Evaluation of the Hydropower Potential of the Torysa River and Its Energy Use in the Process of Reducing Energy Poverty of Local Communities
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yaduvanshi, A.; Nkemelang, T.; Bendapudi, R.; New, M. Temperature and rainfall extremes change under current and future global warming levels across Indian climate zones. Weather Clim. Extrem. 2021, 31, 100291. [Google Scholar] [CrossRef]
- Vaughan, A. Global warming will drive extreme wet weather in summer. N. Sci. 2019, 243, 9. [Google Scholar] [CrossRef]
- Robert, R.; Schleyer-Lindenmann, A. How ready are we to cope with climate change? Extent of adaptation to sea level rise and coastal risks in local planning documents of southern France. Land Use Policy 2021, 104, 105354. [Google Scholar] [CrossRef]
- Tehrani, M.J.; Helfer, F.; Jenkins, G. Impacts of climate change and sea level rise on catchment management: A multi-model ensemble analysis of the Nerang River catchment, Australia. Sci. Total Environ. 2021, 777, 146223. [Google Scholar]
- Ranjbar, M.H.; Etemad-Shahidi, A.; Kamranzad, B. Modeling the combined impact of climate change and sea-level rise on general circulation and residence time in a semi-enclosed sea. Sci. Total Environ. 2020, 740, 140073. [Google Scholar] [CrossRef] [PubMed]
- Mallin, M.A.F. From sea-level rise to seabed grabbing: The political economy of climate change in Kiribati. Mar. Policy 2018, 97, 244–252. [Google Scholar] [CrossRef] [Green Version]
- Pastor-Paz, J.; Noy, I.; Sin, I.; Sood, A.; Fleming-Munoz, D.; Owen, S. Projecting the effect of climate change on residential property damages caused by extreme weather events. J. Environ. Manag. 2020, 276, 111012. [Google Scholar] [CrossRef]
- Calheiros, T.; Pereira, M.G.; Nunes, J.P. Assessing impacts of future climate change on extreme fire weather and pyro-regions in Iberian Peninsula. Sci. Total Environ. 2021, 754, 142233. [Google Scholar] [CrossRef]
- Gauthier, S.; May, B.; Vasseur, L. Ecosystem-Based Adaptation to Protect Avian Species in Coastal Communities in the Greater Niagara Region, Canada. Climate 2021, 9, 91. [Google Scholar] [CrossRef]
- Lazic, D.; Hipp, A.L.; Carlson, J.E.; Gailing, O. Use of Genomic Resources to Assess Adaptive Divergence and Introgression in Oaks. Forests 2021, 12, 690. [Google Scholar] [CrossRef]
- Łubek, A.; Kukwa, M.; Jaroszewicz, B.; Czortek, P. Shifts in Lichen Species and Functional Diversity in a Primeval Forest Ecosystem as a Response to Environmental Changes. Forests 2021, 12, 686. [Google Scholar] [CrossRef]
- Melamed, Y.; Kislev, M.; Weiss, E.; Simchoni, O. Extinction of water plants in the Hula Valley: Evidence for climate change. J. Hum. Evol. 2011, 60, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Khanal, U.; Wilson, C.; Rahman, S.; Lee, B.L.; Hoang, V.N. Smallholder farmers’ adaptation to climate change and its potential contribution to UN’s sustainable development goals of zero hunger and no poverty. J. Clean. Prod. 2021, 281, 124999. [Google Scholar] [CrossRef]
- Woodward, A.; Porter, J.R. Food, hunger, health, and climate change. Lancet 2016, 387, 1886–1887. [Google Scholar] [CrossRef]
- Escanilla-Minchel, R.; Alcayaga, H.; Soto-Alvarez, M.; Kinnard, C.; Urrutia, R. Evaluation of the Impact of Climate Change on Runoff Generation in an Andean Glacier Watershed. Water 2020, 12, 3547. [Google Scholar] [CrossRef]
- Liddle, B.; Sadorsky, P. How much does increasing non-fossil fuels in electricity generation reduce carbon dioxide emissions? Appl. Energy 2017, 197, 212–221. [Google Scholar] [CrossRef]
- Slovak Ministry of Economy. Integrated National Energy and Climate Plan (2021–2030). 2019. Available online: https://ec.europa.eu/energy/sites/ener/files/sk_final_necp_main_en.pdf (accessed on 14 February 2021).
- Rahman, A.; Farrok, O.; Haque, M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew. Sustain. Energy Rev. 2022, 161, 112279. [Google Scholar] [CrossRef]
- European Commission. Energy Poverty May Affect Nearly 11% of the EU Population. Available online: https://ec.europa.eu/energy/en/news/energy-poverty-may-affect-nearly-11-eu-population (accessed on 5 February 2022).
