Multi-Criteria Analysis in the Decision-Making Approach for the Linear Ordering of Urban Transport Based on TOPSIS Technique
Abstract
:1. Introduction
2. Literature Review
3. Research Methods
4. Research Materials
5. Research Results and Discussion
Limitations and Further Study Works
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AM—Amsterdam | EN—Eindhoven | HE—Heerlen | RT—Rotterdam |
HG—Hague | ZW—Zwolle | OS—Oslo | KP—Koprivnica |
ZA—Zagreb | GD—Gdynia | KL—Kielce | BR—Barcelona |
VA—Valencia | PO—Porto | SI—Sintra | BO—Boston |
DO—Doral | LA—Los Angeles | PR—Portland | SD—San Diego |
CA—Cambridge | SA—Saint-Augustin- | OA—Oakville | SH—Shawinigan |
SU—Surrey | de-Desmaures | TO—Toronto | VU—Vaughan |
GU—Guadalajara | PN—Piedras Negras | LE—Leon | TR—Torreon |
BA—Bueno Aires | GM—Greater Melbourne | TB—Tbilisi | PU—Pune |
AN—Amman | ME—Melbourne | MA—Makati | DU—Dubai |
AH—Ahmedabad | TC—Tainan City | TA—Taipei | MK—Makkah |
CT—Cape Town |
Appendix A
Elsevier | Web of Science | Scopus | Springer | |
---|---|---|---|---|
1991 | 68 | 11 | 31 | 24 |
1992 | 56 | 11 | 30 | 26 |
1993 | 62 | 18 | 30 | 37 |
1994 | 82 | 13 | 29 | 22 |
1995 | 103 | 20 | 88 | 35 |
1996 | 96 | 34 | 59 | 52 |
1997 | 80 | 26 | 68 | 32 |
1998 | 59 | 38 | 93 | 63 |
1999 | 36 | 27 | 85 | 36 |
2000 | 52 | 59 | 96 | 43 |
2001 | 55 | 30 | 105 | 32 |
2002 | 57 | 37 | 128 | 57 |
2003 | 75 | 48 | 169 | 58 |
2004 | 88 | 40 | 191 | 53 |
2005 | 72 | 57 | 155 | 100 |
2006 | 91 | 54 | 195 | 50 |
2007 | 112 | 71 | 210 | 91 |
2008 | 140 | 89 | 285 | 96 |
2009 | 100 | 88 | 285 | 79 |
2010 | 127 | 108 | 347 | 98 |
2011 | 185 | 113 | 428 | 118 |
2012 | 238 | 133 | 451 | 156 |
2013 | 298 | 167 | 551 | 210 |
2014 | 344 | 150 | 532 | 189 |
2015 | 279 | 152 | 509 | 225 |
2016 | 512 | 284 | 568 | 290 |
2017 | 547 | 270 | 669 | 339 |
2018 | 502 | 279 | 720 | 366 |
2019 | 562 | 304 | 866 | 492 |
2020 | 794 | 294 | 1023 | 553 |
Total | 5872 | 3025 | 8996 | 4022 |
Appendix B
Elsevier | Scopus | Web of Science | Springer | Total | |
---|---|---|---|---|---|
AHP | 46 | 72 | 42 | 139 | 299 |
DEA | 36 | 0 | 15 | 95 | 146 |
TOPSIS | 11 | 19 | 6 | 53 | 89 |
ELECTRE | 6 | 2 | 1 | 37 | 46 |
PROMETHEE | 6 | 5 | 2 | 29 | 42 |
VIKOR | 3 | 4 | 1 | 24 | 32 |
MACBETH | 0 | 1 | 0 | 20 | 21 |
DEMATEL | 2 | 4 | 2 | 12 | 20 |
REMBRANDT | 0 | 0 | 0 | 12 | 12 |
WASPAS | 1 | 0 | 0 | 2 | 3 |
MULTIMOORA | 0 | 0 | 0 | 2 | 2 |
Total | 111 | 107 | 69 | 425 | 712 |
Appendix C
Cities | X1 | X2 | X3 | X4 | X5 | X6 | X7 |
---|---|---|---|---|---|---|---|
AM | 0.021319692 | 0.004226 | 0.027353 | 0.985333 | 0.032151 | 0.99696 | 0.03521 |
EN | 0.001315848 | 0.008383 | 0.01961 | 0.967522 | 0.08622 | 0.993551 | 0.004857 |
HE | 0.017017313 | 0.01841 | 0.006696 | 0.974332 | 0.093534 | 0.995297 | 0.055997 |
RT | 0.019811642 | 0.002583 | 0.025595 | 0.98219 | 0.043055 | 0.996673 | 0.107406 |
HG | 0.005366885 | 0.003675 | 0.011456 | 0.981666 | 0.035914 | 0.996817 | 0.060688 |
ZW | 0.068749353 | 0.000241 | 0.005779 | 0.978523 | 0.054351 | 0.995892 | 0.055639 |
OS | 0.026716146 | 0.012583 | 0.041065 | 0.976951 | 0.012218 | 0.998747 | 0.039634 |
KP | 0 | 0.004169 | 0.00000103 | 0.980094 | 0.095531 | 1 | 0.006369 |
ZA | 0.004864202 | 0.032201 | 0.035407 | 0.980618 | 0.013331 | 0.994804 | 0.006369 |
GD | 0.006564454 | 0.015742 | 0.024769 | 0.971713 | 0.009526 | 0.999178 | 0.006103 |
KL | 0.017194731 | 0.107955 | 0.018291 | 0.974856 | 0.01087 | 0.993777 | 0.006309 |
BR | 0.023493059 | 0.009359 | 0.045602 | 0.974856 | 0.002743 | 0.997207 | 0.025611 |
VA | 0.021334477 | 0.009449 | 0.016353 | 0.969094 | 0.008886 | 0.995338 | 0.003688 |
PO | 0.027869361 | 0.046522 | 0.065689 | 0.982713 | 0.002928 | 0.9962 | 0.0000177 |
SI | 0.011975694 | 0.080804 | 0.004506 | 0.964379 | 0.000518 | 0.995708 | 0 |
BO | 0.017919186 | 0.01263 | 0.041742 | 0.985856 | 0.016625 | 0.991353 | 0.029612 |
DO | 0 | 0.038409 | 0.001313 | 0.97957 | 0.017915 | 0.995995 | 0.065842 |
LA | 0.007274125 | 0.009531 | 0.005477 | 0.967522 | 0.007672 | 0.995892 | 0.060669 |
PR | 0.276446324 | 0.017106 | 0.00333 | 0.962808 | 0.037089 | 0.98587 | 0.030746 |
SD | 0.003755341 | 0.013874 | 0.00703 | 0.977475 | 0.01874 | 0.98168 | 0.013748 |
CA | 0 | 0.018987 | 0.002188 | 0.963855 | 0.039107 | 1 | 0.03711 |
OA | 0.011354732 | 0.035727 | 0.001614 | 0.967522 | 0.043763 | 0.993839 | 0.053272 |
SA | 0 | 0.044164 | 0.000701 | 0.951807 | 0.058404 | 1 | 0.002872 |
SH | 0 | 0.008498 | 0.000611 | 0.966475 | 0.084096 | 0.99581 | 0.0000246 |
SU | 0.001774177 | 0.009928 | 0.005098 | 0.974332 | 0.04386 | 0.994331 | 0.026703 |
TO | 0.011739137 | 0.021921 | 0.020837 | 0.979047 | 0.007803 | 0.996262 | 0.042134 |
VA | 0.007717669 | 0.017914 | 0.001959 | 0.969618 | 0.03178 | 0.996652 | 0.051514 |
GU | 0.00076881 | 0.021202 | 0.026317 | 0.97957 | 0.000792 | 0.974944 | 0.007231 |
LE | 0.003119594 | 0.037487 | 0.015843 | 0.984285 | 0.002827 | 0.995379 | 0.001432 |
PN | 0 | 0.033317 | 0.005756 | 0.985856 | 0 | 0.993715 | 0.0000571 |
TO | 0 | 0.029471 | 0.009263 | 0.991619 | 0.000931 | 0.993346 | 0.001379 |
BA | 0.036193208 | 0.021366 | 0.0749 | 0.960712 | 0.001866 | 0.986424 | 0.009828 |
GM | 0.042077561 | 0.02902 | 0.008434 | 0.96857 | 0.041492 | 0.994619 | 0.018277 |
ME | 0.152091311 | 0.047239 | 0.104152 | 0.962284 | 0.062112 | 0.996467 | 0.018277 |
TB | 0.007126277 | 0.064581 | 0.03378 | 0.97538 | 0 | 0.3977 | 0.001568 |
