Conversion of Carbohydrates in Lignocellulosic Biomass after Chemical Pretreatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Quantity Identification
2.2.2. Quality Identification
Fourier Transform Infrared Spectroscopy (FTIR)
X-ray Diffraction
- —area of the amorphous fraction,
- —total area of maxima originating from the crystalline fraction,
- —the degree of crystallinity of the repetition [%].
2.2.3. Statistical Analysis
3. Results
3.1. Quantity Identification of Holocellulose, Cellulose, and Pentosans
3.2. Quantitative Identification of Glucose and Arabinose
3.3. Qualitative Identification of Cellulose by Fourier Transform Infrared (FTIR) Spectroscopy and X-ray Diffraction
4. Discussion
5. Conclusions
- −
- Components of corn waste are more susceptible to chemical conversion than those of poplar wood;
- −
- Acid pretreatment, in the case of poplar wood and corn waste, caused an increase in the share of cellulose in the hydrolysis residue and its structural stability and also enhanced the degradation of pentosans;
- −
- Alkaline pretreatment, in the case of poplar wood and corn waste, caused an increase in the share of cellulose in the hydrolysis residue and its structural stability; degradation of pentosans was recorded only in poplar wood, while in the hydrolysis residue of corn waste, an increased share of cellulose and pentosans was recorded;
- −
- Only alkaline treatment of corn waste caused changes, which promoted improved efficiency of the fermentation process;
- −
- All the applied pretreatment methods caused changes in the cellulose structure, which were advantageous for the efficiency of biomass fermentation: an increase in the energy of hydrogen bonds, the lateral order index, and the crystallinity index.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fulton, L.M.; Lynd, L.R.; Körner, A.; Greene, N.; Tonachel, L.R. The need for biofuels as part of a low carbon energy future. Biofuels Bioprod. Biorefin. 2015, 9, 476–483. [Google Scholar] [CrossRef]
- Lynd, L.R.; Liang, X.; Biddy, M.J.; Allee, A.; Cai, H.; Foust, T.; Himmel, M.E.; Laser, M.S.; Wang, M.; Wyman, C.E. Cellulosic ethanol: Status and innovation. Curr. Opin. Biotechnol. 2017, 45, 202–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, V.A.; Kothari, N.; Bhagia, S.; Akinosho, H.; Li, M.; Pu, Y.; Yoo, C.G.; Pattathil, S.; Hahn, M.G.; Raguaskas, A.J.; et al. Comparative evaluation of Populus variants total sugar release and structural features following pretreatment and digestion by two distinct biological systems. Biotechnol. Biofuels 2017, 10, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Tsukahara, K.; Yagishita, T.; Sawayama, S. Performance of a fixed-bed reactor packed with carbon felt during anaerobic digestion of cellulose. Bioresour. Technol. 2004, 94, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, A.; Wu, L.; Iwamoto, S.; Lee, S.H.; Endo, T.; Rodriguez, M.; Mielenz, J.R. Improvement of enzymatic saccharification of Populus and switchgrass by combined pretreatment with steam and wet disk milling. Renew. Energy 2015, 76, 782–789. [Google Scholar]