- Slovak Climate Initiative. Energy poverty in Slovak Republic. 2020. Available online: https://klimatickainiciativa.sk/energeticka-chudoba-na-slovensku/ (accessed on 15 February 2021).
- Senova, A.; Skvarekova, E.; Wittenberger, G.; Rybarova, J. The Use of Geothermal Energy for Heating Buildings as an Option for Sustainable Urban Development in Slovakia. Processes 2022, 10, 289. [Google Scholar] [CrossRef]
- Zelenak, S.; Skvarekova, E.; Senova, A.; Wittenberger, G. The Usage of UCG Technology as Alternative to Reach Low-Carbon Energy. Energies 2021, 14, 3718. [Google Scholar] [CrossRef]
- Patro, E.R.; Kishore, T.S.; Haghighi, A.T. Levelized Cost of Electricity Generation by Small Hydropower Projects under Clean Development Mechanism in India. Energies 2022, 15, 1473. [Google Scholar] [CrossRef]
- Dhaubanjar, S.; Lutz, A.F.; Gernaat, D.; Nepal, S.; Smolenaars, W.; Pradhananga, S.; Biemans, H.; Ludwig, F.; Shrestha, A.B.; Immerzeel, W.W. A systematic framework for the assessment of sustainable hydropower potential in a river basin—The case of the upper Indus. Sci. Total Environ. 2021, 786, 147142. [Google Scholar] [CrossRef] [PubMed]
- Kenfack, J.; Nzotcha, U.; Voufo, J.; Ngohe-Ekam, P.S.; Nsangou, J.C.; Bignom, B. Cameroon’s hydropower potential and development under the vision of Central Africa power pool (CAPP): A review. Renew. Sustain. Energy Rev. 2021, 151, 111596. [Google Scholar] [CrossRef]
- Arthur, E.; Anyemedu, F.O.K.; Gyamfi, C.; Asantewaa-Tannor, P.; Adjei, K.A.; Anornu, G.K.; Odai, S.N. Potential for small hydropower development in the Lower Pra River Basin, Ghana. J. Hydrol. Reg. Stud. 2020, 32, 100757. [Google Scholar] [CrossRef]
- Eshra, N.M.; Zobaa, A.F.; Abdel Aleem, S. Assessment of mini and micro hydropower potential in Egypt: Multi-criteria analysis. Energy Rep. 2021, 7, 2352–4847. [Google Scholar] [CrossRef]
- Kwartnik-Pruc, A.; Mączyńska, A. Assessing Validity of Employing Surveying Methods to Capture Data on Topography to Determine Hydrological and Topographic Parameters Essential for Selecting Locations for the Construction of Small Hydropower Plants. Energies 2022, 15, 1527. [Google Scholar] [CrossRef]
- Torrefranca, I.; Otadoy, R.E.; Tongco, A. Incorporating Landscape Dynamics in Small-Scale Hydropower Site Location Using a GIS and Spatial Analysis Tool: The Case of Bohol, Central Philippines. Energies 2022, 15, 1130. [Google Scholar] [CrossRef]
- Liszka, D.; Krzemianowski, Z.; Węgiel, T.; Borkowski, D.; Polniak, A.; Wawrzykowski, K.; Cebula, A. Alternative Solutions for Small Hydropower Plants. Energies 2022, 15, 1275. [Google Scholar] [CrossRef]
- Zhou, Y.; Hejazi, M.; Smith, S.; Edmonds, J.; Li, H.; Clarke, L.; Calvin, K.; Thomson, A. A comprehensive view of global potential for hydro-generated electricity. Energy Environ. Sci. 2015, 8, 2622–2633. [Google Scholar] [CrossRef]
- Ehrbar, D.; Schmocker, L.; Vetsch, D.F.; Boes, R.M. Hydropower Potential in the Periglacial Environment of Switzerland under Climate Change. Sustainability 2018, 10, 2794. [Google Scholar] [CrossRef] [Green Version]
- Korkovelos, A.; Mentis, D.; Siyal, S.H.; Arderne, C.; Rogner, H.; Bazilian, M.; Howells, M.; Beck, H.; de Roo, A. A Geospatial Assessment of Small-Scale Hydropower Potential in Sub-Saharan Africa. Energies 2018, 11, 3100. [Google Scholar] [CrossRef] [Green Version]
- Dusicka, P.; Gabriel, P.; Hodák, T.; Čihák, F.; Šulek, P. Small Hydroelectric Power Plant; Jaga: Prague, Czech Republic, 2003; pp. 154–196. [Google Scholar]
- Dusicka, P.; Šulek, P. Semi-Peak Operation of the Regulating Canal Hydroelectric Power Plant; Slovak Technical University: Bratislava, Slovakia, 2009; pp. 80–91. [Google Scholar]
- International Renewable Agency. Renewable Power Generation Costs in 2014. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2015/IRENA_RE_Power_Costs/IRENA_RE_Power_Costs_2014_report_chapter7.pdf (accessed on 5 February 2022).
