructure: Coquitlam, BC, Canada, 2010. [Google Scholar]
- Enache, S.; Petreanu, I.; Pătularu, L.; Ebrasu, D.; Schitea, D.; Varlam, M. On the road to high performance PEM fuel cells for portable applications. Prog. Cryog. Isot. Sep. 2014, 17, 73–80. [Google Scholar]
- Carton, J.G.; Olabi, A.G. Design of experiment study of the parameter that affect performance of three flow plate configuration of proton exchange membrane fuel cell. Energy 2010, 35, 2796–2806. [Google Scholar] [CrossRef] [Green Version]
- Carton, J.G.; Olabi, A.G. Representative model and flow characteristics of open pore cellular foam and potential use in proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2015, 40, 5726–5738. [Google Scholar] [CrossRef] [Green Version]
- Alaswad, A.; Baroutaji, A.; Achour, H.; Carton, J.; Al Makky, A.; Olabi, A.G. Developments in fuel cell technologies in the transport sector. Int. J. Hydrogen Energy 2016, 3, 164. [Google Scholar] [CrossRef] [Green Version]
- Carney, D. Fuel Cell Futures, no longer a dream. ASE Automot. Eng. 2015, 14–21. Available online: https://www.sae.org/news/2015/10/fuel-cell-futures-no-longer-a-dream (accessed on 5 January 2021).
- Parajón-Costa, B.S.; Wagner, C.C.; Baran, E.J. Fuel cell handbook. Z. Anorg. Allg. Chem. 2003, 629, 1085–1090. [Google Scholar] [CrossRef]
- Shahsavari, S. Thermal Analysis of Air-Cooled Fuel Cells. Ph.D. Thesis, School of Engineering Science, Simon Fraiser University, Burnaby, BC, Canada, 2011. [Google Scholar]
- Zhang, G.; Kandlikar, S. A critical review of cooling techniques in proton exchange membrane fuel cell stacks. Int. J. Hydrogen Energy 2012, 37, 2412–2429. [Google Scholar] [CrossRef]
- Hashmi, S.M.H. Cooling Strategies for PEM FC Stacks. Ph.D. Thesis, Von der Fak. Maschinenbau der Helmut-Schmidt-Universität, Hamburg, Germany, 2010. [Google Scholar]
- Fly, A. Thermal and Water Management of Evaporatively Cooled Fuel Cell Vehicles. Ph.D. Thesis, Loughborough University, Loughborough, UK, 2015. [Google Scholar]
- Dukhan, N. Metal Foam: Fundamentals and Applications; DEStech Publications: Lancaster, PA, USA, 2013. [Google Scholar]
- Hontanon, E.; Escudero, M.J.; Bautista, C.; Garcia-Ybarra, P.L.; Daza, L. Optimization of flow field in PEMFC using computational fluid dynamics techniques. J. Power Sources 2000, 86, 363–368. [Google Scholar] [CrossRef]
- Gamburzev, S.; Appleby, A.J. Recent performance improvement of the proton exchange membrane fuel cell (PEMFC). J. Power Sources 2002, 107, 5–12. [Google Scholar] [CrossRef]
- Birgersson, E.; Vynnycky, M. A quantitative study of the effect of flow-distributor geometry in the cathode of a PEM fuel cell. J. Power Sources 2006, 153, 76–88. [Google Scholar] [CrossRef]
- Tseng, C.J.; Tsai, B.T.; Liu, Z.S.; Chang, T.C.; Chang, W.C.; Lo, S.K. A PEM fuel cell with metal foam as flow distributor. Energy Convers. Manag. 2012, 62, 14–21. [Google Scholar] [CrossRef]
- Baroutaji, A.; Carton, J.G.; Stokes, J.; Olabi, A.G. Design and development of proton exchange membrane fuel cell using open pore cellular foam as flow plate material. J. Energy Chall. Mech. 2014, 17, 95–102. [Google Scholar]
- Wilberforce, T.; Al Makky, A.; Baroutaji, A.; Sambi, R.; Olabi, A.G. Computational fluid dynamic simulation and modelling (CFX) of flow plate in PEM fuel cell using aluminum open cellular foam material. In Proceedings of the IEEE Texas Power and Energy Conference, College Station, TX, USA, 9–10 February 2017. [Google Scholar] [CrossRef]
- Wilberforce, T.; Al Makky, A.; Baroutaji, A.; Sambi, R.; Olabi, A.G. Optimization of bipolar plate through computational fluid dynamic simulation and modelling using nickel open pore cellular foam material. Renew. Energy Power Qual. J. 2017, 1, 886–892. [Google Scholar] [CrossRef]