AN | 0 | 0.006675 | 0.000237 | 0.990571 | 0 | 0.984658 | 0.006345 |
DU | 0.004760708 | 0.03699 | 0.013907 | 0.972237 | 0.002751 | 0.984371 | 0.047401 |
AH | 0.00193681 | 0.001447 | 0.0000196 | 0.999476 | 0.000476 | 0.989115 | 0.00000528 |
PU | 0 | 0.0000949 | 0.000132 | 0.989523 | 0.00118 | 0.984104 | 0.003298 |
MA | 0.001626329 | 0.000523 | 0.216445 | 0.996857 | 0.0000758 | 0.998152 | 0.018892 |
MK | 0 | 0.00192 | 0.000553 | 0.994238 | 0 | 0.915116 | 0.026709 |
TC | 0.110235522 | 0.021153 | 0.001096 | 0.98219 | 0.008043 | 0.980735 | 0.000066 |
TA | 0.005706936 | 0.029368 | 0.049068 | 0.987428 | 0.007837 | 0.993222 | 0.004741 |
CT | 0.022783388 | 0.013156 | 0.0000258 | 0.988476 | 0.004845 | 0.964099 | 0.006352 |
Appendix D
Cities | X1 | X2 | X3 | X4 | X5 | X6 | X7 |
---|---|---|---|---|---|---|---|
AM | 0.002951706 | 0.0000459 | 0.001689 | 0.337897 | 0.000709 | 0.378747 | 0.001552 |
EN | 0.000182179 | 0.000091 | 0.001211 | 0.331789 | 0.001902 | 0.377452 | 0.000214 |
HE | 0.002356043 | 0.0002 | 0.000413 | 0.334124 | 0.002063 | 0.378115 | 0.002468 |
RT | 0.002742917 | 0.000028 | 0.00158 | 0.336819 | 0.00095 | 0.378638 | 0.004734 |
HG | 0.000743044 | 0.0000399 | 0.000707 | 0.336639 | 0.000792 | 0.378692 | 0.002675 |
ZW | 0.00951833 | 0.00000262 | 0.000357 | 0.335562 | 0.001199 | 0.378341 | 0.002452 |
OS | 0.003698843 | 0.000137 | 0.002535 | 0.335023 | 0.000269 | 0.379426 | 0.001747 |
KP | 0 | 0.0000452 | 0.0000000637 | 0.3361 | 0.002107 | 0.379902 | 0.000281 |
ZA | 0.000673447 | 0.000349 | 0.002186 | 0.33628 | 0.000294 | 0.377928 | 0.000281 |
GD | 0.000908847 | 0.000171 | 0.001529 | 0.333226 | 0.00021 | 0.379589 | 0.000269 |
KL | 0.002380606 | 0.001172 | 0.001129 | 0.334304 | 0.00024 | 0.377537 | 0.000278 |
BR | 0.003252608 | 0.000102 | 0.002815 | 0.334304 | 0.0000605 | 0.37884 | 0.001129 |
VA | 0.002953753 | 0.000103 | 0.00101 | 0.332328 | 0.000196 | 0.37813 | 0.000163 |
PO | 0.003858506 | 0.000505 | 0.004055 | 0.336999 | 0.0000646 | 0.378458 | 0.000000782 |
SI | 0.001658032 | 0.000877 | 0.000278 | 0.330711 | 0.0000114 | 0.378271 | 0 |
BO | 0.002480907 | 0.000137 | 0.002577 | 0.338076 | 0.000367 | 0.376617 | 0.001305 |
DO | 0 | 0.000417 | 0.000081 | 0.335921 | 0.000395 | 0.37838 | 0.002902 |
LA | 0.001007101 | 0.000103 | 0.000338 | 0.331789 | 0.000169 | 0.378341 | 0.002674 |
PR | 0.038273921 | 0.000186 | 0.000206 | 0.330172 | 0.000818 | 0.374533 | 0.001355 |
SD | 0.000519926 | 0.000151 | 0.000434 | 0.335202 | 0.000413 | 0.372942 | 0.000606 |
CA | 0 | 0.000206 | 0.000135 | 0.330532 | 0.000863 | 0.379902 | 0.001636 |
OA | 0.00157206 | 0.000388 | 0.0000996 | 0.331789 | 0.000965 | 0.377561 | 0.002348 |
SA | 0 | 0.000479 | 0.0000433 | 0.3264 | 0.001288 | 0.379902 | 0.000127 |
SH | 0 | 0.0000922 | 0.0000377 | 0.33143 | 0.001855 | 0.37831 | 0.00000108 |
SU | 0.000245634 | 0.000108 | 0.000315 | 0.334124 | 0.000967 | 0.377748 | 0.001177 |
TO | 0.00162528 | 0.000238 | 0.001286 | 0.335741 | 0.000172 | 0.378482 | 0.001857 |
VA | 0.001068509 | 0.000194 | 0.000121 | 0.332508 | 0.000701 | 0.37863 | 0.002271 |
GU | 0.000106442 | 0.00023 | 0.001625 | 0.335921 | 0.0000175 | 0.370383 | 0.000319 |
LE | 0.000431907 | 0.000407 | 0.000978 | 0.337538 | 0.0000624 | 0.378146 | 0.0000631 |
PN | 0 | 0.000362 | 0.000355 | 0.338076 | 0 | 0.377514 | 0.00000251 |
TO | 0 | 0.00032 | 0.000572 | 0.340052 | 0.0000205 | 0.377374 | 0.0000608 |
BA | 0.00501094 | 0.000232 | 0.004624 | 0.329454 | 0.0000412 | 0.374744 | 0.000433 |
GM | 0.005825627 | 0.000315 | 0.000521 | 0.332148 | 0.000915 | 0.377857 | 0.000806 |
ME | 0.021057002 | 0.000513 | 0.00643 | 0.329993 | 0.00137 | 0.37856 | 0.000806 |
TB | 0.000986631 | 0.000701 | 0.002085 | 0.334484 | 0 | 0.151087 | 0.0000691 |
AN | 0 | 0.0000724 | 0.0000147 | 0.339693 | 0 | 0.374073 | 0.00028 |
DU | 0.000659119 | 0.000401 | 0.000859 | 0.333406 | 0.0000607 | 0.373964 | 0.002089 |
AH | 0.000268151 | 0.0000157 | 0.00000121 | 0.342747 | 0.0000105 | 0.375766 | 0.000000233 |
PU | 0 | 0.00000103 | 0.00000816 | 0.339334 | 0.000026 | 0.373862 | 0.000145 |
MA | 0.000225165 | 0.00000568 | 0.013363 | 0.341849 | 0.00000167 | 0.379199 | 0.000833 |
MK | 0 | 0.0000208 | 0.0000342 | 0.340951 | 0 | 0.347654 | 0.001177 |
TC | 0.015262079 | 0.00023 | 0.0000677 | 0.336819 | 0.000177 | 0.372583 | 0.00000291 |
TA | 0.000790124 | 0.000319 | 0.003029 | 0.338615 | 0.000173 | 0.377327 | 0.000209 |
CT | 0.003154354 | 0.000143 | 0.00000159 | 0.338975 | 0.000107 | 0.366263 | 0.00028 |
References
- Huang, W.; Shuai, B.; Sun, Y.; Wang, Y.; Antwi, E. Using entropy-TOPSIS method to evaluate urban rail transit system operation performance: The China case. Transport. Res. Part A Policy Pract. 2018, 111, 292–303. [Google Scholar] [CrossRef]
- Awasthi, A.; Omrani, H.; Gerber, P. Investigating ideal-solution based multicriteria decision making techniques for sustainability evaluation of urban mobility projects. Transport. Res. Part A Policy Pract. 2018, 116, 247–259. [Google Scholar] [CrossRef]
- Hamurcu, M.; Eren, T. Strategic planning based on sustainability for urban transportation: An application to decision-making. Sustainability 2020, 12, 3589. [Google Scholar] [CrossRef]
- White Paper. Roadmap to a Single European Transport Area—Towards a Competitive and Resource Efficient Transport System, Brussels 2011. Available online: https://www.eur-lex.europa.eu (accessed on 12 September 2021).
