Process Modeling and Exergy Analysis for a Typical VOC Thermal Conversion Plant
Abstract
:1. Introduction
2. Methodology
2.1. Process Modeling
2.2. System Parameter Determination
2.3. Exergy Analysis
3. Results and Discussion
3.1. Process Simulation and Validation
3.2. Energy Balance and Energy Distribution of the Process
3.3. Exergy Flow Analysis
3.4. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, G.; Wei, W.; Shao, X.; Nie, L.; Wang, H.; Yan, X.; Zhang, R. A comprehensive classification method for VOC emission sources to tackle air pollution based on VOC species reactivity and emission amounts. J. Environ. Sci. 2018, 67, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Li, L.; Huang, L.; Wang, Y.; Huo, J.; Duan, Y.; Wang, Y.; Fu, Q. The impact of volatile organic compounds on ozone formation in the suburban area of Shanghai. Atmos. Environ. 2020, 232, 117511. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.-J.; Moon, S.-J. Evaluation of VOC Emissions from Building Finishing Materials Using a Small Chamber and VOC Analyser. Indoor Built Environ. 2006, 15, 511–523. [Google Scholar] [CrossRef]
- You, Z.; Zhu, Y.; Jang, C.; Wang, S.; Gao, J.; Lin, C.-J.; Li, M.; Zhu, Z.; Wei, H.; Yang, W. Response surface modeling-based source contribution analysis and VOC emission control policy assessment in a typical ozone-polluted urban Shunde, China. J. Environ. Sci. 2017, 51, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Farzad, D.; Davood, K. Health risk assessment of VOC emissions in laboratory rooms via a modeling approach. Environ. Sci. Pollut. Res. Int. 2018, 25, 18. [Google Scholar]
- Lim, M.; Lea-Langton, A.R. Investigation of Non-thermal Plasma Assisted Combustion of Solid Biomass Fuels: Effects on Flue Gas Composition and Efficiency. Plasma Chem. Plasma Process. 2020, 40, 1465–1483. [Google Scholar] [CrossRef]
- Chen, Y.; Liao, Y.; Chen, L.; Chen, Z.; Ma, X. Performance of transition metal (Cu, Fe and Co) modified SCR catalysts for simultaneous removal of NO and volatile organic compounds (VOCs) from coal-fired power plant flue gas. Fuel 2020, 289, 119849. [Google Scholar] [CrossRef]
- Jarczewski, S.; Barańska, K.; Drozdek, M.; Michalik, M.; Bizon, K.; Kuśtrowski, P. Energy-balanced and effective adsorption-catalytic multilayer bed system for removal of volatile organic compounds. Chem. Eng. J. 2022, 431, 133388. [Google Scholar] [CrossRef]
- Zhu, M.; Huang, H.; Wang, Y.; Huang, Z.; Zhang, X.; Tang, M.; Lu, M.; Chen, C.; Shi, B.; Chen, Z.; et al. A newly integrated dataset of volatile organic compounds (VOCs) source profiles and implications for the future development of VOCs profiles in China. Sci. Total Environ. 2021, 793, 148348. [Google Scholar]
- Peng, Y.; Yang, Q.; Wang, L.; Wang, S.; Li, J.; Zhang, X.; Zhang, S.; Zhao, H.; Zhang, B.; Wang, C.; et al. VOC emissions of coal-fired power plants in China based on life cycle assessment method. Fuel 2021, 292, 120325. [Google Scholar] [CrossRef]
- Yan, Y.; Peng, L.; Li, R.; Li, Y.; Li, L.; Bai, H. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: A study in Shuozhou, China. Environ. Pollut. 2017, 223, 295–304. [Google Scholar] [CrossRef]
- Kim, E.H.; Chun, Y.N. VOC decomposition by a plasma-cavity combustor. Chem. Eng. Process. Process Intensif. 2016, 104, 51–57. [Google Scholar] [CrossRef]
- Veerapandian, S.K.P.; Leys, C.; De Geyter, N.; Morent, R. Abatement of VOCs Using Packed Bed Non-Thermal Plasma Reactors: A Review. Catalysts 2017, 7, 113. [Google Scholar] [CrossRef]
- Salvador, S.; Commandre, J.-M.; Kara, Y. Thermal recuperative incineration of VOCs: CFD modelling and experimental validation. Appl. Therm. Eng. 2006, 26, 2355–2366. [Google Scholar] [CrossRef] [Green Version]
- Bedi, U.; Chauhan, S. Modeling the combustion of volatile organic compound (VOC) ethane in monolithic catalytic converter. Mater. Today Proc. 2020, 28, 1727–1731. [Google Scholar] [CrossRef]
- Frigerio, S.; Mehl, M.; Ranzi, E.; Schweiger, D.; Schedler, J. Improve efficiency of thermal regenerators and VOCs abatement systems: An experimental and modeling study. Exp. Therm. Fluid Sci. 2006, 31, 5. [Google Scholar] [CrossRef]
- Li, S.; Dang, X.; Yu, X.; Abbas, G.; Zhang, Q.; Cao, L. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: A review. Chem. Eng. J. 2020, 388, 124275. [Google Scholar] [CrossRef]
- Deng, B.; Zhang, H.; Wu, J. Modeling VOCs emission/sorption with variable operating parameters and general boundary conditions. Environ. Pollut. 2021, 271, 116315. [Google Scholar] [CrossRef]
- Mocho, P.; Desauziers, V.; Plaisance, H.; Sauvat, N. Improvement of the performance of a simple box model using CFD modeling to predict indoor air formaldehyde concentration. Build. Environ. 2017, 124, 450–459. [Google Scholar] [CrossRef]
- Rui, Z.; Lu, Y.; Ji, H. Simulation of VOCs oxidation in a catalytic nanolith. RSC Adv. 2012, 3, 1103–1111. [Google Scholar] [CrossRef]
- Bedi, U.; Chauhan, S. Mathematical modeling of automotive catalytic converter for catalytic combustion of the volatile organic compound (voc) methane. J. Phys. Conf. Ser. 2020, 1706, 012035. [Google Scholar] [CrossRef]
- National Environmental Protection Standard of the People’s Republic of China HJ 693-2014; Stationary Source Emission-Determination of Nitrogen Oxides-Fixed Potential by Electrolysis Method. 2014. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201402/t20140217_267824.htm (accessed on 8 May 2022).
