Microalgal Consortia for Waste Treatment and Valuable Bioproducts
Abstract
:1. Introduction
2. Mechanism of Microalgal Symbiosis
2.1. Natural Microalgal Consortia Systems
2.2. Interaction between Microalgae and Microalgal–Bacteria Consortia
3. Algal Symbiosis Enhances Stress Resilience and Tolerance
4. Algal Symbiosis Promotes Development
5. Applications of Microalgal Consortia for Waste Treatment
5.1. Wastewater Treatment
5.1.1. High-Value Products
5.1.2. Nutrient Removal
5.2. Pharmaceuticals
6. Application of Microalgal Consortia in Biofuels
6.1. Biodiesel
6.2. Biohydrogen
6.2.1. Biohydrogen Production in Algae
6.2.2. Biohydrogen Production in Algal Consortia
6.3. Bioethanol and Biogas
7. Applications of Microalgal Consortia for Value-Added Bioproducts
8. Conclusions and Perspective
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ramanan, R.; Kim, B.-H.; Cho, D.-H.; Oh, H.-M.; Kim, H.-S. Algae–bacteria interactions: Evolution, ecology and emerging applications. Biotechnol. Adv. 2016, 34, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Dismukes, G.C.; Carrieri, D.; Bennette, N.; Ananyev, G.M.; Posewitz, M.C. Aquatic phototrophs: Efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol. 2008, 19, 235–240. [Google Scholar] [CrossRef] [PubMed]
- LBeer, L.; Boyd, E.S.; Peters, J.W.; Posewitz, M.C. Engineering algae for biohydrogen and biofuel production. Curr. Opin. Biotechnol. 2009, 20, 264–271. [Google Scholar]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Padmaperuma, G.; Kapoore, R.V.; Gilmour, D.J.; Vaidyanathan, S. Microbial consortia: A critical look at microalgae co-cultures for enhanced biomanufacturing. Crit. Rev. Biotechnol. 2018, 38, 690–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Li, W.; Guo, Y.; Zhang, Z.; Shi, W.; Cui, F.; Lens, P.N.L.; Tay, J.H. Microalgal-bacterial consortia: From interspecies interactions to biotechnological applications. Renew. Sustain. Energy Rev. 2020, 118, 109563. [Google Scholar] [CrossRef]
- Gonçalves, A.L.; Pires, J.C.M.; Simões, M. A review on the use of microalgal consortia for wastewater treatment. Algal Res. 2017, 24, 403–415. [Google Scholar] [CrossRef]
- Gonçalves, A.L.; Santos, F.M.; Pires, J.C.M. Microalgal consortia: From wastewater treatment to bioenergy production. In Grand Challenges in Algae Biotechnology; Hallmann, A., Rampelotto, P.H., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 371–398. [Google Scholar]
- Muradov, N.; Taha, M.; Miranda, A.F.; Wrede, D.; Kadali, K.; Gujar, A.; Stevenson, T.; Ball, A.S.; Mouradov, A. Fungal-assisted algal flocculation: Application in wastewater treatment and biofuel production. Biotechnol. Biofuels 2015, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Egede, E.J.; Jones, H.; Cook, B.; Purchase, D.; Mouradov, A. Application of microalgae and fungal-microalgal associations for wastewater treatment. In Fungal Applications in Sustainable Environmental Biotechnology; Purchase, D., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 143–181. [Google Scholar]
- Thompson, A.W.; Foster, R.A.; Krupke, A.; Carter, B.J.; Musat, N.; Vaulot, D.; Kuypers, M.M.M.; Zehr, J.P. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 2012, 337, 1546–1550. [Google Scholar] [CrossRef]
- Watanabe, K.; Takihana, N.; Aoyagi, H.; Hanada, S.; Watanabe, Y.; Ohmura, N.; Saiki, H.; Tanaka, H. Symbiotic association in Chlorella culture. FEMS Microbiol. Ecol. 2005, 51, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Quijano, G.; Arcila, J.S.; Buitrón, G. Microalgal-bacterial aggregates: Applications and perspectives for wastewater treatment. Biotechnol. Adv. 2017, 35, 772–781. [Google Scholar] [CrossRef] [PubMed]
- de-Bashan, L.E.; Bashan, Y.; Moreno, M.; Lebsky, V.K.; Bustillos, J.J. Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Can. J. Microbiol. 2002, 48, 514–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de-Bashan, L.E.; Bashan, Y. Joint immobilization of plant growth-promoting bacteria and green microalgae in alginate beads as an experimental model for studying plant-bacterium interactions. Appl. Environ. Microbiol. 2008, 74, 6797–6802. [Google Scholar] [CrossRef] [Green Version]
- Fukami, K.; Nishijima, T. Stimulative and inhibitory effects of bacteria on the growth of microalgae. Hydrobiologia 1997, 358, 185–191. [Google Scholar] [CrossRef]
- Mayali, X.; Azam, F. Algicidal bacteria in the sea and their impact on algal blooms. J. Eukaryot. Microbiol. 2004, 51, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Xiong, X.; Zhu, S.; Liao, H.; Xiao, X.; Tang, Z.; Hong, Y.; Li, C.; Luo, L.; Zheng, L.; et al. MeBIK1, a novel cassava receptor-like cytoplasmic kinase, regulates PTI response of transgenic Arabidopsis. Funct. Plant Biol. 2018, 45, 658–667. [Google Scholar] [CrossRef]
- Fuentes, J.L.; Garbayo, I.; Cuaresma, M.; Montero, Z.; González-Del-Valle, M.; Vílchez, C. Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Mar. Drugs 2016, 14, 100. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar, A.; Bhatnagar, M.; Chinnasamy, S.; Das, K.C. Chlorella minutissima-A promising fuel alga for cultivation in municipal wastewaters. Appl. Biochem. Biotechnol. 2010, 161, 523–536. [Google Scholar] [CrossRef]
- Silva-Benavides, A.M.; Torzillo, G. Nitrogen and phosphorus removal through laboratory batch cultures of microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal and as co-cultures. J. Appl. Phycol. 2012, 24, 267–276. [Google Scholar] [CrossRef]
- Lee, J.; Cho, D.H.; Ramanan, R.; Kim, B.H.; Oh, H.M.; Kim, H.S. Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresour. Technol. 2013, 131, 195–201. [Google Scholar] [CrossRef]
- Su, Y.; Mennerich, A.; Urban, B. Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: Influence of algae and sludge inoculation ratios. Bioresour. Technol. 2012, 105, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Safonova, E.; Kvitko, K.V.; Iankevitch, M.I.; Surgko, L.F.; Afti, I.A.; Reisser, W. Biotreatment of industrial wastewater by selected algal-bacterial consortia. Eng. Life Sci. 2004, 4, 347–353. [Google Scholar] [CrossRef]
- Cohen, Y. Bioremediation of oil by marine microbial mats. Int. Microbiol. 2002, 5, 189–193. [Google Scholar] [CrossRef]
- Duran, R.; Goňi-Urriza, M.S. Impact of pollution on microbial mats. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 2339–2348. [Google Scholar]
- Chavan, A.; Mukherji, S. Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: Effect of N:P ratio. J. Hazard. Mater. 2008, 154, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Je, K.-W.; Lee, K.; Jung, S.-E.; Choi, T.-J. Growth promotion of Chlorella ellipsoidea by co-inoculation with Brevundimonas sp. isolated from the microalga. Hydrobiologia 2008, 598, 219–228. [Google Scholar] [CrossRef]