- The European Green Deal, Brussels. 2019. Available online: https://www.eur-lex.europa.eu (accessed on 30 September 2021).
- Sustainable and Smart Mobility Strategy—Putting European Transport on Track for the Future, Brussels 2020. Available online: https://www.eur-lex.europa.eu (accessed on 29 September 2021).
- Pedroso, G.; Bermann, C.; Sanches-Pereira, A. Combining the functional unit concept and the analytic hierarchy process method for performance assessment of public transport option. Case Stud. Transp. Policy 2018, 6, 722–736. [Google Scholar] [CrossRef]
- Senousi, A.M.; Zhang, J.; Shi, W.; Liu, X. A proposed framework for identification of indicators to model high-frequency cities. ISPRS Int. J. Geo-Inf. 2021, 10, 317. [Google Scholar] [CrossRef]
- Camargo Perez, J.; Carrillo, M.H.; Montoya-Torres, J.R. Multi-criteria approaches for urban passenger transport systems: A literature review. Ann. Oper. Res. 2015, 226, 69–87. [Google Scholar] [CrossRef]
- Miskolczi, M.; Foldes, D.; Munkacsy, A.; Jaszberenyi, M. Urban mobility scenarios until the 2030s. Sustain. Cities Soc. 2021, 72, 103029. [Google Scholar] [CrossRef]
- Feizi, A.; Joo, S.; Kwigizile, V.; Oh, J.-S. A pervasive framework toward sustainability and smart-growth: Assessing multifaceted transportation performance measures for smart cities. J. Transp. Health 2020, 19, 100956. [Google Scholar] [CrossRef]
- Liu, C.H.; Tzeng, G.H.; Lee, M.H.; Lee, P.Y. Improving metro-airport connection service for tourism development: Using hybrid MCDM models. Tour. Manag. Perspect. 2013, 6, 95–107. [Google Scholar] [CrossRef]
- Curiel-Esparza, J.; Mazario-Diez, J.L.; Canto-Perello, J.; Martin-Ulrillas, M. Prioritization by consensus of enhancement for sustainable mobility in urban areas. Environ. Sci. Policy 2016, 55, 248–257. [Google Scholar] [CrossRef]
- Sobhani, G.; Imtiyaz, N.; Azam, S.; Hossain, M. A framework for analyzing the competitiveness of unconventional modes of transportation in developing cities. Transp. Res. A 2020, 137, 504–518. [Google Scholar] [CrossRef]
- Jakimavičius, M.; Burinskiene, M.; Gusaroviene, M.; Podviezko, A. Assessing multiple criteria for rapid bus route in the public transport system in Vilnius. Public Transp. 2016, 8, 365–385. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Yuan, S.; Wang, K. Economic, social, and ecological impact evaluation of traffic network in Beijing-Tianjin-Hebei Urban Agglomeration based on the entropy weight TOPSIS method. Sustainability 2021, 13, 1862. [Google Scholar] [CrossRef]
- Samaie, F.; Javadi, S.; Meyar-Naimi, H.; Feshki-Farahani, H. Environmental sustainability policy on plug-in hybrid electric vehicle penetration utilizing TOPSIS and game theory. Clean Technol. Environ. Policy 2020, 22, 787–801. [Google Scholar] [CrossRef]
- Sinniah, G.K.; Li, X.Y.; Abdulkarim, S. The framework for assessing public transportation by using competitiveness index indicators. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1153, 012012. [Google Scholar] [CrossRef]
- Tang, J.; Li, Z.; Gao, F.; Zong, F. Identifying critical metro stations in multiplex network based on D-evidence theory. Physica A 2021, 574, 126018. [Google Scholar] [CrossRef]
- Tudela, A.; Akiki, N.; Cisternas, R. Comparing the output of cost benefit and multi-criteria analysis. An application to urban transport investment. Transp. Res. A Policy Pract. 2005, 40, 414–423. [Google Scholar] [CrossRef]
- Wolnowska, A.E.; Konicki, W. Multi-criterial analysis of oversize cargo transport through the city using the AHP method. Transp. Res. Proc. 2019, 39, 614–623. [Google Scholar] [CrossRef]
- Vajjarapu, H.; Verma, A. Composite adaptability index to evaluate climate change adaptation policies for urban transport. Int. J. Disaster Risk Reduct. 2021, 58, 102205. [Google Scholar] [CrossRef]
- Sancha, A.R.; Mayoral, J.M.; Román, L.I. A novel approach for transit transfer stations design optimization in densely populated cities. Procedia Comput. Sci. 2018, 130, 1013–1018. [Google Scholar] [CrossRef]
- Suguiy, T.; Carvalho, M.F.; Nithack e Silva, D.L. Efficiency of urban public transport: Case study of Brazilian cities. IFAC Proc. 2013, 46, 379–384. [Google Scholar] [CrossRef]
- Pamucar, D.; Deveci, M.; Canitez, F.; Bozanic, D. A fuzzy Full Consistency Method-Dombi-Bonferroni model for prioritizing transport demand management measures. Appl. Soft. Comp. 2020, 87, 105952. [Google Scholar] [CrossRef]
- Lambas, M.E.L.; Giuffrida, N.; Ignaccolo, M.; Inturri, G. Comparison between Bus Rapid Transit and Light-Rail Transit systems: A multi-criteria decision analysis approach. Urban Transp. XXIII 2018, 176, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Taboada, G.L.; Han, L. Exploratory Data Analysis and Data Envelopment Analysis of Urban Rail Transit. Electronics 2020, 9, 1270. [Google Scholar] [CrossRef]
- Budimir, D.; Šoštarić, M.; Vidović, K. Data Envelopment Analysis for determining the efficiency of variant solutions for traffic flow organisation. Promet—Traffic Transport. 2019, 31, 341–353. [Google Scholar] [CrossRef]
- Fitzová, H.; Matulová, M.; Tomeš, Z. Determinants of urban public transport efficiency: Case syudy of the Czech Republic. Eur. Transp. Res. Rev. 2018, 10, 42. [Google Scholar] [CrossRef]
- Singh, P.; Singh, A.K.; Singh, P.; Kumari, S.; Sangaiah, A.K. Multimodal data modelling for efficiency assessment of social priority based urban bus route transportation system using GIS and data envelopment analysis. Multimed. Tools. App. 2019, 78, 23897–23915. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q.; Sun, T.; Zou, Y.; Chen, H. Evaluation of urban public transport priority performance based on the improved TOPSIS method: A case study of Wuhan. Sustain. Cities Soc. 2018, 43, 357–365. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, J.; Li, H.; Yang, P.; Zhou, L. Optimizing the design of an intra-city metro logistics system based on a hub-and-spoke network model. Tunn. Undergr. Space Technol. 2021, 116, 104086. [Google Scholar] [CrossRef]
- Sinha, S.; Sadhukhan, S.; Priye, S. The role of quality assessment for development of sustainable bus service in mid-sized cities of India: A case study of Patna. Procedia Eng. 2017, 198, 926–934. [Google Scholar] [CrossRef]
- Aljohani, K.; Thompson, R.G. A multi-criteria spatial evaluation framework to optimise the siting of freight consolidation facilities in inner-city areas. Transp Res. Part A Policy Pract. 2020, 138, 51–69. [Google Scholar] [CrossRef]
- Shen, Z.; Zhao, Q.; Fang, Q. Anaysis of green traffic development in Zhoushan based on entropy weight TOPSIS. Sustainability 2021, 13, 8109. [Google Scholar] [CrossRef]
- Istiqomah, S.; Yuniaristanto; Sutopo, W. Recent developments in city logistics research: A literature review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 943, 012038. [Google Scholar] [CrossRef]
- Kiryluk, H.; Glińska, E.; Ryciuk, U.; Vierikko, K.; Rollnik-Sadowska, E. Stakeholders engagement for solving mobility problems in touristic remote area from the Baltic Sea Region. PLoS ONE 2021, 16, e0253166. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, A.P.F.; Guimareaes Junior, D.S.; Mascimento, A.M.; Melo, F.J.C. Overview of urban mobility in smart cities. Res. Soc. Dev. 2021, 10, e18210917830. [Google Scholar] [CrossRef]
- Fistola, R.; Raimondo, M.; La Rocca, R.A. The smart city and mobility: The functional polarization of urban flow. In Proceedings of the 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Naples, Italy, 26–28 June 2017; pp. 532–537. [Google Scholar] [CrossRef]
- Institute for Management Development World Competitiveness Centre. Smart City Index 2020. A Tool for Action, an Instrument for Better Lives for All Citizens. Available online: https://www.imd.org/smart-city-observatory/smart-city-index-2020 (accessed on 12 September 2021).