- Kumar, A.; Reddy, R.G. Materials and design development for bipolar/end plates in fuel cells. J. Power Sources 2004, 129, 62–67. [Google Scholar] [CrossRef]
- Awin, Y.; Dukhan, N. Experimental Performance Assessment of Metal-Foam Flow Fields for PEM Fuel Cells. Appl. Energy 2019, 252, 113458. [Google Scholar] [CrossRef]
- Mancin, S.; Zilio, C.; Cavallini, A.; Rossetto, L. Heat transfer during air flow in aluminum foams. Int. J. Heat Mass Transf. 2010, 53, 4976–4984. [Google Scholar] [CrossRef]
- Mancin, S.; Zilio, C.; Diani, A.; Rossetto, L. Air forced convection through metal foams: Experimental results and modeling. Int. J. Heat Mass Transf. 2013, 62, 112–123. [Google Scholar] [CrossRef]
- Cirillo, L.; Manca, O.; Marinelli, L.; Nardini, S. Experimental investigation on compact heat exchanger in Aluminum foam. In Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 13–19 November 2015. IMECE2015-53218. [Google Scholar]
- Iasiello, M.; Cunsolo, S.; Bianco, N.; Chiu, W.K.; Naso, V. Developing thermal flow in open-cell foam. Int. J. Therm. Sci. 2017, 111, 129–137. [Google Scholar] [CrossRef]
- Orihuela MD, P.; Anuar, F.S.; Abdi, I.A.; Odabaee, M.; Hooman, K. Thermohydraulics of a metal foam-filled annulus. Int. J. Heat Mass Transf. 2018, 117, 95–106. [Google Scholar] [CrossRef]
- Liu, H.; Yu, Q.; Qu, Z.; Yang, R. Simulation and analytical validation of forced convection inside open-cell metal foams. Int. J. Therm. Sci. 2017, 111, 234–245. [Google Scholar] [CrossRef]
- Bai, M.; Chung, J. Analytical and numerical prediction of heat transfer and pressure drop in open-cell metal foams. Int. J. Therm. Sci. 2011, 50, 869–880. [Google Scholar] [CrossRef]
- Iasiello, M.; Cunsolo, S.; Oliviero, M.; Harris, W.M.; Bianco, N.; Chiu, W.K.; Naso, V. Numerical analysis of heat transfer and pressure drop in metal foams for different morphological models. J. Heat Transf. 2014, 136, 11260. [Google Scholar] [CrossRef]
- Jafarizade, A.; Panjepour, M.; Meratian, M.; Emami, M.D. Numerical Simulation of Gas/Solid Heat Transfer in Metallic Foams: A General Correlation for Different Porosities and Pore Sizes. Transp. Porous Media 2019. [Google Scholar] [CrossRef]
- Kuwahara, F.; Shirota, M.; Nakayama, A. A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media. Int. J. Heat Mass Transf. 2001, 44, 1153–1159. [Google Scholar] [CrossRef]
- Mahdi, M.; Sepehr, H.; Siavashi, M.M. Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle. J. Energy Storage 2020, 28. [Google Scholar] [CrossRef]
- Mashayekhi, M.; Houshfar, E.; Ashjaee, M. Development of hybrid cooling method with PCM and Al2O3 nanofluid in aluminium minichannels using heat source model of Li-ion batteries. Appl. Therm. Eng. 2020, 187. [Google Scholar] [CrossRef]
- Valizade, M.; Heyhat, M.; Maerefat, M. Experimental study of the thermal behavior of direct absorption parabolic trough collector by applying copper metal foam as volumetric solar absorption. Renew. Energy 2020, 145, 261–269. [Google Scholar] [CrossRef]
- Peng, H.; Li, M.; Liang, X. Thermal-hydraulic and thermodynamic performance of parabolic trough solar receiver partially filled with gradient metal foam. Energy 2020, 211. [Google Scholar] [CrossRef]
- Guarino, S.; Di Ilio, G.; Venettacci, S. Influence of Thermal Contact Resistance of Aluminum Foams in Forced Convection: Experimental Analysis. Materials 2017, 10, 907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbieri, M.; Di Ilio, G.; Patanè, F.; Bella, G. Experimental investigation on buoyancy-induced convection in aluminum metal foams. Int. J. Refrig. 2017, 76, 385–393. [Google Scholar] [CrossRef]