- Waliszewska, H.; Zborowska, M.; Waliszewska, B.; Antczak, A.; Borysiak, S.; Czekała, W. Transformation of Miscanthus and Sorghum cellulose during methane fermentation. Cellulose 2018, 25, 1207–1216. [Google Scholar] [CrossRef] [Green Version]
- Waliszewska, H.; Zborowska, M.; Stachowiak-Wencek, A.; Waliszewska, B.; Czekała, W. Lignin transformation of one-year-old plants during anaerobic digestion (AD). Polymers 2019, 11, 835. [Google Scholar] [CrossRef] [Green Version]
- Kucharska, K.; Rybarczyk, P.; Hołowacz, I.; Łukajtis, R.; Glinka, M.; Kamiński, M. Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 2018, 23, 2937. [Google Scholar] [CrossRef] [Green Version]
- Ciolacu, D.; Pitol-Filho, L.; Ciolacu, F. Studies concerning the accessibility of different allomorphic forms of cellulose. Cellulose 2012, 19, 55–68. [Google Scholar] [CrossRef]
- Badiei, M.; Asim, N.; Jahim, J.M.; Sopian, K. Comparison of Chemical Pretreatment Methods for Cellulosic Biomass. APCBEE Procedia 2014, 9, 170–174. [Google Scholar] [CrossRef] [Green Version]
- Behera, S.; Nandhagopal, R.A.N.; Kumar, S. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sust. Energ. Rev. 2014, 36, 91–106. [Google Scholar] [CrossRef]
- Li, D.; Zhou, J.; Li, H.; Han, Y.; Shi, J.; Zhang, S. Influence of poplar green liquor pretreatment on pentosan extraction. In Proceedings of the International Conference on Materials for Renewable Energy and Environment, Chengdu, China, 19–21 August 2013; pp. 327–330. [Google Scholar]
- Tigunova, O.O.; Beiko, N.E.; Kamenskyh, D.S.; Tkachenko, T.V.; Yevdokymenko, V.O.; Kashkovskiy, V.I.; Shulga, S.M. Lignocellulosic biomass after explosive autohydrolysis as substrate for butanol obtaining. Biotechnol. Acta 2016, 9, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Mosiera, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2015, 96, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Rawat, R.; Kumbhar, B.K.; Tewari, L. Optimization of alkali pretreatment for bioconversion of poplar (Populus deltoides) biomass into fermentable sugars using response surface methodology. Ind. Crop. Prod. 2013, 44, 220–226. [Google Scholar] [CrossRef]
- Zakaria, M.R.; Hirata, S.; Fujimoto, S.; Hassan, M.A. Combined pretreatment with hot compressed water and wet disk milling opened up oil palm biomass structure resulting in enhanced enzymatic digestibility. Bioresour. Technol. 2015, 193, 128–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sannigrahi, P.; Ragauskas, A.J.; Tuskan, G.A. Poplar as a feedstock for biofuels: A review of compositional characteristics. Biofuel Bioprod. Bioref. 2010, 4, 209–226. [Google Scholar] [CrossRef]
- Tharakan, P.J.; Volk, T.A.; Abrahamson, L.P.; White, E.H. Energy feedstock characteristics of willow and hybrid poplar clones at harvest age. Biomass Bioenergy 2003, 25, 571–580. [Google Scholar] [CrossRef]
- Hendriks, A.T.; Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef]
- Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 2009, 48, 3713–3729. [Google Scholar] [CrossRef]
- Michalska, K.; Ledakowicz, S. Degradacja struktur lignocelulozowych oraz produktów ich hydrolizy. Inz. Apar. Chem. 2012, 51, 157–159. [Google Scholar]