- Berrone, P.; Ricart, J.E. IESE Cities in Motion Index 2020, Business School University of Navarra. Available online: https://www.media.iese.edu/research/pdfs/ST-0542-E.pdf (accessed on 17 September 2021).
- TOP50 Smart City Governments. Available online: https://www.smartcitygovt.com (accessed on 21 September 2021).
- Institute for Urban Strategies; The Mori Memorial Foundation. Global Power City Index 2020. Available online: https://www.mori-m-foundation.or.jp (accessed on 11 September 2021).
- EasyPark. Smart Cities Index 2019. Available online: https://www.easyparkgroup.com/smart-cities-index/ (accessed on 19 September 2021).
- Kearney, A.T. Global Cities Index: New Priorities for a New World. Available online: https://www.kearney.com/global-cities/2020 (accessed on 27 September 2021).
- Economist Intelligence Unit, Global Liveability Index 2020. Available online: https://www.services.eiu.com/postponed-the-2020-global-liveability-index/ (accessed on 23 September 2021).
- 2THINKNOW. World’s Most Innovative Cities 2020–2021. Available online: https://www.innovation-cities.com/worlds-most-innovative-cities-preview-innovation-cities-index-2020-from-2thinknow/19288/ (accessed on 25 September 2021).
- Economist Intelligence Unit. Hot spots 2025. Benchmarking the Future Competitiveness of Cities 2018. Available online: http://www.citigroup.com/citi/citiforcities/pdfs/hotspots2025.pdf (accessed on 13 October 2021).
- Mercer, Quality of Living City Ranking 2019. Available online: https://www.mobilityexchange.mercer.com (accessed on 11 September 2021).
- Un Habitat, State of the World’s Cities 2008/2009 Harmonious Cities. Available online: https://www.sustainabledevelopment.un.org (accessed on 29 September 2021).
- Citizen Centric Cities. The Sustainable Cities Index 2018. Available online: https://www.arcadis.com (accessed on 28 September 2021).
- European Digital City Index 2016. Available online: https://www.nesta.org.uk (accessed on 15 October 2021).
- Conger, B.W. On livability, liveability and the limited utility of quality-of-life ranking. Sch. Public Policy 2015, 7, 1–8. Available online: https://www.policyschool.ca/wp-content/uploads/2016/03/livability-conger.pdf (accessed on 5 September 2021).
- Dameri, R.P. Urban Smart Dashboard Measuring Smart City Performance. In Smart City Implementation. Creating Economic and Public Value in Innovation Urban Systems; Springer: Cham, Switzerland, 2017; pp. 67–84. [Google Scholar] [CrossRef]
- Hajduk, S. Instruments of Spatial Management in the Context of Sustainability—A Multi-Dimensional Comparative Analysis of the Regional Cities. Annu. Set Environ. Protect. 2018, 20, 1219–1233. [Google Scholar]
- Sacirovic, S.; Ketin, S.; Vignjevic, N. Eco-industrial zones in the context of sustainability development of urban areas. Environ. Sci. Pollut. Res. 2018, 26, 24346–24356. [Google Scholar] [CrossRef]
- McKinsey&Company, Urban Transportation Systems of 25 Global Cities. Elements of Success. 2021. Available online: https://www.mckinsey.com (accessed on 29 October 2021).
- Ajith, A.J.; Vaidya, D.; Sodawalaa, M.; Verma, S. Selection of bus chassis for large fleet operations in India: An AHP-TOPSIS. Expert Syst. Appl. 2021, 186, 115760. [Google Scholar] [CrossRef]
- Awasthi, A.; Chauhan, S.S.; Omrani, H. Application of fuzzy TOPSIS in evaluating sustainable transportation systems. Expert Syst. Appl. 2011, 38, 12270–12280. [Google Scholar] [CrossRef]
- Zhao, L.; Li, H.; Li, M.; Li, J.; Xue, J. Location selection of intra-city distribution hubs in the metro-integrated logistics system. Tunn. Undergr. Space Technol. 2018, 80, 246–256. [Google Scholar] [CrossRef]
- Erdogan, M.; Kaya, I. Prioritizing failures by using hybrid multi criteria decision making methodology with a real case application. Sustain. Cities Soc. 2019, 45, 117–130. [Google Scholar] [CrossRef]
- Buyukozkan, G.; Feyzioglu, O.; Gocer, F. Selection of sustainable urban transportation alternatives using an integrated intuitionistic fuzzy Choquet integral approach. Transp. Res. D 2018, 58, 186–207. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiao, J.; Zhang, Y.; Wu, Y.; Huo, X. Sustainable development of urban metro system: Perspective of coordination between supply and demand. Int. J. Environ. Res. Public Health 2021, 18, 349. [Google Scholar] [CrossRef] [PubMed]
- Jakimavicius, M.; Burinskiene, M. A GIS and multi-criteria based analysis and ranking of transportation zones of Vilnus city. Technol. Econ. Dev. Econ. 2009, 15, 39–48. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attributes Decision Making Methods and Application. Lecture Notes in Economics and Mathematical Systems, 186; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar] [CrossRef]
- Halicka, K. Technology selection using the TOPSIS method. Foresight STI Gov. 2020, 14, 85–96. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; The University of Illinois Press: Champaign, IL, USA, 1964. [Google Scholar]
- Ban, A.J.; Ban, O.J.; Bogdan, V.; Sabau Popa, D.C.; Tuse, D. Performance evaluation model of Romanian manufacturing listed companies by fuzzy AHP and TOPSIS. Technol. Econ. Dev. Econ. 2020, 26, 808–836. [Google Scholar] [CrossRef]
- Stanković, J.; Dzunić, M.; Dzunić, Z.; Marinković, S. A multi-criteria evaluation of the European cities’ smart performance: Economic, social and environmental aspects. J. Econ. Bus. 2017, 35, 519–550. [Google Scholar] [CrossRef]
- Porro, O.; Pardo-Bosch, F.; Agell, N.; Sanchez, M. Understanding location decisions of energy multinational enterprises within the European smart cities’ context: An integrated AHP and extended fuzzy linguistic TOPSIS method. Energies 2020, 13, 2413. [Google Scholar] [CrossRef]
- ISO37122. Sustainable Cities and Communities—Indicators for Smart Cities. Available online: http://transparencia.caubr.gov.br/arqivos/ISO_FDIS37122 (accessed on 19 October 2021).