- Odabaee, M.; Mancin, S.; Hooman, K. Metal foam heat exchangers for thermal management of fuel cell systems—An experimental study. Exp. Therm. Fluid Sci 2013, 51, 214–219. [Google Scholar] [CrossRef]
- Afshari, E.; Ziaeirad, M.; Shariati, Z. ScienceDirect A study on using metal foam as coolant fluid distributor in the polymer electrolyte membrane fuel cell. Int. J. Hydrogen Energy 2015, 41, 1902–1912. [Google Scholar] [CrossRef]
- Santamaria, A.; Zhang, J. Metal foam microchannel heat exchangers for cooling of fuel cells & flow batteries. Am. Soc. Mech. Eng. Fluids Eng. Div. FEDSM 2017, 1B, 1–7. [Google Scholar] [CrossRef]
- Toghyani, S.; Afshari, E.; Baniasadi, E. Metal foams as flow distributors in comparison with serpentine and parallel flow fields in proton exchange membrane electrolyzer cells. Electrochim. Acta 2018, 290, 506–519. [Google Scholar] [CrossRef]
- Vazifeshenas, Y.; Sedighi, K.; Shakeri, M. Heat transfer in PEM cooling flow field with high porosity metal foam insert. Appl. Therm. Eng 2018, 147, 81–89. [Google Scholar] [CrossRef]
- Calmidi, V.; Mahajan, R. Forced convection in high porosity metal foams. ASME J. Heat Transf. 2000, 122, 557–565. [Google Scholar] [CrossRef]
- Yang, C.; Ando, K.; Nakayama, A. A Local Thermal Non-Equilibrium Analysis of Fully Developed Forced Convective Flow in a Tube Filled with a Porous Medium. Transp. Porous Media 2011, 89, 237–249. [Google Scholar] [CrossRef]
- Dukhan, N.; Patel, P. Equivalent particle diameter and length scale for pressure drop in porous metals. Exp. Therm. Fluid Sci. 2007, 32, 1059–1067. [Google Scholar] [CrossRef]
- ERG Materials and Aerospace. Available online: http://ergaerospace.com (accessed on 14 January 2021).
- Boomsma, K.; Poulikakos, D.; Zwick, F. Metal foams as compact high performance heat exchangers. Mech. Mater. 2003, 35, 1161–1176. [Google Scholar] [CrossRef]
- Figliola, R.; Beasley, D. Theory and Design for Mechanical Measurements; John Wiley and Sons: New York, NY, USA, 2000; pp. 149–163. [Google Scholar]
- Ergun, S. Fluid flow through packed columns. Chem. Eng. Prog. 1952, 48, 89–94. [Google Scholar]
Model: | EFC-100-03-6-ST |
---|---|
Active Area | 100 cm2 |
Power output | 500 W |
Weight | 4 kg |
Flow Field Pattern | Serpentine design |
Channels | 4 |
Cooling channel | 0.07″ × 0.035″ × 2.9″ |
Operating temperature | 60–90 °C |
Supply coolant pressure drop | 20–30 psi |
Removed heat | 500 W |
Cooling system | Water method |
Nominal Cell Voltage (Per Cell) | 0.65 +/− 0.05 V |
Nominal Current Density (Per Cell) | 400 +/− 50 mA/cm2 |
maximum temperature | 180 °C |
Thickness of separator plate | 64 mm |
Material | Pores Per Inch (ppi) | Porosity ɛ (%) | Uncompressed Pore Diameter Dp (mm) |
---|---|---|---|
Aluminum | 40 | 60 | 0.625 |
Mesh | Number of Nodes | Number of Elements | Pressure Drop [Pa] |
---|---|---|---|
Coarse | 13,468 | 42,799 | 328.27 |
Medium | 35,179 | 136,414 | 329.014 |
Fine | 47,337 | 192,619 | 329.574 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hmad, A.A.; Dukhan, N. Cooling Design for PEM Fuel-Cell Stacks Employing Air and Metal Foam: Simulation and Experiment. Energies 2021, 14, 2687. https://doi.org/10.3390/en14092687
Hmad AA, Dukhan N. Cooling Design for PEM Fuel-Cell Stacks Employing Air and Metal Foam: Simulation and Experiment. Energies. 2021; 14(9):2687. https://doi.org/10.3390/en14092687
Chicago/Turabian StyleHmad, Ali A., and Nihad Dukhan. 2021. "Cooling Design for PEM Fuel-Cell Stacks Employing Air and Metal Foam: Simulation and Experiment" Energies 14, no. 9: 2687. https://doi.org/10.3390/en14092687
APA StyleHmad, A. A., & Dukhan, N. (2021). Cooling Design for PEM Fuel-Cell Stacks Employing Air and Metal Foam: Simulation and Experiment. Energies, 14(9), 2687. https://doi.org/10.3390/en14092687