- Shukla, V.; Joshi, G.P.; Rawat, M.S.M. Lichens as a potential natural source of bioactive compounds: A review. Phytochem. Rev. 2010, 9, 303–314. [Google Scholar] [CrossRef]
- Zoller, S.; Lutzoni, F. Slow algae, fast fungi: Exceptionally high nucleotide substitution rate differences between lichenized fungi Omphalina and their symbiotic green algae Coccomyxa. Mol. Phylogenet. Evol. 2003, 29, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Kosugi, M.; Arita, M.; Shizuma, R.; Moriyama, Y.; Kashino, Y.; Koike, H.; Satoh, K. Responses to desiccation stress in lichens are different from those in their photobionts. Plant Cell Physiol. 2009, 50, 879–888. [Google Scholar] [CrossRef] [Green Version]
- Gultom, S.O.; Hu, B. Review of microalgae harvesting via co-pelletization with filamentous fungus. Energies 2013, 6, 5921–5939. [Google Scholar] [CrossRef] [Green Version]
- Grube, M.; Cernava, T.; Soh, J.; Fuchs, S.; Aschenbrenner, I.; Lassek, C.; Wegner, U.; Becher, D.; Riedel, K.; Sensen, C.W.; et al. Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. Int. Soc. Microb. Ecol. J. 2015, 9, 412–424. [Google Scholar] [CrossRef] [Green Version]
- Berner, F.; Heimann, K.; Sheehan, M. Microalgal biofilms for biomass production. J. Appl. Phycol. 2015, 27, 1793–1804. [Google Scholar] [CrossRef]
- Tang, Y.Z.; Koch, F.; Gobler, C.J. Most harmful algal bloom species are vitamin B1 and B12 auxotrophs. Proc. Natl. Acad. Sci. USA 2010, 107, 2075–20761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeYoe, H.R.; Lowe, R.L.; Marks, J.C. Effects of nitrogen and phosphorus on the endosymbiont load of Rhopalodia gibba and Epithemia turgida (Bacillariophyceae). J. Phycol. 1992, 28, 773–777. [Google Scholar] [CrossRef]
- Villareal, T.A. Marine nitrogen-fixing diatom-cyanobacteria symbioses. In Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs; Carpenter, E.J., Capone, D.G., Rueter, J.G., Eds.; Springer: Dordrecht, The Netherlands, 1992; pp. 163–175. [Google Scholar]
- Foster, R.A.; Kuypers, M.M.M.; Vagner, T.; Paerl, R.W.; Musat, N.; Zehr, J.P. Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses. ISME J. 2011, 5, 1484–1493. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Yang, L.; Xiao, L.; Shi, X.; Gao, G.; Qin, B. Quantitative studies on phosphorus transference occuring between Microcystis aeruginosa and its attached bacterium (Pseudomonas sp.). Hydrobiologia 2007, 581, 161–165. [Google Scholar] [CrossRef]
- Safonova, E.T.; Dmitrieva, I.A.; Kvitko, K.V. The interaction of algae with alcanotrophic bacteria in black oil decomposition. Resour. Conserv. Recycl. 1999, 27, 193–201. [Google Scholar] [CrossRef]
- Barranguet, C.; Veuger, B.; Van Beusekom, S.A.M.; Marvan, P.; Sinke, J.J.; Admiraal, W. Divergent composition of algal-bacterial biofilms developing under various external factors. Eur. J. Phycol. 2005, 40, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.-H.; Ramanan, R.; Cho, D.-H.; Oh, H.-M.; Kim, H.-S. Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenergy 2014, 69, 95–105. [Google Scholar] [CrossRef]
- Amin, S.A.; Hmelo, L.R.; Van Tol, H.M.; Durham, B.P.; Carlson, L.T.; Heal, K.R.; Morales, R.L.; Berthiaume, C.T.; Parker, M.S.; Djunaedi, B.; et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 2015, 522, 98–101. [Google Scholar] [CrossRef]
- Gonzalez, L.E.; Bashan, Y. Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. Appl. Environ. Microbiol. 2000, 66, 1527–1531. [Google Scholar] [CrossRef] [Green Version]
- Crof, M.T.; Lawrence, A.D.; Raux-Deery, E.; Warren, M.J.; Smith, A.G. Algae acquire Vitamin B12 through a symbiotic relationship with bacteria. Nature 2005, 438, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Kazamia, E.; Czesnick, H.; Van Nguyen, T.T.; Croft, M.T.; Sherwood, E.; Sasso, S.; Hodson, S.J.; Warren, M.J.; Smith, A.G. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ. Microbiol. 2012, 14, 1466–1476. [Google Scholar] [CrossRef]
- Xie, B.; Bishop, S.; Stessman, D.; Wright, D.; Spalding, M.H.; Halverson, L.J. Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria. ISME J. 2013, 7, 1544–1555. [Google Scholar] [CrossRef] [PubMed]
- Buchan, A.; LeCleir, G.R.; Gulvik, C.A. Master recyclers: Features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 2014, 12, 686–698. [Google Scholar] [CrossRef]
- Grant, M.A.A.; Kazamia, E.; Cicuta, P.; Smith, A.G. Direct exchange of vitamin B12 is demonstrated by modelling the growth dynamics of algal–bacterial cocultures. ISME J. 2014, 8, 1418–1427. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Liu, Y.; Ge, F.; Liu, N.; Wong, M. A pH-dependent enhancement effect of co-cultured Bacillus licheniformis on nutrient removal by Chlorella vulgaris. Ecol. Eng. 2015, 75, 258–263. [Google Scholar] [CrossRef]
- Lépinay, A.; Turpin, V.; Mondeguer, F.; Grandet-Marchant, Q.; Capiaux, H.; Baron, R.; Lebeau, T. First insight on interactions between bacteria and the marine diatom Haslea ostrearia: Algal growth and metabolomic fingerprinting. Algal Res. 2018, 31, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Chi, W.; Zheng, L.; He, C.; Han, B.; Zheng, M.; Gao, W.; Sun, C.; Zhou, G.; Gao, X. Quorum sensing of microalgae associated marine Ponticoccus sp. PD-2 and its algicidal function regulation. AMB Express 2017, 7, 59. [Google Scholar] [CrossRef] [Green Version]
- Natrah, F.M.I.; Bossier, P.; Sorgeloos, P.; Yusoff, F.M.; Defoirdt, T. Significance of microalgal–bacterial interactions for aquaculture. Rev. Aquac. 2014, 6, 48–61. [Google Scholar] [CrossRef]
- Wang, H.; Hill, R.T.; Zheng, T.; Hu, X.; Wang, B. Effects of bacterial communities on biofuel-producing microalgae: Stimulation, inhibition and harvesting. Crit. Rev. Biotechnol. 2016, 36, 341–352. [Google Scholar] [CrossRef]
- Fergola, P.; Cerasuolo, M.; Pollio, A.; Pinto, G.; DellaGreca, M. Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata: Experiments and mathematical model. Ecol. Modell. 2007, 208, 205–214. [Google Scholar] [CrossRef]
- Subashchandrabose, S.R.; Ramakrishnan, B.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential. Biotechnol. Adv. 2011, 29, 896–907. [Google Scholar] [CrossRef] [PubMed]
- Guieysse, B.; Borde, X.; Muñoz, R.; Hatti-Kaul, R.; Nugier-Chauvin, C.; Patin, H.; Mattiasson, B. Influence of the initial composition of algal-bacterial microcosms on the degradation of salicylate in a fed-batch culture. Biotechnol. Lett. 2002, 24, 531–538. [Google Scholar] [CrossRef]
- Borde, X.; Guieysse, B.; Delgado, O.; Muoz, R.; Hatti-Kaul, R.; Nugier-Chauvin, C.; Patin, H.; Mattiasson, B. Synergistic relationships in algal-bacterial microcosms for the treatment of aromatic pollutants. Bioresour. Technol. 2003, 86, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, R.; Guieysse, B.; Mattiasson, B. Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Appl. Microbiol. Biotechnol. 2003, 61, 261–267. [Google Scholar] [CrossRef]