- ISO37123. Sustainable Cities and Communities—Indicators for Resilient Cities. Available online: http://transparencia.caubr.gov.br/arqivos/Ballot_result_and_comments_on_ISO_DIS37123 (accessed on 19 October 2021).
- Fox, M.S. The semantics of populations: A city indicator perspective. J. Web Semant. 2018, 48, 48–65. [Google Scholar] [CrossRef]
- Fox, M.S. The role of ontologies in publishing and analyzing city indicators. Comput. Environ. Urban Syst. 2015, 54, 266–279. [Google Scholar] [CrossRef]
- Hajduk, S. Using multivariate statistical methods to assess the urban smartness on the example of selected European cities. PLoS ONE 2020, 15, e0240260. [Google Scholar] [CrossRef] [PubMed]
- ISO37120. Sustainable development of communities—Indicators for city services and quality of life. Available online: http://oxy.social/wp-content/uplods/2020/06/2020/ISO_37120_2014 (accessed on 29 October 2021).
- World Council on City Data. Available online: http://open.dataforcities.org/ (accessed on 9 October 2021).
- Debnath, A.; Roy, J.; Kar, S.; Zavadskas, E.K.; Antucheviciene, J. A hybrid MCDM approach for strategic project portfolio selection of agro by-products. Sustainability 2017, 9, 1302. [Google Scholar] [CrossRef] [Green Version]
Authors | Kind of Methods | Aims | Objects | Criteria |
---|---|---|---|---|
Feizi, Joo, Kwigizile, Oh [11] | TOPSIS | To assess transportation performance measures and smart growth of cities | 46 cities in the U.S. | 4 groups of criteria: network performance, traffic safety, environmental impact and physical activity |
Zhang, Zhang, Yuan, Wang [16] | Entropy-TOPSIS | To evaluate the economic, social, and ecological impact of transportation network in urban agglomeration | 13 cities of Beijing–Tianjin–Hebei region | Economic (fixed assets investment in transport, storage, and post, gross output value of transport, storage, and post, passenger traffic, freight traffic), society (population density, employment in transportation industry, length of roads, urbanization rate), and ecology (noise, PM10, SO2, NO2) impact assessment of transportation network |
Samaie, Javadi, Naimi, Farahani [17] | fuzzy TOPSIS | To evaluate environmental policymaking based on sustainable development to increase the penetration of electric vehicles | plug-in hybrid electric vehicles in Teheran | nature (CO emission, NOX emissions, CO2 emissions, worn-out vehicle recycling system, noise, life cycle assessment), economic (vehicle cost, maintenance cost, fuel price, number of vehicle manufacturers, cost of battery, technology life cycle), social (age structure, mortality rate, vehicle size), system (technical knowledge at national level, charging time, voltage imbalance index, overall efficiency of vehicles) |
Sinniah, Li, Abdulkarim [18] | fuzzy TOPSIS | To assess public transportation competitiveness in term of the bus system based on a self-evaluation framework | Johor Bahru city, Malaysia | Infrastructure (facilities for disable, bus schedule notice, bus station location, bus operating location, bus operating frequency, safe environment in bus coach, security system of transport system, safety of bus station), accessibility (public transportation network coverage ratio, supply ability during peak-hour), perception (bus fare, real-time information, travel journey) |
Tang, Li, Gao, Zong [19] | TOPSIS and Weighted Closeness Centrality | To identify critical nodes in public transport network | Metro and bus network in Shenzhen, China | Global efficiency, the size of the largest connected component |
Tudela, Akiki, Cisternas [20] | AHP utilising 2 approaches to derive the weights | To compare the outcome of cost benefit analysis and a multi-criteria method | 2 alternative of transport project | Benefits: economic (travel time saving, fuel saving, operation cost reduction, delays reduction crossing), environmental (accident reduction, better accessibility) Costs: economic (investment, maintenance), environmental (noise, air pollution, visual intrusion) |
Wolnowska, Konicki [21] | AHP | To evaluate the transport route variants to be used for transport of oversize cargo | 3 route variants through the city Szczecin | Transport means selection, impact on road infrastructure and engineering objects, impact on tramway power grid, impact on inhabitants’ quality of life, impact on urban greenery, transport costs |
Vajjarapu, Verma [22] | AHP | To assess the urban transportation system’s adaptability to urban flooding | 3 adaptation policy bundles designed to improve the urban transportation system’s resiliency in Bangalore, India | Environmental pillar: exposure (maximum annual rainfall, monthly rainfall, rainy days, concrete area), resilience (water bodies density, vegetation density) Social pillar: resilience (vehicle hours travelled, average speed of the vehicle, average trip length, cancelled trips, vehicle kilometres travelled) Economic pillar: susceptibility (roads in low lying areas, total vehicles, Gross District Domestic Product growth rate) |
Sancha, Mayoral, Román [23] | DEA | To assess of transit transfer stations efficiency using technical, social, environmental variables | 36 transit transfer stations located in Mexico City Metropolitan Area | Input: transfer area, bus platform length, automatization; connectivity, capacity, transfer index; CO2 emissions, BC emissions, energy consumption Output: demand, user’s satisfaction |
Suguiy, Carvalho, Nithack e Silva [24] | DEA | To evaluate the urban public transport systems under 3 objectives: infrastructure efficiency, service level, city efficiency score | 49 Brazilian cities, which include more than 300,000 inhabitants | 56 indicators in 9 themes: citizenship and social assistance, health and culture, sport, work and income, public safety, public finances, basic sanitation, transport, transit |
Pamucar, Deveci, Canitez, Bozanic [25] | Fuzzy Full Consistency Method-Dobi-Bonferroni model | To select and prioritize of appropriate Transport Demand Management | Istanbul’s urban mobility system | Capital costs, operating costs, travel time, public transport trip revenues, social inclusion, vulnerable users, public opposition, decreasing carbon emissions, fuel saving |
Liu, Tzeng, Lee, Lee [12] | DEMATEL, DANP, VIKOR | To examine the connection service between metro systems with urban airports | Taipei MRT to the Songshan Airport in Taiwan | 3 dimensions and 10 criteria: service quality (tangibles, reliabilities, responsiveness, assurance, empathy), satisfaction (service attributes, service encounters, emotional judgement), behavioural intentions (recommendation, reride) |