- Bjerre, A.B.; Olesen, A.B.; Ploger, A.; Schmidt, A.S.; Fernqvist, T. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol. Bioeng. 1996, 49, 568–577. [Google Scholar] [CrossRef]
- Agbor, V.B.; Cicek, N.; Sparling, R.; Berlin, A.; Levin, D.-B. Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv. 2011, 29, 675–685. [Google Scholar] [CrossRef]
- Galbe, M.; Zacchi, G. Pretreatment: The key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 2012, 46, 70–78. [Google Scholar] [CrossRef]
- Iranmahboob, J.; Nadim, F.; Monemi, S. Optimizing acid-hydrolysis: A critical step for production of ethanol from mixed wood chips. Biomass Bioenergy 2002, 22, 401–404. [Google Scholar] [CrossRef]
- Balat, M. Production of bioethanol from lignocellulosic materials via biochemical pathway: A review. Energy Convers. Manag. 2011, 52, 858–875. [Google Scholar] [CrossRef]
- Sivers, M.; Zacchi, G. A techno-economical comparison of three processes for the production of ethanol from pine. Bioresour. Technol. 1995, 51, 43–52. [Google Scholar] [CrossRef]
- Marzialetti, T.; Olarte, M.B.V.; Sievers, C.; Hoskins, T.J.C.; Agrawal, P.K.; Jones, C.W. Dilute acid hydrolysis of loblolly pine: A comprehensive approach. Ind. Eng. Chem. Res. 2008, 47, 7131–7140. [Google Scholar] [CrossRef]
- Zheng, Y.; Pan, Z.; Zhang, R. Overview of biomass pretreatment for cellulosic ethanol production. Int. J. Agric. Biol. 2009, 2, 51–68. [Google Scholar]
- Browning, B.L. Methods of Wood Chemistry, Volumes I and II; Interscience Publishers: New York, NY, USA, 1967. [Google Scholar]
- TAPPI T223 cm-01. Pentosans in Wood and Pulp; TAPPI Press: Atlanta, GA, USA, 2001. [Google Scholar]
- Struszczyk, H. Modification of lignins III. Reaction of lignosulfonates with chlorophosphazenes. J. Macromol. Sci. 1986, 23, 973–992. [Google Scholar] [CrossRef]
- Poletto, M.; Ornaghi, H.L.; Junior Zattera, A.J. Native cellulose: Structure, characterization, and thermal properties. Materials 2014, 7, 6105–6119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, M.L.; O’Connor, R.T. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of types I, II, III and of amorphous cellulose. J. Appl. Polym. Sci. 1964, 8, 1311–1324. [Google Scholar] [CrossRef]
- Hindeleh, A.M.; Johnson, D.J. The resolution of multipeak data in fibre science. J. Phys. Appl. Phys. 1971, 4, 259–263. [Google Scholar] [CrossRef]
- Rabiej, S. A comparison of two X-ray diffraction procedures for crystallinity determination. Eur. Polym. J. 1991, 27, 947–954. [Google Scholar] [CrossRef]
- Kačík, F.; Ďurkovič, J.; Kačíková, D. Chemical Profiles of Wood Components of Poplar Clones for Their Energy Utilization. Energies 2012, 5, 5243–5256. [Google Scholar] [CrossRef] [Green Version]
- Adebayo, A.; Wang, J.; Cheng, Q.; De Vallance, D. Bioenergy properties of juvenile hybrid poplars and their parent species. Wood Fiber Sci. 2011, 43, 412–420. [Google Scholar]