- Orandi, S.; Lewis, D.M.; Moheimani, N.R. Biofilm establishment and heavy metal removal capacity of an indigenous mining algal-microbial consortium in a photo-rotating biological contactor. J. Ind. Microbiol. Biotechnol. 2012, 39, 1321–1331. [Google Scholar] [CrossRef]
- Perera, I.; Subashchandrabose, S.R.; Venkateswarlu, K.; Naidu, R.; Megharaj, M. Consortia of cyanobacteria/microalgae and bacteria in desert soils: An underexplored microbiota. Appl. Microbiol. Biotechnol. 2018, 102, 7351–7363. [Google Scholar] [CrossRef]
- Thomas, D.N.; Dieckmann, G.S. Antarctic Sea ice—A habitat for extremophiles. Science 2002, 295, 641–644. [Google Scholar] [CrossRef] [Green Version]
- Abed, R.M.M.; Köster, J. The direct role of aerobic heterotrophic bacteria associated with cyanobacteria in the degradation of oil compounds. Int. Biodeterior. Biodegrad. 2005, 55, 29–37. [Google Scholar] [CrossRef]
- Sial, A.; Zhang, B.; Zhang, A.; Liu, K.Y.; Imtiaz, S.A.; Yashir, N. Microalgal–bacterial synergistic interactions and their potential influence in wastewater treatment: A review. BioEnergy Res. 2021, 14, 723–738. [Google Scholar] [CrossRef]
- de-Bashan, L.E.; Moreno, M.; Hernandez, J.-P.; Bashan, Y. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res. 2002, 36, 2941–2948. [Google Scholar] [CrossRef] [PubMed]
- Cea, M.; Sangaletti-Gerhard, N.; Acuña, P.; Fuentes, I.; Jorquera, M.; Godoy, K.; Osses, F.; Navia, R. Screening transesterifiable lipid accumulating bacteria from sewage sludge for biodiesel production. Biotechnol. Rep. 2015, 8, 116–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheah, W.Y.; Show, P.L.; Juan, J.C.; Chang, J.-S.; Ling, T.C. Waste to energy: The effects of Pseudomonas sp. on Chlorella sorokiniana biomass and lipid productions in palm oil mill effluent. Clean Technol. Environ. Policy 2018, 20, 2037–2045. [Google Scholar] [CrossRef]
- Chinnasamy, S.; Bhatnagar, A.; Hunt, R.W.; Das, K.C. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour. Technol. 2010, 101, 3097–3105. [Google Scholar] [CrossRef] [PubMed]
- Loganathan, B.G.; Orsat, V.; Lefsrud, M. A comprehensive study on the effect of light quality imparted by light-emitting diodes (LEDs) on the physiological and biochemical properties of the microalgal consortia of Chlorella variabilis and Scenedesmus obliquus cultivated in dairy wastewater. Bioprocess Biosyst. Eng. 2020, 43, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Tian, Y.; Xue, S.; Zhangi, D.; Zhang, Q.; Wu, X.; Kong, D.; Cong, W. Enhanced microalgal biomass and lipid production via co-culture of Scenedesmus obliquus and Candida tropicalis in an autotrophic system. J. Chem. Technol. Biotechnol. 2016, 91, 1387–1396. [Google Scholar] [CrossRef]
- Dong, Q.-L.; Zhao, X.-M. In situ carbon dioxide fixation in the process of natural astaxanthin production by a mixed culture of Haematococcus pluvialis and Phaffia rhodozyma. Catal. Today 2004, 98, 537–544. [Google Scholar] [CrossRef]
- Cho, H.U.; Cho, H.U.; Park, J.M.; Park, J.M.; Kim, Y.M. Enhanced microalgal biomass and lipid production from a consortium of indigenous microalgae and bacteria present in municipal wastewater under gradually mixotrophic culture conditions. Bioresour. Technol. 2017, 228, 290–297. [Google Scholar] [CrossRef]
- Lee, C.S.; Oh, H.-S.; Oh, H.-M.; Kim, H.-S.; Ahn, C.-Y. Two-phase photoperiodic cultivation of algal–bacterial consortia for high biomass production and efficient nutrient removal from municipal wastewater. Bioresour. Technol. 2016, 200, 867–875. [Google Scholar] [CrossRef]
- Xue, F.; Miao, J.; Zhang, X.; Tan, T. A new strategy for lipid production by mix cultivation of Spirulina platensis and Rhodotorula glutinis. Appl. Biochem. Biotechnol. 2010, 160, 498–503. [Google Scholar] [CrossRef]
- Renuka, N.; Sood, A.; Ratha, S.K.; Prasanna, R.; Ahluwalia, A.S. Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production. J. Appl. Phycol. 2013, 25, 1529–1537. [Google Scholar] [CrossRef]
- Beigbeder, J.B.; Boboescu, I.Z.; Damay, J.; Duret, X.; Bhatti, S.; Lavoie, J.M. Phytoremediation of bark-hydrolysate fermentation effluents and bioaccumulation of added-value molecules by designed microalgal consortia. Algal Res. 2019, 42, 101585. [Google Scholar] [CrossRef]
- Sharma, J.; Kumar, V.; Kumar, S.S.; Malyan, S.K.; Mathimani, T.; Bishnoi, N.R.; Pugazhendhi, A. Microalgal consortia for municipal wastewater treatment—Lipid augmentation and fatty acid profiling for biodiesel production. J. Photochem. Photobiol. B Biol. 2020, 202, 111638. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Hu, C.; Du, S. Comparisons of growth and biochemical composition between mixed culture of alga and yeast and monocultures. J. Biosci. Bioeng. 2007, 104, 391–397. [Google Scholar] [CrossRef]
- Kitcha, S.; Cheirsilp, B. Enhanced lipid production by co-cultivation and co-encapsulation of oleaginous yeast Trichosporonoides spathulata with microalgae in alginate gel beads. Appl. Biochem. Biotechnol. 2014, 173, 522–534. [Google Scholar] [CrossRef]
- De Godos, I.; Vargas, V.A.; Blanco, S.; González, M.C.G.; Soto, R.; García-Encina, P.A.; Becares, E.; Muñoz, R. A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresour. Technol. 2010, 101, 5150–5158. [Google Scholar] [CrossRef]
- Posadas, E.; García-Encina, P.-A.; Soltau, A.; Domínguez, A.; Díaz, I.; Muñoz, R. Carbon and nutrient removal from centrates and domestic wastewater using algal–bacterial biofilm bioreactors. Bioresour. Technol. 2013, 139, 50–58. [Google Scholar] [CrossRef]
- Anbalagan, A.; Schwede, S.; Lindberg, C.-F.; Nehrenheim, E. Influence of hydraulic retention time on indigenous microalgae and activated sludge process. Water Res. 2016, 91, 277–284. [Google Scholar] [CrossRef]
- Vulsteke, E.; Van Den Hende, S.; Bourez, L.; Capoen, H.; Rousseau, D.P.L.; Albrecht, J. Economic feasibility of microalgal bacterial floc production for wastewater treatment and biomass valorization: A detailed up-to-date analysis of up-scaled pilot results. Bioresour. Technol. 2017, 224, 118–129. [Google Scholar] [CrossRef]
- Sun, L.; Tian, Y.; Zhang, J.; Li, L.; Zhang, J.; Li, J. A novel membrane bioreactor inoculated with symbiotic sludge bacteria and algae: Performance and microbial community analysis. Bioresour. Technol. 2018, 251, 311–319. [Google Scholar] [CrossRef]
- Xie, B.; Gong, W.; Tian, Y.; Qu, F.; Luo, Y.; Du, X.; Tang, X.; Xu, D.; Lin, D.; Li, G.; et al. Biodiesel production with the simultaneous removal of nitrogen, phosphorus and COD in microalgal-bacterial communities for the treatment of anaerobic digestion effluent in photobioreactors. Chem. Eng. J. 2018, 350, 1092–1102. [Google Scholar] [CrossRef]
- Muñoz, R.; Guieysse, B. Algal-bacterial processes for the treatment of hazardous contaminants: A review. Water Res. 2006, 40, 2799–2815. [Google Scholar] [CrossRef] [PubMed]