Curiel-Esparza, Mazario-Diez, Canto-Perello, Martin-Ulrillas [13] | AHP, VIKOR | To select the optimal alternative in terms of sustainable mobility | The main transport in Valencia | Economy: initial costs, operation, environmental; Travel quality: time, comfort, trip cost; Sustainability: pollution, noise, carbon footprint, health |
Lambas, Giuffrida, Ignaccolo, Inturri [26] | TOPSIS | To compare and determine a global score of public transport systems | Light-Rail Transit (tramway) of Santa Cruz of Tenerife in Spain and Bus Rapid Transit of Prato in Italy | Transport impact (safety, security, accessibility, travel cost, integration, flexibility, capacity, reliability), economic impact (infrastructure cost, operating and maintenance costs, vehicle purchasing costs, profitability), social impact (community severance, land use, comfort), environmental impact (energy consumption, noise pollution, air pollution) |
Sobhani, Imtiyaz, Azam, Hossain [14] | AHP-TOPSIS | To identify of factors affecting sustainability and competitiveness of unconventional modes of transport | 3 unconventional modes of transport (rickshaw, leguna, easy bike) in Dhaka the capital of Bangladesh | Political (political stability, government policy), economic (duties and taxes, economic growth, unemployment, cost efficiency), social (health, safety, security), technology (operation and maintenance, fuel efficiency), legal (ban, restricted movement), environment (noise pollution, air pollution) |
Taboada, Han [27] | DEA, Exploratory Data Analysis | To assess the efficiency of transport modes | 10 lines of Transport for London Urban Rail Transit | Input: overall cost, CO2 emissions (undesirable), number of stations, weekly frequencies Outputs: number of passengers |
Budimir, Šoštarić, Vidović [28] | DEA | To evaluate the transport system efficiency | Transport network of the City of Makarska | Input: coefficient of number of vehicles on entrance and exit points (controlled parameter) Output: coefficient of traffic flows intersections (interdependent variables, information) |
Fitzová, Matulová, Tomeš [29] | DEA | To identify the factors influencing efficiency of urban public transport systems | 19 urban public transport systems in the Czech Republic | Input: vehicle-kilometres, number of employees, number of vehicle, material and fuel costs, length of lines Outputs: total number of passengers |
Singh, Singh, Singh, Kumari, Sangaiah [30] | DEA | To assess and design a socially efficient public transport bus routes | 24 public transport bus routes for the Allahabad city of Uttar Pradesh state, India | Route length, population along route |
Zhang, Zhang, Sun, Zou, Chen [31] | structural entropy TOPSIS | To evaluate public transport priority performance | Wuhan city | Overall development level, infrastructure construction, public transport service, policy support |
Zhao, Zhou, Li, Yang, Zhou [32] | Entropy-weighted TOPSIS | To analyse the impact of different capacity parameters on the layout of the network | 14 Shanghai’s metro stations | Number of spoke nodes, number of parcels per day at demand point, distance between demand point and spoke node, maximum service radius of the spoke node, parcel-handling capacity of spoke node |
Awasthi, Omrani, Gerber [2] | TOPSIS, VIKOR | To evaluate of urban mobility projects | 3 mobility projects in Luxemburg city | economic: revenues, investment costs, operating costs, travel cost; environmental: fossil fuel consumption, GHG emissions, local pollutants, noise; social: number of potential users, social equity, impact on city congestion reduction, land consumption by the project, impact of transport project on land use, number of private cars replaced, number of public parkings replaced; technical: travel time between locations, reachability to major locations, service reliability, spatial accessibility, frequency of transport, service area network, connectivity to multimodal transport, park and ride facility, safe, security, vehicle occupancy, suitability to disable customers, modern and clean facilities, staff service quality, integration with ICT, possibility of network expansion |
Sinha, Sadhukhan, Priye [33] | TOPSIS | To assess the quality of services of midi buses in terms of user satisfaction based on experiences while commuting | midi buses in Patna, India | Bus being on time, cleanliness of bus, condition of bus stop, condition of bus, smoothness of ride, easy to carry luggage, crowding condition, relatively cheap fare, convenient fare, bus route selection, driver’s behaviour, ticketing facility, comfort facility |
Huang, Shuai, Sun, Wang, Antwi [1] | TOPSIS | To evaluate the urban rail transit system’s operation performance from the operator’s, passenger’s and government’s perspective | Chengdu subway | Networks, stations, passenger, train operation, service, safety, energy, cost indicators |
Aljohani, Thompson [34] | TOPSIS | To characterise suitable locations for an inner-city consolidation facility based on spatial aspects, operational requirements, and societal concerns | Inner Melbourne, Australia | Warehouses, parking locations, demographic attributes, land-use zones, major roads, traffic intensity, access restrictions, facility rental costs, major receivers, bike lanes, impact to residents |
Jakimavičius, Burinskiene, Gusaroviene, Podviezko [15] | AHP, SAW, TOPSIS | To rank alternatives and to make a comparison of the obtained calculation results | 6 rapid bus routes in the network of Vilnius public transport | Rapid bus lines supply, average speed, monthly expenses, number of citizens in transport zones, number of work places in transport zones, number of bus trips in the route per month, passengers per month |
Shen, Zhao, Fang [35] | TOPSIS | To analyse the development of green transport | Zhoushan city in China | basic indicators: population, annual average wage of on-the-job employees, GDP; vehicle: large and medium sized cars, small cars, other vehicles, motorcycles, motorized fishing boats; road construction: road length, road area, green coverage area |
Name | Organization | Objects | Best cities | Dimensions |
---|---|---|---|---|
Global Smart City Index [40] | Institute for Management Development, World Competitiveness Centre, Singapore University for Technology and Design | 109 cities | Singapore, Helsinki (Finland), Zurich (Switzerland) | Priority areas (affordable housing, fulfilling employment, unemployment, health services, basic amenities, school education, air pollution, road congestion, green spaces, public transport, recycling, security, citizen engagement, social mobility, corruption), attitudes, structures, technologies (health and safety, mobility, activities, opportunities, governance) |