- European Commission. Final Report, Cost of Energy (LCOE). Available online: https://op.europa.eu/o/opportal-service/download-handler?identifier=e2783d72-1752-11eb-b57e-01aa75ed71a1&format=pdf (accessed on 5 February 2022).
Number of Power Plants | Installed Capacity [MW] | Produced Electric Energy [GWh] | |
---|---|---|---|
Total SHPP | 222 | 79.71 | 319.65 |
SHPP 1–10 MW | 24 | 44.52 | 173.18 |
SHPP 0.1–1 MW | 72 | 30.48 | 127.58 |
SHPP under 0.1 MW | 126 | 4.71 | 18.90 |
Year | Monthly Average Flow [m3/s] | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Average | |
2015 | 4.15 | 3.27 | 4.36 | 7.32 | 14.67 | 22.45 | 4.42 | 4.71 | 6.12 | 2.62 | 2.86 | 7.1 | 7.00 |
2016 | 4.95 | 2.62 | 3.41 | 2.95 | 5.02 | 2.22 | 6.39 | 3.71 | 1.10 | 0.98 | 0.70 | 0.73 | 2.66 |
2017 | 0.76 | 0.90 | 2.89 | 2.48 | 1.82 | 2.37 | 2.21 | 1.48 | 0.67 | 0.82 | 1.25 | 0.85 | 1.54 |
2018 | 1.16 | 1.80 | 7.70 | 11.72 | 3.57 | 5.56 | 2.87 | 0.88 | 0.93 | 0.90 | 2.62 | 1.32 | 3.41 |
2019 | 1.83 | 3.72 | 3.48 | 3.52 | 12.77 | 3.10 | 6.34 | 3.40 | 2.26 | 3.40 | 2.24 | 1.75 | 3.98 |
Average | 2.57 | 2.45 | 4.37 | 5.54 | 6.97 | 7.14 | 4.45 | 2.84 | 2.21 | 1.74 | 1.93 | 2.35 | 3.72 |
Discharge (%) | 5.87 | 5.09 | 9.98 | 12.25 | 15.91 | 15.78 | 10.15 | 6.47 | 4.89 | 3.98 | 4.27 | 5.36 | 100 |
Minimum average | 0.76 | 0.90 | 2.89 | 2.48 | 1.82 | 2.22 | 2.21 | 0.88 | 0.67 | 0.82 | 0.70 | 0.73 | 1.54 |
Maximum average | 4.95 | 3.72 | 7.70 | 11.71 | 14.67 | 22.45 | 6.39 | 4.71 | 6.12 | 3.40 | 2.86 | 7.10 | 7.00 |
Year | Monthly Average Flow [m3/s] | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Average | |
2015 | 5.49 | 4.14 | 5.79 | 9.33 | 17.88 | 29.38 | 5.71 | 6.21 | 7.59 | 3.36 | 3.69 | 9.51 | 9.01 |
2016 | 6.48 | 3.56 | 4.54 | 3.81 | 2.52 | 2.77 | 7.85 | 4.50 | 1.45 | 1.41 | 0.99 | 1.06 | 3.46 |
2017 | 1.02 | 1.13 | 4.03 | 3.21 | 2.36 | 3.25 | 3.00 | 1.85 | 0.85 | 1.07 | 1.65 | 1.06 | 2.04 |
2018 | 1.65 | 2.49 | 10.79 | 15.74 | 4.91 | 7.80 | 3.90 | 1.18 | 1.27 | 1.17 | 3.53 | 1.72 | 4.67 |
2019 | 2.28 | 4.89 | 4.51 | 3.95 | 17.31 | 3.67 | 8.15 | 4.35 | 2.89 | 4.49 | 2.96 | 2.22 | 5.16 |
Average | 3.46 | 3.23 | 5.93 | 7.21 | 8.99 | 9.37 | 5.72 | 3.62 | 2.81 | 2.29 | 2.57 | 3.11 | 4.86 |
Discharge (%) | 6.03 | 5.12 | 10.35 | 12.17 | 15.69 | 15.83 | 9.98 | 6.32 | 4.74 | 4.01 | 4.33 | 5.43 | 100 |
Minimum average | 1.02 | 1.13 | 4.03 | 3.21 | 2.36 | 2.77 | 3.00 | 1.18 | 0.85 | 1.07 | 0.99 | 1.06 | 2.04 |
Maximum average | 6.84 | 4.89 | 10.79 | 15.74 | 17.88 | 29.38 | 8.15 | 6.21 | 7.59 | 4.49 | 3.69 | 9.51 | 9.01 |