- Hu, F.; Jung, S.; Ragauskas, A. Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour. Technol. 2012, 117, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Ragauskas, A.J. Pseudo-Lignin Formation during Dilute acid Pretreatment for Cellulosic Ethanol. Recent Adv. Petrochem. Sci. 2017, 1, 555551. [Google Scholar]
- Baral, N.R.; Shah, A. Techno-economic analysis of cellulose dissolving ionic liquid pretreatment of lignocellulosic biomass for fermentable sugars production. Biofuels Bioprod. Bioref. 2015, 10, 70–88. [Google Scholar] [CrossRef]
- Kanengoni, A.T.; Chimonyo, M.; Ndimba, B.K.; Dzama, K. Potential of Using Maize Cobs in Pig Diets—A Review. Asian-Australas J. Anim. Sci. 2015, 28, 1669–1679. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.-Q.; Wang, W.; Xu, F.; Sun, R.-C. Synergistic benefits of ionic liquid and alkaline pretreatments of poplar wood. Part 1: Effect of integrated pretreatment on enzymatic hydrolysis. Bioresour. Technol. 2013, 144, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Merrettig-Bruns, U.; Strauch, S.; Kabasci, S.; Chena, H. Optimization of ammonia pretreatment of wheat straw for biogas production. J. Chem. Technol. Biotechnol. 2015, 90, 130–138. [Google Scholar] [CrossRef]
- Gupta, R.; Lee, Y.Y. Pretreatment of Corn Stover and Hybrid Poplar by Sodium Hydroxide and Hydrogen Peroxide. Biotechnol. Prog. 2010, 26, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Stachowiak-Wencek, A.; Bocianowski, J.; Waliszewska, H.; Borysiak, S.; Waliszewska, B.; Zborowska, M. Statistical prediction of biogas and methane yields based on the composition of lignocellulosic biomass. Bioresources 2021, 16, 7086–7100. [Google Scholar] [CrossRef]
- Yamazawa, A.; Iikura, T.; Morioka, Y.; Shino, A.; Ogata, Y.; Date, Y.; Kikuchi, J. Cellulose Digestion and Metabolism Induced Biocatalytic Transitions in Anaerobic Microbial Ecosystems. Metabolites 2014, 4, 36–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Q.; Zhou, T.; Wang, Y.; Cao, X.; Wu, S.; Zhao, M.; Wang, H.; Xu, M.; Zheng, B.; Zheng, J.; et al. Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Sci. Rep. 2018, 8, 1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, X.; Ma, L.; Wen, B.; Zhou, D.; Kuang, M.; Yang, W.; Cui, Z. Enhancing anaerobic digestion of cotton stalk by pretreatment with a microbial consortium (MC1). Bioresour. Technol. 2016, 207, 293–301. [Google Scholar] [CrossRef]
- Kumar, R.; Mago, G.; Balan, V.; Wyman, C.E. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour. Technol. 2009, 100, 3948–3962. [Google Scholar] [CrossRef]
- Stachowiak-Wencek, A.; Zborowska, M.; Waliszewska, H.; Waliszewska, B. Chemical Changes in Lignocellulosic Biomass (Corncob) Influenced by Pretreatment and Anaerobic Digestion (AD). Bioresources 2019, 14, 8082–8099. [Google Scholar]
- Dandikas, V.; Heuwinkel, H.; Lichti, F.; Drewes, J.E.; Koch, K. Correlation between biogas yield and Chemical Composition of energy crops. Bioresour. Technol. 2014, 174, 316–320. [Google Scholar] [CrossRef]
Carbohydrate | Pretreatment | Populus L. | Corn Waste | ||||
---|---|---|---|---|---|---|---|
Corncobs | Corn Straw | ||||||
Holocellulose | Control | 74.8 a ± 0.1 | Δ | 59.6 a ± 1.1 | Δ | 66.4 a ± 0.7 | Δ |