Cities in Motion Index [41] | IESE University of Navarra Business School | 174 cities (79 capitals) in 80 countries | London (UK), New York (USA), Paris (France) | 101 indicators in 10 key dimensions: economy, public management, social cohesion, human capital, international projection, technology, urban planning, mobility and transportation, environment, governance |
TOP50 Smart City Governments [42] | Eden Strategy Institute | 50 cities | London (UK), Singapore, Seoul | factors: vision, leadership, budget, financial incentives, support programmes, talent-readiness, people-centricity, innovation ecosystems, smart policies, track record |
Global Power City Index [43] | Institute for Urban Strategies, The Mori Memorial Foundation | 48 cities | London, New York, Tokyo | 70 indicators in 7 areas: economy, research and development, cultural interaction, liveability, environment, accessibility |
Smart Cities Index [44] | EasyPark Group | 100 cities | Copenhagen, Singapore, Stockholm | Transport and mobility, sustainability, governance, innovation economy, digitalisation, cyber security, living standard, expert perception |
Global Cities Index [45] | A.T.Kearney | 128 cities | New York, London, Paris | Business activity, human capital, information exchange, cultural experience, political engagement |
Global Liveability Index [46] | Economist Intelligence Unit | 140 cities | Vienna, Melbourne, Sydney | Stability, healthcare, culture and environment, education, infrastructure |
Innovation Cities Index [47] | 2THINKNOW | 500 cities | Tokyo, London, San Francisco | Cultural assets, human infrastructure (transport, universities, government, technology), networked markets (location, military, economies of related items) |
City Competitiveness Index [48] | Economist Intelligence Unit | 120 cities | New York (USA), London (UK), Singapore | 32 indicators in 8 categories: economic strength, physical capital, financial maturity, institutional effectiveness, social and cultural character human capital, environmental and natural hazards, global appeal |
Quality of Living City Ranking [49] | Mercer | 498 cities worldwide | Vienna (Austria), Zurich (Switzerland), Vancouver (Canada) | 39 factors in 10 categories: consumer goods, economic environment, housing, medical and health considerations, natural environment, political and social environment, public services and transport, recreation, schools and education, socio-cultural environment |
Global cities in Harmonious Development [50] | Geography Department at Loughborough University, Globalization and World Cities (GaWC) | 707 cities in categories alpha, beta, gamma cities | London (UK), New York (USA), Hong Kong | International connectedness based on accountancy, advertising, banking/finance, law |
Sustainable Cities Index [51] | Arcadis | 100 global cities | London, Stockholm, Edinburgh | People (health, education, crime, income inequality, working hours, dependency ratio, transport accessibility), planet (water supplies, sanitation and air pollution), profit (rail, air and traffic congestion, GDP, mobile and broadband connectivity) |
European Digital City Index [52] | Nesta, European Digital Forum | 60 cities | London, Stockholm, Paris | Access to capital, business environmental, digital infrastructure, entrepreneurial culture, knowledge spillovers, lifestyle, market, mentoring and managerial assistance, non-digital infrastructure, skills |
Cities | Country | Certification Year | Population | City Land Area (km2) | Population Density | City Product per Capita (USD) |
---|---|---|---|---|---|---|
Amsterdam | The Netherlands | 2014 | 834,713 | 164.66 | 5065.00 | 71,627.00 |
Eindhoven | The Netherlands | 2016 | 224,788 | 88.84 | 2530.26 | 97,122.00 |
Heerlen | The Netherlands | 2016 | 87,406 | 45.53 | 1944 | - |
Rotterdam | The Netherlands | 2014 | 618,357 | 208.88 | 2959 | 54,647.00 |
Hague | The Netherlands | 2017 | 519,988 | 98.13 | 5298.97 | 45,933.67 |
Zwolle | The Netherlands | 2017 | 124,896 | 119.30 | 1046.00 | 42,988.80 |
Oslo | Norway | 2016 | 658,390 | 426.38 | 1544.14 | 95,628.00 |
Koprivnica | Croatia | 2016 | 30,872 | 90.94 | 339.05 | - |
Zagreb | Croatia | 2016 | 790,017 | 641.32 | 1232.48 | 20,181.20 |
Gdynia | Poland | 2017 | 247,478 | 135 | 1831 | - |
Kielce | Poland | 2017 | 197,704 | 110 | 1797.31 | - |
Barcelona | Spain | 2014 | 1,611,822 | 102.16 | 15,777.43 | - |
Valencia | Spain | 2015 | 787,266 | 137.48 | 5849.19 | 24,288.33 |
Porto | Portugal | 2016 | 214,329 | 41.42 | 5180.50 | 863.75 |
Sintra | Portugal | 2017 | 382,521 | 319.23 | 1198.30 | 20,801.29 |
Boston | USA | 2014 | 672,840 | 125.00 | 5383.00 | 177,079.00 |
Doral | USA | 2016 | 51,382 | 40.06 | 1281.02 | 76,066.18 |
Los Angeles | USA | 2015 | 3,884,340 | 1301.96 | 2983.46 | - |
Portland | USA | 2017 | 639,863 | 345.76 | 4792.6 | - |
San Diego | USA | 2016 | 1,381,083 | 842.23 | 1639.79 | 62,295.00 |
Cambridge | Canada | 2016 | 134,900 | 112.8 | 1195.92 | - |
Oakville | Canada | 2016 | 194,000 | 138.89 | 1395.6 | - |
Saint-Augustin-de-Desmaures | Canada | 2016 | 19,369 | 85.84 | 225.64 | 119,889.10 |
Shawinigan | Canada | 2015 | 49,042 | 737 | 66.54 | - |
Surrey | Canada | 2016 | 526,293 | 316 | 1481.01 | - |
Toronto | Canada | 2015 | 2,808,503 | 634.00 | 4430.00 | 50,325.00 |
Vaughan | Canada | 2015 | 306,233 | 273,56 | 1119.4 | - |
Guadalajara | Mexico | 2014 | 4,664,559 | 2734.11 | 5316.35 | 16,263 |
Leon | Mexico | 2015 | 1,514,077 | 1200 | 575.83 | - |
Piedras Negras | Mexico | 2018 | 163,595 | 70.87 | 2308.38 | 8829.54 |
Torreon | Mexico | 2016 | 679,288 | 305.23 | 2225.50 | 11,352.00 |
Buenos Aires | Argentina | 2014 | 2,890,151 | 203.00 | 14,450.80 | 27,720.00 |
Greater Melbourne | Australia | 2015 | 4,440,328 | 9990.5 | 444.5 | 44,481.53 |
Melbourne | Australia | 2014 | 122,207 | 37.70 | 3088.78 | 587.14 |
Tbilisi | Georgia | 2017 | 1,113,000 | 502.00 | 2217.13 | 55,343.19 |
Amman | Jordan | 2014 | 2,584,600 | 680.00 | 3800.88 | 2705.81 |
Dubai | United Arab Emirates | 2014 | 2,327,350 | 4114 | 565.71 | - |
Ahmedabad | India | 2017 | 6,374,470 | 466 | 13,679.12 | - |
Pune | India | 2016 | 5,574,000 | 479 | 6522.88 | - |
Makati | Philippines | 2014 | 529,039 | 27.36 | 19,336.22 | - |
Makkah | Saudi Arabia | 2014 | 1,919,909 | 483.25 | 3972.89 | - |
Tainan city | Taiwan | 2017 | 1,886,033 | 2191.65 | 861 | - |
Taipei | Taiwan | 2015 | 2,695,704 | 271.8 | 9918 | - |
Cape Town | South Africa | 2016 | 4,004,793 | 2456 | 1630 | 5000.75 |
Units | Indicator Direction | SX | V | Min Value | City | Max Value | City | ||
---|---|---|---|---|---|---|---|---|---|
X1 | kilometres/100,000 persons | + | 15.73 | 32.99 | 214.63 | 0.00 | KP | 186.98 | PR |