- Hende, S.; Van Den Beelen, V.; Julien, L.; Lefoulon, A.; Vanhoucke, T.; Coolsaet, C.; Sonnenholzner, S.; Vervaeren, H.; Rousseau, D.P.L. Technical potential of microalgal bacterial floc raceway ponds treating food-industry effluents while producing microalgal bacterial biomass: An outdoor pilot-scale study. Bioresour. Technol. 2016, 218, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Keeley, R.; Zalivina, N.; Halfhide, T.; Scott, K.; Zhang, Q.; van der Steen, P.; Ergas, S.J. Advances in algal-prokaryotic wastewater treatment: A review of nitrogen transformations, reactor configurations and molecular tools. J. Environ. Manag. 2018, 217, 845–857. [Google Scholar] [CrossRef] [Green Version]
- Alzate, M.E.; Muñoz, R.; Rogalla, F.; Fdz-Polanco, F.; Pérez-Elvira, S.I. Biochemical methane potential of microalgae biomass after lipid extraction. Chem. Eng. J. 2014, 243, 405–410. [Google Scholar] [CrossRef]
- Carrillo-Reyes, J.; Buitrón, G. Biohydrogen and methane production via a two-step process using an acid pretreated native microalgae consortium. Bioresour. Technol. 2016, 221, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Bassi, A. Carotenoids from microalgae: A review of recent developments. Biotechnol. Adv. 2016, 34, 1396–1412. [Google Scholar] [CrossRef]
- Cardeña, R.; Moreno, G.; Bakonyir, P.; Buitrón, G. Enhancement of methane production from various microalgae cultures via novel ozonation pretreatment. Chem. Eng. J. 2017, 307, 948–954. [Google Scholar] [CrossRef]
- Malik, S.; Kishore, S.; Bora, J.; Chaudhary, V.; Kumari, A.; Kumari, P.; Kumar, L.; Bhardwaj, A. A comprehensive review on microalgae-based biorefinery as a two-way source of wastewater treatment and resource recovery. Clean-Soil Air Water 2022, 2200044. [Google Scholar] [CrossRef]
- De Schryver, P.; Crab, R.; Defoirdt, T.; Boon, N.; Verstraete, W. The basics of bio-flocs technology: The added value for aquaculture. Aquaculture 2008, 277, 125–137. [Google Scholar] [CrossRef]
- Ji, X.; Li, H.; Zhang, J.; Zheng, Z. The collaborative effect of Chlorella vulgaris-Bacillus licheniformis consortia on the treatment of municipal water. J. Hazard. Mater. 2019, 365, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Mujtaba, G.; Rizwan, M.; Lee, K. Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris. J. Ind. Eng. Chem. 2017, 49, 145–151. [Google Scholar] [CrossRef]
- Shen, Y.; Gao, J.; Li, L. Municipal wastewater treatment via co-immobilized microalgal-bacterial symbiosis: Microorganism growth and nutrients removal. Bioresour. Technol. 2017, 243, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Ashok, V.; Shriwastav, A.; Bose, P. Nutrient removal using algal-bacterial mixed culture. Appl. Biochem. Biotechnol. 2014, 174, 2827–2838. [Google Scholar] [CrossRef]
- Chen, T.; Zhao, Q.; Wang, L.; Xu, Y.; Wei, W. Comparative metabolomic analysis of the green microalga Chlorella sorokiniana cultivated in the single culture and a consortium with bacteria for wastewater remediation. Appl. Biochem. Biotechnol. 2017, 183, 1062–1075. [Google Scholar] [CrossRef] [PubMed]
- Arcila, J.S.; Buitrón, G. Microalgae–bacteria aggregates: Effect of the hydraulic retention time on the municipal wastewater treatment, biomass settleability and methane potential. J. Chem. Technol. Biotechnol. 2016, 91, 2862–2870. [Google Scholar] [CrossRef]
- Tsolcha, O.N.; Tekerlekopoulou, A.G.; Akratos, C.S.; Aggelis, G.; Genitsaris, S.; Moustaka-Gouni, M.; Vayenas, D. V Biotreatment of raisin and winery wastewaters and simultaneous biodiesel production using a Leptolyngbya-based microbial consortium. J. Clean. Prod. 2017, 148, 185–193. [Google Scholar] [CrossRef]
- Gonçalves, A.L.; Pires, J.C.M.; Simões, M. Biotechnological potential of Synechocystis salina co-cultures with selected microalgae and cyanobacteria: Nutrients removal, biomass and lipid production. Bioresour. Technol. 2016, 200, 279–286. [Google Scholar] [CrossRef]
- Meng, F.; Xi, L.; Liu, D.; Huang, W.; Lei, Z.; Zhang, Z.; Huang, W. Effects of light intensity on oxygen distribution, lipid production and biological community of algal-bacterial granules in photo-sequencing batch reactors. Bioresour. Technol. 2019, 272, 473–481. [Google Scholar] [CrossRef]
- Su, Y.; Mennerich, A.; Urban, B. Coupled nutrient removal and biomass production with mixed algal culture: Impact of biotic and abiotic factors. Bioresour. Technol. 2012, 118, 469–476. [Google Scholar] [CrossRef]
- Choudhary, P.; Prajapati, S.K.; Malik, A. Screening native microalgal consortia for biomass production and nutrient removal from rural wastewaters for bioenergy applications. Ecol. Eng. 2016, 91, 221–230. [Google Scholar] [CrossRef]
- Chinnasamy, S.; Bhatnagar, A.; Claxton, R.; Das, K.C. Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresour. Technol. 2010, 101, 6751–6760. [Google Scholar] [CrossRef] [PubMed]
- He, P.J.; Mao, B.; Lü, F.; Shao, L.M.; Lee, D.J.; Chang, J.S. The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters. Bioresour. Technol. 2013, 146, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.C.; Kahlert, M.; Kelly, M.G. Interactions between pH and nutrients on benthic algae in streams and consequences for ecological status assessment and species richness patterns. Sci. Total Environ. 2013, 444, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Podola, B.; Melkonian, M. Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: An experimental study. J. Appl. Phycol. 2007, 19, 417–423. [Google Scholar] [CrossRef]
- Beltrán-Rocha, J.C.; Barceló-Quintal, I.D.; García-Martínez, M.; Osornio-Berthet, L.; Saavedra-Villarreal, N.; Villarreal-Chiu, J.; López-Chuken, U.J. Polishing of municipal secondary effluent using native microalgae consortia. Water Sci. Technol. 2017, 75, 1693–1701. [Google Scholar] [CrossRef]
- Cizmas, L.; Sharma, V.K.; Gray, C.M.; McDonald, T.J. Pharmaceuticals and personal care products in waters: Occurrence, toxicity, and risk. Environ. Chem. Lett. 2015, 13, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015, 72, 3–27. [Google Scholar] [CrossRef]
- Kapelewska, J.; Kotowska, U.; Karpińska, J.; Kowalczuk, D.; Arciszewska, A.; Świrydo, A. Occurrence, removal, mass loading and environmental risk assessment of emerging organic contaminants in leachates, groundwaters and wastewaters. Microchem. J. 2018, 137, 292–301. [Google Scholar] [CrossRef]
- Liang, R.; Van Leuwen, J.C.; Bragg, L.M.; Arlos, M.J.; Li Chun Fong, L.C.M.; Schneider, O.M.; Jaciw-Zurakowsky, I.; Fattahi, A.; Rathod, S.; Peng, P.; et al. Utilizing UV-LED pulse width modulation on TiO2 advanced oxidation processes to enhance the decomposition efficiency of pharmaceutical micropollutants. Chem. Eng. J. 2019, 361, 439–449. [Google Scholar] [CrossRef]