- National Environmental Protection Standard of the People’s Republic of China HJ 57-2017; Stationary Source Emission-Determination of Sulfur Dioxide-Fixed Potential by Electrolysis Method. 2017. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201712/t20171207_427551.shtml (accessed on 8 May 2022).
- Dai, B.; Zhang, L.; Cui, J.-F.; Hoadley, A.; Zhang, L. Integration of pyrolysis and entrained-bed gasification for the production of chemicals from Victorian brown coal—Process simulation and exergy analysis. Fuel Process. Technol. 2017, 155, 21–31. [Google Scholar] [CrossRef]
- Behbahaninia, A.; Ramezani, S.; Hejrandoost, M.L. A loss method for exergy auditing of steam boilers. Energy 2017, 140, 253–260. [Google Scholar] [CrossRef]
- National Standards of the People’s Republic of China GB 13271-2014; Emission Standard of Air Pollutants for Boiler. 2014. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqgdwrywrwpfbz/201405/t20140530_276318.shtml (accessed on 8 May 2022).
- Alsultan, A.G.; Mijan, N.A.; Mansir, N.; Razali, S.Z.; Yunus, R.; Taufiq-Yap, H.Y. Combustion and Emission Performance of CO/NOx/SOx for Green Diesel Blends in a Swirl Burner. ACS Omega 2021, 6, 408–415. [Google Scholar] [CrossRef]
Parameter | Value | |
---|---|---|
VOC concentration (mg/m³) | 5000 | |
Water consumption (m³/h) | 20 | |
VOC inlet | VOC consumption (m³/h) | 22.43 |
Air consumption (m³/h) | 20,000 | |
Combustion inlet | Methane consumption (m³/h) | 120 |
Air consumption (m³/h) | 2500 |
High Temperature Preheater | Medium Temperature Preheater | Water Heater | |
---|---|---|---|
Heat flow (°C) | 720 → 603 | 603 → 465 | 465 → 117 |
Cold flow (°C) | 385 → 523 | 220 → 385 | 25 → 70 |
VOCs | Mass Percentage (%) |
---|---|
Octane | 9.97 |
1-Butene | 0.84 |
Benzene | 1.47 |
Toluene | 30.22 |
Ethylbenzene | 19.07 |
Para-xylene | 11.87 |
Styrene | 11.03 |
Ortho-xylene | 11.07 |
N-propylbenzene | 3.93 |
Methyl mercaptan | 0.22 |
Hydrogen sulfide | 0.31 |
Total | 100 |
Parameter | Heating Value (kJ/mol) |
---|---|
Methane | 802.62 |
Toluene | 3734 |
Benzene | 3136 |
Para-xylene | 4331.8 |
Ortho-xylene | 4333 |
Ethylbenzene | 4344.8 |
Styrene | 4219 |
Octane | 5074.15 |
N-propylbenzene | 4954.15 |
1-Butene | 2540.8 |
Methyl mercaptan | 1151.7 |
Hydrogen sulfide | 518 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuo, W.; Zhou, B.; Zhang, Z.; Zhou, H.; Dai, B. Process Modeling and Exergy Analysis for a Typical VOC Thermal Conversion Plant. Energies 2022, 15, 3522. https://doi.org/10.3390/en15103522
Zhuo W, Zhou B, Zhang Z, Zhou H, Dai B. Process Modeling and Exergy Analysis for a Typical VOC Thermal Conversion Plant. Energies. 2022; 15(10):3522. https://doi.org/10.3390/en15103522
Chicago/Turabian StyleZhuo, Wencai, Bin Zhou, Zhicheng Zhang, Hailiang Zhou, and Baiqian Dai. 2022. "Process Modeling and Exergy Analysis for a Typical VOC Thermal Conversion Plant" Energies 15, no. 10: 3522. https://doi.org/10.3390/en15103522
APA StyleZhuo, W., Zhou, B., Zhang, Z., Zhou, H., & Dai, B. (2022). Process Modeling and Exergy Analysis for a Typical VOC Thermal Conversion Plant. Energies, 15(10), 3522. https://doi.org/10.3390/en15103522