X2 | kilometres/100,000 persons | + | 141.24 | 137.05 | 97.03 | 0.59 | PU | 670.90 | KL |
X3 | capita/year | + | 220.22 | 362.94 | 164.81 | 0.01 | KP | 2097.25 | MA |
X4 | cars/capita | − | 0.43 | 0.20 | 46.07 | 0.01 | AH | 0.92 | SA |
X5 | kilometres/100,000 persons | + | 55.20 | 66.48 | 120.44 | 0.00 | PN | 226.74 | KP |
X6 | 100,000 persons/year | − | 11.07 | 44.04 | 397.96 | 0.00 | KP | 293.26 | TB |
X7 | number/year | + | 142,216.18 | 153,963.81 | 108.26 | 0.00 | SI | 672,092.00 | RT |
X1 | X2 | X3 | X4 | X5 | X6 | X7 | |
---|---|---|---|---|---|---|---|
0.710865191 | 0.977335 | 0.871071 | 0.283841 | 0.953941 | 0.206623 | 0.90795 | |
0.289134809 | 0.022665 | 0.128929 | 0.716159 | 0.046059 | 0.793377 | 0.09205 | |
0.138449738 | 0.010853 | 0.061737 | 0.342927 | 0.022055 | 0.379902 | 0.044077 |
Cities | Rank | |||
---|---|---|---|---|
AM | 0.03771132 | 0.227982 | 0.858064 | 8 |
EN | 0.041789565 | 0.22644 | 0.844202 | 33 |
HE | 0.039260635 | 0.227195 | 0.852656 | 15 |
RT | 0.037956085 | 0.227862 | 0.857211 | 10 |
HG | 0.040183827 | 0.227855 | 0.850082 | 19 |
ZW | 0.032519191 | 0.227655 | 0.87501 | 4 |
OS | 0.037228098 | 0.228552 | 0.859929 | 7 |
KP | 0.041336763 | 0.22903 | 0.847109 | 26 |
ZA | 0.040102699 | 0.227068 | 0.849899 | 20 |
GD | 0.040638131 | 0.228612 | 0.849069 | 21 |
KL | 0.039219893 | 0.226607 | 0.852461 | 16 |
BR | 0.037795202 | 0.227934 | 0.857768 | 9 |
VA | 0.039210925 | 0.227143 | 0.852786 | 14 |
PO | 0.036512894 | 0.227688 | 0.861799 | 5 |
SI | 0.041064964 | 0.227233 | 0.846943 | 27 |
BO | 0.038025373 | 0.225864 | 0.855904 | 13 |
DO | 0.041195388 | 0.227512 | 0.84669 | 29 |
LA | 0.041110833 | 0.227337 | 0.846857 | 28 |
PR | 0.019341474 | 0.226738 | 0.921402 | 1 |
SD | 0.041458724 | 0.222032 | 0.842656 | 39 |
CA | 0.04244001 | 0.22886 | 0.843568 | 36 |
OA | 0.040695163 | 0.226558 | 0.847728 | 23 |
SA | 0.043953375 | 0.228819 | 0.838864 | 42 |
SH | 0.042387332 | 0.227286 | 0.84282 | 38 |
SU | 0.041357781 | 0.226798 | 0.84577 | 32 |
TO | 0.039407456 | 0.227604 | 0.852413 | 17 |
VU | 0.040927315 | 0.22764 | 0.847609 | 24 |
GU | 0.0419105 | 0.219509 | 0.839681 | 41 |
LE | 0.040524038 | 0.227335 | 0.848711 | 22 |
PN | 0.04109841 | 0.226729 | 0.846549 | 30 |
TR | 0.040854204 | 0.226699 | 0.847305 | 25 |
BA | 0.037546527 | 0.223783 | 0.856325 | 12 |
GM | 0.036768226 | 0.226922 | 0.860563 | 6 |
ME | 0.022920851 | 0.22857 | 0.90886 | 2 |
TB | 0.232311096 | 0.008436 | 0.03504 | 44 |
AN | 0.041374464 | 0.223382 | 0.843727 | 35 |
DU | 0.041297839 | 0.223 | 0.843745 | 34 |
AH | 0.040843682 | 0.225274 | 0.84652 | 31 |
PU | 0.041450101 | 0.223151 | 0.843349 | 37 |
MA | 0.038340849 | 0.229027 | 0.856599 | 11 |
MK | 0.052000828 | 0.197109 | 0.791253 | 43 |
TC | 0.028670531 | 0.222266 | 0.885746 | 3 |
TA | 0.03950262 | 0.226592 | 0.851546 | 18 |
CT | 0.040460386 | 0.215567 | 0.841968 | 40 |
Cities | Original Ranking | Scenario 1 Ranking | Scenario 2 Ranking | Scenario 3 Ranking | Scenario 4 Ranking | Scenario 5 Ranking | Scenario 6 Ranking | Scenario 7 Ranking |
---|---|---|---|---|---|---|---|---|
AM | 8 | 9 | 8 | 8 | 8 | 7 | 8 | 9 |
EN | 33 | 33 | 36 | 33 | 33 | 33 | 33 | 34 |
HE | 15 | 15 | 10 | 15 | 15 | 15 | 15 | 15 |
RT | 10 | 10 | 15 | 10 | 10 | 11 | 10 | 10 |
HG | 19 | 19 | 20 | 19 | 19 | 19 | 19 | 18 |
ZW | 4 | 2 | 4 | 4 | 4 | 3 | 4 | 5 |
OS | 7 | 6 | 7 | 9 | 7 | 8 | 7 | 7 |
KP | 26 | 26 | 26 | 27 | 26 | 26 | 26 | 26 |
ZA | 20 | 20 | 19 | 20 | 21 | 20 | 20 | 20 |
GD | 21 | 21 | 21 | 21 | 20 | 21 | 21 | 21 |
KL | 16 | 16 | 16 | 16 | 14 | 18 | 16 | 16 |
BR | 9 | 8 | 9 | 7 | 9 | 9 | 9 | 8 |
VA | 14 | 14 | 13 | 14 | 16 | 14 | 13 | 14 |
PO | 5 | 5 | 5 | 5 | 5 | 6 | 5 | 4 |
SI | 27 | 27 | 27 | 28 | 29 | 27 | 27 | 27 |
BO | 13 | 13 | 14 | 13 | 13 | 13 | 14 | 13 |
DO | 29 | 29 | 29 | 29 | 28 | 29 | 29 | 29 |
LA | 28 | 28 | 28 | 27 | 28 | 28 | 28 | 28 |
PR | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 |
SD | 39 | 36 | 39 | 39 | 36 | 39 | 39 | 39 |
CA | 36 | 39 | 33 | 36 | 39 | 36 | 36 | 36 |
OA | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 |
SA | 42 | 42 | 42 | 42 | 40 | 41 | 42 | 43 |
SH | 38 | 38 | 38 | 38 | 38 | 38 | 38 | 38 |
SU | 32 | 32 | 32 | 32 | 32 | 31 | 32 | 32 |
TO | 17 | 17 | 18 | 17 | 17 | 17 | 17 | 17 |
VU | 24 | 24 | 23 | 24 | 24 | 22 | 24 | 24 |
GU | 41 | 41 | 41 | 41 | 41 | 42 | 41 | 40 |
LE | 22 | 22 | 22 | 22 | 22 | 24 | 22 | 22 |
PN | 30 | 30 | 30 | 30 | 30 | 32 | 30 | 31 |
TR | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 |
BA | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 11 |
GM | 6 | 7 | 6 | 6 | 6 | 5 | 6 | 6 |
ME | 2 | 4 | 2 | 3 | 2 | 1 | 2 | 1 |
TB | 44 | 44 | 44 | 44 | 44 | 43 | 44 | 44 |
AN | 35 | 35 | 35 | 35 | 37 | 34 | 35 | 35 |
DU | 34 | 37 | 34 | 31 | 34 | 35 | 34 | 33 |
AH | 31 | 31 | 31 | 34 | 31 | 31 | 31 | 30 |
PU | 37 | 34 | 37 | 37 | 35 | 37 | 37 | 37 |
MA | 11 | 11 | 11 | 11 | 11 | 10 | 11 | 12 |
MK | 43 | 43 | 43 | 43 | 43 | 44 | 43 | 42 |
TC | 3 | 3 | 3 | 2 | 3 | 4 | 3 | 3 |
TA | 18 | 18 | 17 | 18 | 18 | 16 | 18 | 19 |
CT | 40 | 40 | 40 | 40 | 42 | 40 | 40 | 41 |
MCDM Techniques | Ranking Order |
---|---|
DEA | PR > TC > ZW > ME > PO > OS > GM > AM > BR > RT > MA > BA > BO > VA > HE > KL > TO > TA > HG > ZA > GD > LE > OA > VU > TR > KP > SI > LA > DO > PN > AH > SU > EN > DU > AN > CA > PU > SH > SD > CT > GU > SA > MK > TB |
AHP | PR > TC > ME > ZW > PO > GM > OS > AM > BR > RT > MA > BA > BO > VA > HE > KL > TO > TA > HG > ZA > GD > LE > OA > VU > TR > KP > SI > LA > DO > PN > AH > SU > EN > DU > AN > CA > PU > SH > SD > CT > GU > SA > MK > TB |
The proposed TOPSIS | PR > TC > ME > ZW > PO > GM > OS > AM > BR > RT > MA > BA > BO > VA > HE > KL > TO > TA > HG > ZA > GD > LE > OA > VU > TR > KP > SI > LA > DO > PN > AH > SU > EN > DU > AN > CA > PU > SH > SD > CT > GU > SA > MK > TB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajduk, S. Multi-Criteria Analysis in the Decision-Making Approach for the Linear Ordering of Urban Transport Based on TOPSIS Technique. Energies 2022, 15, 274. https://doi.org/10.3390/en15010274
Hajduk S. Multi-Criteria Analysis in the Decision-Making Approach for the Linear Ordering of Urban Transport Based on TOPSIS Technique. Energies. 2022; 15(1):274. https://doi.org/10.3390/en15010274
Chicago/Turabian StyleHajduk, Sławomira. 2022. "Multi-Criteria Analysis in the Decision-Making Approach for the Linear Ordering of Urban Transport Based on TOPSIS Technique" Energies 15, no. 1: 274. https://doi.org/10.3390/en15010274
APA StyleHajduk, S. (2022). Multi-Criteria Analysis in the Decision-Making Approach for the Linear Ordering of Urban Transport Based on TOPSIS Technique. Energies, 15(1), 274. https://doi.org/10.3390/en15010274