- Yoo, D.K.; An, H.J.; Khan, N.A.; Hwang, G.T.; Jhung, S.H. Record-high adsorption capacities of polyaniline-derived porous carbons for the removal of personal care products from water. Chem. Eng. J. 2018, 352, 71–78. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Van Hullebusch, E.D.; Cretin, M.; Esposito, G.; Oturan, M.A. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review. Sep. Purif. Technol. 2015, 156, 891–914. [Google Scholar] [CrossRef]
- Larsen, C.; Yu, Z.H.; Flick, R.; Passeport, E. Mechanisms of pharmaceutical and personal care product removal in algae-based wastewater treatment systems. Sci. Total Environ. 2019, 695, 133772. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xie, J.; Wen, Z. Removal of pharmaceutical and personal care products (PPCPs) from waterbody using a revolving algal biofilm (RAB) reactor. J. Hazard. Mater. 2021, 406, 124284. [Google Scholar] [CrossRef] [PubMed]
- López-Serna, R.; Posadas, E.; García-Encina, P.A.; Muñoz, R. Removal of contaminants of emerging concern from urban wastewater in novel algal-bacterial photobioreactors. Sci. Total Environ. 2019, 662, 32–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, W.; Wang, L.; Rousseau, D.P.L.; Lens, P.N.L. Removal of estrone, 17α-ethinylestradiol, and 17ß-estradiol in algae and duckweed-based wastewater treatment systems. Environ. Sci. Pollut. Res. 2010, 17, 824–833. [Google Scholar] [CrossRef]
- de Godos, I.; Muñoz, R.; Guieysse, B. Tetracycline removal during wastewater treatment in high-rate algal ponds. J. Hazard. Mater. 2012, 229–230, 446–449. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.M.; Essam, T.M.; Ragab, Y.M.; El-Sayed, A.E.K.B.; Mourad, F.E. Remediation of a mixture of analgesics in a stirred-tank photobioreactor using microalgal-bacterial consortium coupled with attempt to valorise the harvested biomass. Bioresour. Technol. 2017, 232, 364–371. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Kurade, M.B.; Jeon, B.H. Ecotoxicological effects of enrofloxacin and its removal by monoculture of microalgal species and their consortium. Environ. Pollut. 2017, 226, 486–493. [Google Scholar] [CrossRef]
- Grazia, L. Upgrading of biogas to bio-methane with chemical absorption process: Simulation and environmental impact. J. Clean. Prod. 2016, 131, 364–375. [Google Scholar]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Amaro, H.M.; Guedes, A.C.; Malcata, F.X. Advances and perspectives in using microalgae to produce biodiesel. Appl. Energy 2011, 88, 3402–3410. [Google Scholar] [CrossRef]
- Durrett, T.P.; Benning, C.; Ohlrogge, J. Plant triacylglycerols as feedstocks for the production of biofuels. Plant J. 2008, 54, 593–607. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.Y.; Alvaro, J.; Hyden, B.; Zienkiewicz, K.; Benning, N.; Zienkiewicz, A.; Bonito, G.; Benning, C. Enhancing oil production and harvest by combining the marine alga Nannochloropsis oceanica and the oleaginous fungus Mortierella elongata. Biotechnol. Biofuels 2018, 11, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slade, R.; Bauen, A. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 2013, 53, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.; Lyu, S.; An, Y.; Lu, J.; Gjermansen, C.; Schramm, A. Microalgae–bacteria symbiosis in microalgal growth and biofuel production: A review. J. Appl. Microbiol. 2019, 126, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Ogbonna, C.N.; Nwoba, E.G. Bio-based flocculants for sustainable harvesting of microalgae for biofuel production. A review. Renew. Sustain. Energy Rev. 2021, 139, 110690. [Google Scholar] [CrossRef]
- Lee, Y.S.; Han, G.B. Complete reduction of highly concentrated contaminants in piggery waste by a novel process scheme with an algal-bacterial symbiotic photobioreactor. J. Environ. Manag. 2016, 177, 202–212. [Google Scholar] [CrossRef]
- Lakatos, G.; Deák, Z.; Vass, I.; Rétfalvi, T.; Rozgonyi, S.; Rákhely, G.; Ördög, V.; Kondorosi, É.; Maróti, G. Bacterial symbionts enhance photo-fermentative hydrogen evolution of Chlamydomonas algae. Green Chem. 2014, 16, 4716–4727. [Google Scholar] [CrossRef]
- Wieczorek, N.; Kucuker, M.A.; Kuchta, K. Microalgae-bacteria flocs (MaB-Flocs) as a substrate for fermentative biogas production. Bioresour. Technol. 2015, 194, 130–136. [Google Scholar] [CrossRef]
- Passos, F.; Solé, M.; García, J.; Ferrer, I. Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment. Appl. Energy 2013, 108, 168–175. [Google Scholar] [CrossRef]
- Molinuevo-Salces, B.; Mahdy, A.; Ballesteros, M.; González-Fernández, C. From piggery wastewater nutrients to biogas: Microalgae biomass revalorization through anaerobic digestion. Renew. Energy 2016, 96, 1103–1110. [Google Scholar] [CrossRef]
- Bahr, M.; Díaz, I.; Dominguez, A.; González Sánchez, A.; Muñoz, R. Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents. Environ. Sci. Technol. 2014, 48, 573–581. [Google Scholar] [CrossRef]
- Liu, L.; Hong, Y.; Ye, X.; Wei, L.; Liao, J.; Huang, X.; Liu, C. Biodiesel production from microbial granules in sequencing batch reactor. Bioresour. Technol. 2018, 249, 908–915. [Google Scholar] [CrossRef]
- Van Den Hende, S.; Laurent, C.; Bégué, M. Anaerobic digestion of microalgal bacterial flocs from a raceway pond treating aquaculture wastewater: Need for a biorefinery. Bioresour. Technol. 2015, 196, 184–193. [Google Scholar] [CrossRef]
- Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.; Tiffany, D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. USA 2006, 103, 11206–11210. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-Y.; Yeh, K.-L.; Aisyah, R.; Lee, D.-J.; Chang, J.-S. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour. Technol. 2011, 102, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Yen, H.W.; Hu, I.C.; Chen, C.Y.; Ho, S.H.; Lee, D.J.; Chang, J.S. Microalgae-based biorefinery - From biofuels to natural products. Bioresour. Technol. 2013, 135, 166–174. [Google Scholar] [CrossRef]
- Huang, G.H.; Chen, F.; Wei, D.; Zhang, X.W.; Chen, G. Biodiesel production by microalgal biotechnology. Appl. Energy 2010, 87, 38–46. [Google Scholar] [CrossRef]
- Halim, R.; Danquah, M.K.; Webley, P.A. Extraction of oil from microalgae for biodiesel production: A review. Biotechnol. Adv. 2012, 30, 709–732. [Google Scholar] [CrossRef]
- Singh, A.; Nigam, P.S.; Murphy, J.D. Mechanism and challenges in commercialisation of algal biofuels. Bioresour. Technol. 2011, 102, 26–34. [Google Scholar] [CrossRef]
- Griffiths, M.J.; van Hille, R.P.; Harrison, S.T.L. Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J. Appl. Phycol. 2012, 24, 989–1001. [Google Scholar] [CrossRef]
- Griffiths, M.J.; Harrison, S.T.L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 2009, 21, 493–507. [Google Scholar] [CrossRef]