1% NaOH | 70.9 b ± 0.26 | −5.3 | 89.1 c ± 1.5 | 49.6 | 89.9 c ± 0.2 | 35.5 | |
3% NaOH | 71.5 b ± 0.2 | −4.4 | 96.8 d ± 0.1 | 62.4 | 94.8 d ± 0.2 | 42.8 | |
3% H2SO4 | 64.7 c ± 0.3 | −13.6 | 79.6 b ± 0.2 | 33.5 | 75.8 b ± 0.0 | 14.2 | |
7% H2SO4 | 64.6 c ± 0.3 | −13.6 | 79.5 b ± 0.2 | 33.3 | 75.6 b ± 0.1 | 13.8 | |
Cellulose | Control | 40.1 a ± 0.2 | Δ | 31.2 a ± 0.1 | Δ | 38.3 a ± 0.1 | Δ |
1% NaOH | 48.9 b ± 1.2 | 22.0 | 47.2 b ± 0.4 | 51.1 | 56.3 b ± 0.1 | 47.0 | |
3% NaOH | 53.2 c ± 0.6 | 32.7 | 56.5 c ± 0.5 | 81.0 | 64.7 c ± 0.5 | 69.0 | |
3% H2SO4 | 52.6 c ± 0.6 | 31.1 | 64.3 d ± 0.7 | 105.9 | 64.8 c ± 0.4 | 69.1 | |
7% H2SO4 | 56.1 d ± 0.4 | 39.9 | 68.7 e ± 0.5 | 120.0 | 67.4 d ± 0.0 | 75.9 | |
Pentosans | Control | 22.3 a ± 0.5 | Δ | 31.2 a ± 0.6 | Δ | 31.0 a ± 0.9 | Δ |
1% NaOH | 21.8 a ± 0.3 | −2.2 | 33.0 a ± 0.6 | 5.5 | 37.0 b ± 1.7 | 19.3 | |
3% NaOH | 18.4 b ± 0.5 | −17.3 | 41.6 b ± 1.5 | 35.9 | 40.6 b ± 0.1 | 30.7 | |
3% H2SO4 | 14.4 c ± 0.5 | −35.5 | 13.1 d ± 0.6 | −57.9 | 12.1 c ± 0.4 | −60.9 | |
7% H2SO4 | 10.1 d ± 0.2 | −54.5 | 13.7 c ± 0.2 | −56.2 | 8.0 b ± 0.3 | −74.3 |
Parameter | Pretreatment | Populus L. | Corn Waste | ||||
---|---|---|---|---|---|---|---|
Corncobs | Corn Straw | ||||||
EH | Control | 16.643 | Δ | 17.356 | Δ | 17.459 | Δ |
1% NaOH | 16.643 | 0 | 17.458 | 0.59 | 17.644 | 1.06 | |
3% NaOH | 16.745 | 0.61 | 17.458 | 0.59 | 17.644 | 1.06 | |
3% H2SO4 | 16.745 | 0.61 | 17.560 | 1.17 | 18.459 | 5.73 | |
7% H2SO4 | 16.745 | 0.61 | 17.560 | 1.17 | 18.459 | 5.73 | |
LOI | Control | 2.267 | Δ | 1.701 | Δ | 1.522 | Δ |
1% NaOH | 2.339 | 3.19 | 1.812 | 6.52 | 1.575 | 3.48 | |
3% NaOH | 2.288 | 0.96 | 1.871 | 9.99 | 1.585 | 4.14 | |
3% H2SO4 | 2.390 | 5.44 | 1.778 | 4.52 | 1.569 | 3.09 | |
7% H2SO4 | 2.373 | 4.70 | 1.801 | 5.86 | 1.559 | 2.43 | |
CrI | Control | 62 | Δ | 51 | Δ | 55 | Δ |
1% NaOH | 63 | 1.61 | 58 | 13.73 | 56 | 1.82 | |
3% NaOH | 69 | 11.29 | 58 | 13.73 | 59 | 7.27 | |
3% H2SO4 | 65 | 4.84 | 58 | 13.73 | 55 | 0.00 | |
7% H2SO4 | 65 | 4.84 | 62 | 21.57 | 54 | −1.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zborowska, M.; Waliszewska, H.; Waliszewska, B.; Borysiak, S.; Brozdowski, J.; Stachowiak-Wencek, A. Conversion of Carbohydrates in Lignocellulosic Biomass after Chemical Pretreatment. Energies 2022, 15, 254. https://doi.org/10.3390/en15010254
Zborowska M, Waliszewska H, Waliszewska B, Borysiak S, Brozdowski J, Stachowiak-Wencek A. Conversion of Carbohydrates in Lignocellulosic Biomass after Chemical Pretreatment. Energies. 2022; 15(1):254. https://doi.org/10.3390/en15010254
Chicago/Turabian StyleZborowska, Magdalena, Hanna Waliszewska, Boguslawa Waliszewska, Slawomir Borysiak, Jakub Brozdowski, and Agata Stachowiak-Wencek. 2022. "Conversion of Carbohydrates in Lignocellulosic Biomass after Chemical Pretreatment" Energies 15, no. 1: 254. https://doi.org/10.3390/en15010254
APA StyleZborowska, M., Waliszewska, H., Waliszewska, B., Borysiak, S., Brozdowski, J., & Stachowiak-Wencek, A. (2022). Conversion of Carbohydrates in Lignocellulosic Biomass after Chemical Pretreatment. Energies, 15(1), 254. https://doi.org/10.3390/en15010254