- Adams, C.; Godfrey, V.; Wahlen, B.; Seefeldt, L.; Bugbee, B. Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae. Bioresour. Technol. 2013, 131, 188–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roopnarain, A.; Gray, V.M.; Sym, S.D. Phosphorus limitation and starvation effects on cell growth and lipid accumulation in Isochrysis galbana U4 for biodiesel production. Bioresour. Technol. 2014, 156, 408–411. [Google Scholar] [CrossRef]
- Zhou, X.; Jin, W.; Wang, Q.; Guo, S.; Tu, R.; Han, S.; Chen, C.; Xie, G.; Qu, F.; Wang, Q. Enhancement of productivity of Chlorella pyrenoidosa lipids for biodiesel using co-culture with ammonia-oxidizing bacteria in municipal wastewater. Renew. Energy 2020, 151, 598–603. [Google Scholar] [CrossRef]
- Shaishav, S.; Satyendra, T. Biohydrogen from algae: Fuel of the future. Int. Res. J. Environ. Sci. Int. Sci. Congr. Assoc. 2013, 2, 44–47. [Google Scholar]
- Calusinska, M.; Hamilton, C.; Monsieurs, P.; Mathy, G.; Leys, N.; Franck, F.; Joris, B.; Thonart, P.; Hiligsmann, S.; Wilmotte, A. Genome-wide transcriptional analysis suggests hydrogenase- and nitrogenase-mediated hydrogen production in Clostridium butyricum CWBI 1009. Biotechnol. Biofuels 2015, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.; Wang, Z. Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment; Springer: Singapore, 2019. [Google Scholar]
- Kossalbayev, B.D.; Tomo, T.; Zayadan, B.K.; Sadvakasova, A.K.; Bolatkhan, K.; Alwasel, S.; Allakhverdiev, S.I. Determination of the potential of cyanobacterial strains for hydrogen production. Int. J. Hydrogen Energy 2020, 45, 2627–2639. [Google Scholar] [CrossRef]
- Sirawattanamongkol, T.; Maswanna, T.; Maneeruttanarungroj, C. A newly isolated green alga Chlorella sp. KLSc59: Potential for biohydrogen production. J. Appl. Phycol. 2020, 32, 2927–2936. [Google Scholar] [CrossRef]
- Ban, S.; Lin, W.; Wu, F.; Luo, J. Algal-bacterial cooperation improves algal photolysis-mediated hydrogen production. Bioresour. Technol. 2018, 251, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Ghirardi, M.L.; Zhang, L.; Lee, J.W.; Flynn, T.; Seibert, M.; Greenbaum, E.; Melis, A. Microalgae: A green source of renewable H2. Trends Biotechnol. 2000, 18, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Melis, A.; Happe, T. Hydrogen production. Green algae as a source of energy. Plant Physiol. 2001, 127, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Fakhimi, N.; Gonzalez-Ballester, D.; Fernández, E.; Galván, A.; Dubini, A. Algae-bacteria consortia as a strategy to enhance H2 production. Cells 2020, 9, 1353. [Google Scholar] [CrossRef]
- Wu, S.; Li, X.; Yu, J.; Wang, Q. Increased hydrogen production in co-culture of Chlamydomonas reinhardtii and Bradyrhizobium japonicum. Bioresour. Technol. 2012, 123, 184–188. [Google Scholar] [CrossRef]
- Lin, W.R.; Tan, S.I.; Hsiang, C.C.; Sung, P.K.; Ng, I.S. Challenges and opportunity of recent genome editing and multi-omics in cyanobacteria and microalgae for biorefinery. Bioresour. Technol. 2019, 291, 121932. [Google Scholar] [CrossRef]
- Chen, S.; Qu, D.; Xiao, X.; Miao, X. Biohydrogen production with lipid-extracted Dunaliella biomass and a new strain of hyper-thermophilic archaeon Thermococcus eurythermalis A501. Int. J. Hydrog. Energy 2020, 45, 12721–12730. [Google Scholar] [CrossRef]
- Kawaguchi, H.; Hashimoto, K.; Hirata, K.; Miyamoto, K. H2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus. J. Biosci. Bioeng. 2001, 91, 277–282. [Google Scholar] [CrossRef]
- Kawaguchi, H.; Nagase, H.; Hashimoto, K.; Kimata, S.; Doi, M.; Hirata, K.; Miyamoto, K. Effect of algal extract on H2 production by a photosynthetic bacterium Rhodobium marinum A-501: Analysis of stimulating effect using a kinetic model. J. Biosci. Bioeng. 2002, 94, 62–69. [Google Scholar] [CrossRef]
- Łukajtis, R.; Hołowacz, I.; Kucharska, K.; Glinka, M.; Rybarczyk, P.; Przyjazny, A.; Kamiński, M. Hydrogen production from biomass using dark fermentation. Renew. Sustain. Energy Rev. 2018, 91, 665–694. [Google Scholar] [CrossRef]
- Sirajunnisa, A.R.; Surendhiran, D. Algae—A quintessential and positive resource of bioethanol production: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 66, 248–267. [Google Scholar] [CrossRef]
- Ho, S.H.; Chen YDi Chang, C.Y.; Lai, Y.Y.; Chen, C.Y.; Kondo, A.; Ren, N.Q.; Chang, J.S. Feasibility of CO2 mitigation and carbohydrate production by microalga Scenedesmus obliquus CNW-N used for bioethanol fermentation under outdoor conditions: Effects of seasonal changes. Biotechnol. Biofuels 2017, 10, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Q.; Yang, Y.; Li, A.; Liu, F.; Shan, A. Comparison of biogas production from an advanced micro-bio-loop and conventional system. J. Clean. Prod. 2017, 148, 245–253. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Dahl, U.; Lind, C.R.; Gorokhova, E.; Eklund, B.; Breitholtz, M. Food quality effects on copepod growth and development: Implications for bioassays in ecotoxicological testing. Ecotoxicol. Environ. Saf. 2009, 72, 351–357. [Google Scholar] [CrossRef]
- Hayes, M.; Skomedal, H.; Skjånes, K.; Mazur-Marzec, H.; Toruńska-Sitarz, A.; Catala, M.; Hosoglu, M.I.; García-Vaquero, M. Microalgal proteins for feed, food and health. In Microalgae-Based Biofuels and Bioproducts; Gonzalez-Fernandez, C., Muñoz, R., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 347–368. [Google Scholar]
- Wang, M.; Shi, L.-D.; Lin, D.-X.; Qiu, D.-S.; Chen, J.-P.; Tao, X.-M.; Tian, G.-M. Characteristics and performances of microalgal-bacterial consortia in a mixture of raw piggery digestate and anoxic aerated effluent. Bioresour. Technol. 2020, 309, 123363. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Dell’Orto, M.; Scaglia, B.; D’Imporzano, G.; Adani, F. Growth Performance and Biochemical Composition of Waste-Isolated Microalgae Consortia Grown on Nano-Filtered Pig Slurry and Cheese Whey under Mixotrophic Conditions. Fermentation 2022, 8, 474. [Google Scholar] [CrossRef]
- Luiten, E.E.M.; Akkerman, I.; Koulman, A.; Kamermans, P.; Reith, H.; Barbosa, M.J.; Sipkema, D.; Wijffels, R.H. Realizing the promises of marine biotechnology. Biomol. Eng. 2003, 20, 429–439. [Google Scholar] [CrossRef]
- Otto Gross, P.W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar]
- Renuka, N.; Prasanna, R.; Sood, A.; Ahluwalia, A.S.; Bansal, R.; Babu, S.; Singh, R.; Shivay, Y.S.; Nain, L. Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environ. Sci. Pollut. Res. 2016, 23, 6608–6620. [Google Scholar] [CrossRef]
- Renuka, N.; Prasanna, R.; Sood, A.; Bansal, R.; Bidyarani, N.; Singh, R.; Shivay, Y.S.; Nain, L.; Ahluwalia, A.S. Wastewater grown microalgal biomass as inoculants for improving micronutrient availability in wheat. Rhizosphere 2017, 3, 150–159. [Google Scholar] [CrossRef]
- Rana, A.; Kabi, S.R.; Verma, S.; Adak, A.; Pal, M.; Shivay, Y.S.; Prasanna, R.; Nain, L. Prospecting plant growth promoting bacteria and cyanobacteria as options for enrichment of macro- and micronutrients in grains in rice-wheat cropping sequence. Cogent Food Agric. 2015, 1, 1–16. [Google Scholar] [CrossRef]
- Geries, L.S.M.; Elsadany, A.Y. Maximizing growth and productivity of onion (Allium cepa L.) by Spirulina platensis extract and nitrogen-fixing endophyte Pseudomonas stutzeri. Arch. Microbiol. 2021, 203, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Angelis, S.; Novak, A.C.; Sydney, E.B.; Soccol, V.T.; Carvalho, J.C.; Pandey, A.; Noseda, M.D.; Tholozan, J.L.; Lorquin, J.; Soccol, C.R. Co-culture of microalgae, cyanobacteria, and macromycetes for exopolysaccharides production: Process preliminary optimization and partial characterization. Appl. Biochem. Biotechnol. 2012, 167, 1092–1106. [Google Scholar] [CrossRef]
- Sears, J.T.; Prithiviraj, B. Seeding of large areas with biological soil crust starter culture formulations: Using an aircraft disbursable granulate to increase stability, fertility and CO2 sequestration on a landscape scale. In Proceedings of the IEEE Green Technologies Conference, Tulsa, OK, USA, 19–20 April 2012. [Google Scholar]
- Su, Y.; Mennerich, A.; Urban, B. Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res. 2011, 45, 3351–3358. [Google Scholar] [CrossRef]
- Olguín, E.J. Phycoremediation: Key issues for cost-effective nutrient removal processes. Biotechnol. Adv. 2003, 22, 81–91. [Google Scholar] [CrossRef]
Microalgal Consortia in Nature | Types of Microalgal Consortia | Rerfence |
---|---|---|
Lichens | Microalgae–fungi | [33] |
Microalgal mats or biofilms: microalgae such as diatoms, cyanobacteria, and anoxygenic phototrophic bacteria and sulfate-reducing bacteria | Microalgae–bacteria | [34] |
Algal blooms | Microalgae and microalgae–bacteria | [17,35] |
Diatom Epithemia turgida and the coccoid cyanobacteria Rhopalodia gibba | Microalgae–cyanobacteria | [36] |
Diatom Hemiaulus, Rhizosolenia, Chaetoceros, and N2 fixing cyanobacteria R. intracellularis and C. rhizosoleniae | Microalgae–cyanobacteria | [11,37,38] |
Microalgae (Microcystis aeruginosa., etc.) and bacteria (E. coli, Pseudomonas sp., and Bacillus sp., etc.): phosphorus transfer | Microalage–bacteria | [39] |
Microalgae (Stichococcus sp., Chlorella sp., and S. quadricauda), cyanobacteria (Phormidium sp., and Nostoc sp.,), and alcanotrophic bacteria | Microalgae/Cyanobacteria–bacteria | [40] |
Microalgal Consortia | Effects | Rerfence |
---|---|---|
Microalgae (Stichococcus sp., Chlorella sp., and S. quadricauda), cyanobacteria (Phormidium sp., and Nostoc sp.,), and alcanotrophic bacteria | High resistance to various toxicants; stimulate algae cell growth | [40] |
Green algae C. sorokiniana and four bacteria (salicylate-degrading R. basilensis, phenol-degrading A. haemolyticus, and phenanthrene-degrading P. migulae and S. yanoikuyae) | Have an excellent tolerance to toxic compounds and could efficiently biodegrade these three pollutants (up to 85%) | [57,58,59] |
Microalga Ulothrix gigas, fungi Geotrichum sp. and Aspergillus sp., and bacteria Pseudomonas sp. and Thiobacillus sp. | Survive under acidic (pH 3–5) and heavy-metal contaminated conditions | [60] |
Lichen (Trebouxia sp., R. yasudae) | Increase tolerance to photoinhibition under drying conditions | [31] |
Microalgal Consortia | Substrate | Yield/Productivity | Reference | |
---|---|---|---|---|
Monoculture | Consortia | |||
C. variabilis, S. obliquus | Dairy wastewater | NA | 0.673 g L−1 | [69] |
Haematococcus pluvialis, Phaffia rhodozyma AS2-1557 | Synthetic medium | 0.62 g L−1, 5.02 g L−1 | 5.70 g L−1 | [71] |
Chlorella sp., Acutodesmus sp., and Scenedesmus sp. | Municipal wastewater | NA | 117.1 mg L−1 d−1 | [72] |
Scenedesmus sp. YC001, Flavobacteria sp., Sphingobacteria sp., Proteobacteria sp | Municipal wastewater | NA | 282.6 mg L−1 d−1 | [73] |
S. obliquus, C. tropicalis | BG11 medium | 3.5 g L−1, NA | 4.38 g L−1 | [70] |
Spirulina platensis UTEX 1926, Rhodotorula glutinis 2.541 | Synthetic medium | 0.20 g L−1, 1.7 g L−1 | 3.67 g L−1 | [74] |
Phormidium sp., Limnothrix sp., Anabaena sp., Westiellopsis sp., Fischerella sp., Spirogyra sp. | Sewage wastewater | NA | 1.07 g L−1 | [75] |
Botryococcus sp., Chlorella sp., Cricosphaera., Dunaliella sp., Nannochloris sp., Spirulina sp., Tetraselmis sp., Phaeodactylum sp. | Carpet mill effluents | NA | 1.47 g L−1 | [68] |
S. obliquus, Acutodesmus obliquus, C. sorokiniana and C. vulgaris | Bark-hydrolysate fermentation effluents | NA | 139 mg L−1 d−1 | [76] |
MAC1 (Chlorella sp., Nannochloropsis sp., Scenedesmus bijugatus, C. reinhardtii, and Oscillatoria) MAC2 (Chlorella sp., Nannochloropsis sp., Scenedesmus dimorphus, Kirchnella, and Microcoleus) | Municipal wastewater | NA | 1.53 g L−1, 1.04 g L−1 | [77] |
Isochrysis galbana and Ambrosiozyma cicatricosa | Synthetic medium with seawater | 1.17 g L−1, 0.17 g L−1 | 1.32 g L−1 | [78] |
C. vulgaris var. vulgaris TISTR 8261 and Trichosporonoides spathulata | Crude glycerol-based medium | 0.75 g L−1, 10.23 g L−1 | 11.85 g L−1 | [79] |
Microalgae | Bacteria/Fungi | Culture Method | Time (d) | COD | Nitrogen | Phosphorus | References | |||
---|---|---|---|---|---|---|---|---|---|---|
Ci | R | Ci | R | Ci | R | |||||
C. reinhardtii C. vulgaris | NA | Semi-batch | 2 | 45 | 86 | 110 | 97.8 | 25 | 92.8 | [98] |
Blue-green algae | Activated sludge | Batch | 8–10 | 369.7 | 95.8 | 47.6 | 91 | 8.6 | 93.5 | [23] |
Scenedesmus sp. YC001 | Flavobacteria Sphingobacteria Proteobacteria | Batch | 14 | 295.5 | 92.3 | 40.6 | 95.8 | 7.7 | 98.1 | [73] |
C. sorokiniana | Pseudomonas H4 | Batch | 0.25 | 352 a | 46 | 28.3 a | 71 | 9.8 a | 72.8 | [99] |
C. vulgaris | P. putida | Continuous | 1 | 1159.2 | 94.2 | 49.23 | 96.6 | 12.83 | 86.9 | [97] |
C. vulgaris | P. putida | Batch | 2 | 1159.2 | 97 | 49.23 | 100 | 12.83 | 100 | [97] |
Navicula. sp, Nitzschia. Sp and Stigeoclonium. sp | Wastewaterborne bacteria | Continuous | 10 | 593 | 91 | 71.2 | 99 | 15.3 | 49 | [100] |
Leptolyngbya. sp, Ochromonas, sp, and Poterioochromonas | Wastewaterborne bacteria | Batch | 14 | 2650 | 92.8 | 48 | 78.1 | 5 | 99 | [101] |
C. vulgaris | Planktothrix isothrix | Batch | 9 | NA | NA | 79.3 | 43.9–81.5 | 7.5 | 98.4–100 | [21] |
P. subcapitata | Synechocystis salina | Batch | 7 | NA | NA | 45 | 72 | 10 | 91.8 | [102] |
M. aeruginosa | S. salina | Batch | 7 | NA | NA | 45 | 77.7 | 10 | 97.2 | [102] |
C. vulgaris | S. salina | Batch | 7 | NA | NA | 45 | 84.5 | 10 | 85.9 | [102] |
Chlorophyta sp. | Rhodocyclaceae sp. | Batch | 120 | 600 | 95 | 50 | 99 | 10 | 42 | [103] |
Lyngbya sp., Chlorella sp., Calothrix sp., Ulothrix sp. | - | Batch | 14 | 2150 | 88.2 | 83.7 | 83.3 | 3.1 | 97.7 | [75] |
C. reinhardtii, S. rubescens and C. vulgaris | - | Batch | 5–14 | NA | NA | 52.8–98.7 | 41.2–100 | 3.9–11.5 | 12.2–100 | [104] |
Chlorella and Phormidium | - | Batch | 12 | 2940 | 79.9 | 75 | 86.7 | 200 | 83 | [105] |
C. protothecoides | A. fumigatus | Batch | 2 | NA | NA | 164.3 | 73.7 | 38.7 | 55.6 | [9] |
T. suecica | A. fumigatus | Batch | 2 | NA | NA | 168.8 | 62.1 | 45 | 57.8 | [9] |
Microalgal Consortia | Target Pharmaceutical | Removal Efficiency | Reference |
---|---|---|---|
C. vulgaris and S. obliquus | Ibuprofen | Approximately 60% | [117] |
C. vulgaris, Pseudonabaena acicularis, Scenedesmus acutus, and activated sludge | Ibuprofen, naproxen, salicylic acid, triclosan and propylparaben | 94%, 52%, 98%, 100%, and 100%, respectively. | [119] |
Anabaena cylindrica, Chlorococcus, S. platensis, Chlorella, S. quadricauda, and Anaebena | Estrone, 17β-estradiol, 17α-ethinylestradiol | 83.9%, 91.2%, and 86.8%, respectively. | [120] |
C. vulgaris and heterotrophic microorganisms | Tetracycline | 69% | [121] |
Green algae, diatom and cyanobacteria assemblages (RAB reactors) | Ibuprofen, oxybenzone, triclosan, bisphenol A and N, N-diethyl-3-methylbenzamide (DEET) | 70%-100% | [118] |
Chlorella sp., and four Gram negative bacteria: Pseudomonas sp., Raoultella ornithinolytica, Pseudomonas aeruginosa, Stenotrophomonas sp | Acetaminophen, aspirin, ketoprofen, salicylic acid | 80–100%, 100%, 20–98%, 80–100%, respectively. | [122] |
S. obliquus, Chlamydomonas mexicana, C. vulgaris, Ourococcus multisporus, Micractinium resseri | Enrofloxacin | 26% | [123] |
Microalgal Consortia | Type of Substrate | Biofuels | References |
---|---|---|---|
Scenedesmus sp., Chlorella sp., and activated sludge bacteria | Piggery waste | 0.36–0.79 L g−1 biogas, 0.18–0.44 L g−1 CH4, 245 ± 19 ppm (v/v) H2S | [132] |
Scenedesmus sp., Keratococcus sp., Oscillatoria sp. | Synthetic medium | 45 mL H2 g−1 VS, 432 mL CH4 g−1 VS | [90] |
Chlamydomonas sp. MACC-549 and hydrogenase-deficient E. coli | Synthetic medium | 1196.06 ± 4.42 μL H2 L−1 | [133] |
C. reinhardtii cc124 and hydrogenase-deficient E. coli | Synthetic medium | 5800.54 ± 65.73 μL H2 L−1 | [133] |
Navicula sp., Nitzschia sp., Stigeoclonium sp., and wastewaterborne bacteria | Municipal wastewater | 348 mL CH4 g−1 VS and 56 mL CH4 g−1 VS d−1 | [100] |
C. vulgaris, Chloroflexi, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Planctomycea | Municipal wastewater | 271.34 ± 6.65 mL CH4 g−1 VS | [134] |
Chlorella sp., Phormidium sp. | Rural wastewaters | 0.79 m3 kg CH4 VS−1 | [105] |
Scenedesmus sp., Chlorella sp. | Urban wastewater | 307 mL biogas g−1 VS | [135] |
C. vulgaris, S. obliquus and C. reinhardtii | Piggery wastewater | 171 mL CH4 g COD−1 | [136] |
S. platensis and alkaliphilic H2S-oxidizing bacterial consortium | Anaerobic effluents | 0.21–0.27 L CH4 g−1 VS | [137] |
Chlorella sp., Scenedesmus sp., and aerobic granular sludge (predominant genera Xanthomonadaceae and Rhodobacteraceae | Municipal wastewater | Maximum biodiesel yield of 66.21 ± 1.08 mg g−1 suspended solids with large quantities of polyunsaturated fatty acid methyl ester | [138] |
Ulothrix sp., Klebsormidium sp., and anaerobic sludge | Aquaculture wastewater | 226 mL CH4 g−1 VS | [139] |
Microalgal Consortia | Bioproducts | Effects/ Productivity | Reference |
---|---|---|---|
MC1 consortia (Chlorella, Scenedesmus, Chlorococcum, Chroococcus) MC2 consortia (Phormidium, Anabaena, Westiellopsis, Fischerella, Spirogyra) | Biofertilizer | Enhanced plant growth and yield; 7.4–33% increase in plant dry weight and up to 10% in spike weight | [176,177] |
A. oscillarioides CR3, B. diminuta PR7, and O. anthropi PR10 | Biofertilizer | Increased nitrogen, phosphorus, and potassium (NPK) content and improved rice yield by 21.2% | [178] |
S. platensis, P. stutzeri S. obliquus, A. obliquus, C. sorokiniana and C. vulgaris | Biofertilizer Pigments | Enhanced plant growth and yield in onion; 31.5% increase in total net return per hectare 25.8 mg L−1 of total chlorophyll and 5.9 mg L−1 of carotenoids | [179] [76] |
C. variabilis, S. obliquus | Pigments | 7.22 mg g−1 of lutein | [69] |
H. pluvialis, P. rhodozyma AS2–1557 | Pigments | Consortia: 12.95 mg L−1 of astaxanthin; monoculture: 3.68 mg L−1, 1.09 mg L−1, respectively | [71] |
S. obliquus, C. tropicalis | Pigments | 14 μg mL−1 of chlorophyll a | [70] |
MAC1 (Chlorella sp., Nannochloropsis sp., S. bijugatus, C. reinhardtii, and Oscillatoria) MAC2 (Chlorella sp., Nannochloropsis sp., S. dimorphus, Kirchnella, and Microcoleus) | Pigments | 19.17–25.17 μg mL−1 of chlorophyll | [77] |
Desmodesmus sp. CHX1, Paenibacillus, Thiopseudomonas, and Pseudomonas | Animal feed | 21.80% and 69.78% of crude protein and fatty acids | [172] |
AC1 (Chlorella, Paludisphaera), AC4 (Chlorella, Colpoda, Synechocystis, Planctomycetota SM1A02), AC5 (Chlorella, Colpoda, Nuclearia. Synechocystis), AC6 (Tetradesmus, Colpoda, undetectable composition of prokaryotes). AC11 (Chlorella, Cyclidium, Synechocysis, Planctomycetota SM1A02 | Animal feed, human supplementation | Average protein content of 393 ± 83 g kg−1 DM, average polyunsaturated fatty acid content of 25.6 ± 7.3% of total lipids | [173] |
C. vulgaris LEB106 and Agaricus blazei LPB03 | Exopolysaccharides | Consortia: 5.17 g L−1; monoculture: 0.95 g L−1, 4 g L−1, respectively | [180] |
C. vulgaris LEB106 and Trametes versicolor CC124 | Exopolysaccharides | Consortia: 7.10 g L−1; monoculture: 0.95 g L−1, 4.95 g L−1, respectively | [180] |
C. vulgaris var. vulgaris TISTR 8261 and T. spathulata | Lipid | 47% lipid content; contain higher saturated fatty acids (palmitic acid and stearic acid) | [79] |
C. sorokiniana CY-1, Pseudomonas sp. | Lipid | Consortia: 23.37 mg L−1 d−1, monoculture: 15.1 mg L−1 d−1, NA | [67] |
Scenedesmus sp. YC001, Flavobacteria sp., Sphingobacteria sp., Proteobacteria | Lipid | 71.4 mg L−1 d−1 | [73] |
S. obliquus, C. tropicalis | Lipid | 97.8 mg L−1 d−1 | [70] |
S. platensis UTEX 1926, R. glutinis 2.541 | Lipid | Consortia: 467 mg L−1; monoculture: 13 mg L−1, 135 mg L−1, respectively | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Higa, L.; Barela, A.; Lee, C.; Chen, Y.; Du, Z.-Y. Microalgal Consortia for Waste Treatment and Valuable Bioproducts. Energies 2023, 16, 884. https://doi.org/10.3390/en16020884
Zhu S, Higa L, Barela A, Lee C, Chen Y, Du Z-Y. Microalgal Consortia for Waste Treatment and Valuable Bioproducts. Energies. 2023; 16(2):884. https://doi.org/10.3390/en16020884
Chicago/Turabian StyleZhu, Shousong, Lauren Higa, Antonia Barela, Caitlyn Lee, Yinhua Chen, and Zhi-Yan Du. 2023. "Microalgal Consortia for Waste Treatment and Valuable Bioproducts" Energies 16, no. 2: 884. https://doi.org/10.3390/en16020884
APA StyleZhu, S., Higa, L., Barela, A., Lee, C., Chen, Y., & Du, Z. -Y. (2023). Microalgal Consortia for Waste Treatment and Valuable Bioproducts. Energies, 16(2), 884. https://doi.org/10.3390/en16020884