Year | Monthly Average Flow [m3/s] | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Average | |
2015 | 9.21 | 9.13 | 11.19 | 14.71 | 32.76 | 52.04 | 10.25 | 9.98 | 11.21 | 5.41 | 7.21 | 18.24 | 15.94 |
2016 | 12.80 | 6.56 | 9.65 | 7.14 | 4.49 | 4.16 | 11.68 | 8.34 | 2.43 | 2.42 | 1.96 | 2.22 | 6.20 |
2017 | 2.26 | 2.08 | 6.82 | 5.89 | 4.27 | 5.91 | 4.91 | 2.48 | 1.45 | 2.04 | 3.26 | 2.39 | 3.63 |
2018 | 4.09 | 6.49 | 22.12 | 26.78 | 8.42 | 13.74 | 6.48 | 2.10 | 2.28 | 2.05 | 5.76 | 3.02 | 8.59 |
2019 | 4.36 | 8.79 | 7.15 | 6.31 | 27.09 | 5.17 | 12.71 | 7.10 | 4.27 | 8.95 | 4.89 | 3.81 | 8.41 |
Average | 6.49 | 6.58 | 11.39 | 12.17 | 15.47 | 16.21 | 9.21 | 5.99 | 4.33 | 4.17 | 4.62 | 5.94 | 8.55 |
Discharge (%) | 6.45 | 5.94 | 11.30 | 11.69 | 15.35 | 15.57 | 9.14 | 5.94 | 4.16 | 4.41 | 4.43 | 5.89 | 100 |
Minimum average | 2.03 | 2.08 | 6.83 | 5.89 | 4.26 | 4.16 | 4.91 | 2.10 | 1.45 | 2.04 | 1.96 | 2.22 | 3.63 |
Maximum average | 12.80 | 9.13 | 22.12 | 26.78 | 32.67 | 52.04 | 12.71 | 9.98 | 11.21 | 8.95 | 7.20 | 18.24 | 15.94 |
Number of Years | ||||||
---|---|---|---|---|---|---|
1 | 2 | 5 | 10 | 20 | 50 | 100 |
Flow [m3/s] | ||||||
89 | 127 | 180 | 218 | 260 | 315 | 360 |
River Kilometre | Length of Subsection | Elevation | Head | Specific Head | Gross Potential | Technical Potential | Economic Potential |
---|---|---|---|---|---|---|---|
[km] | [km] | [m] | [m] | [m/100 m] | [kW] | [kW] | [kW] |
79.6 | - | 316.4 | - | - | - | - | - |
78.1 | 1.5 | 315.8 | 0.6 | 0.05 | 25.3 | 0.0 | 0.0 |
77.8 | 0.3 | 307.9 | 7.9 | 2.94 | 332.5 | 266.0 | 99.0 |
76.1 | 1.7 | 307.6 | 0.3 | 0.02 | 12.6 | 0.0 | 0.0 |
75.8 | 0.3 | 302.8 | 4.8 | 1.3 | 202.0 | 161.6 | 43.8 |
75.4 | 0.4 | 298.7 | 4.1 | 1.12 | 172.5 | 138.1 | 37.7 |
75.0 | 0.4 | 298.2 | 0.5 | 0.14 | 21.0 | 0.0 | 0.0 |
74.7 | 0.3 | 295.5 | 2.7 | 0.89 | 113.6 | 90.9 | 30.0 |
73.2 | 1.5 | 295.3 | 0.2 | 0.02 | 8.4 | 0.0 | 0.0 |
72.8 | 0.4 | 290.6 | 4.7 | 1.27 | 197.8 | 158.3 | 42.8 |
72.5 | 0.3 | 287.2 | 3.4 | 1.18 | 143.1 | 114.5 | 39.7 |
70.6 | 1.9 | 285.5 | 1.7 | 0.09 | 71.5 | 57.3 | 0.0 |
70.3 | 0.3 | 271.1 | 14.4 | 4.19 | 606.0 | 484.9 | 141.1 |
70.0 | 0.3 | 262 | 9.1 | 2.88 | 383.0 | 306.5 | 97.0 |
69.0 | 1 | 261.1 | 0.9 | 0.09 | 37.9 | 30.3 | 0.0 |
68.6 | 0.4 | 248.9 | 12.2 | 3.38 | 513.4 | 410.9 | 113.8 |
68.3 | 0.3 | 247.8 | 1.1 | 0.31 | 46.3 | 37.0 | 0.0 |
67.9 | 0.4 | 243.5 | 4.3 | 1.16 | 181.0 | 144.8 | 39.1 |
67.8 | 0.1 | 242.9 | 0.6 | 0.5 | 25.3 | 0.0 | 0.0 |
62.5 | 5.3 | 242.4 | 0.5 | 0.01 | 21.0 | 0.0 | 0.0 |
62.1 | 0.4 | 237.7 | 4.7 | 1.33 | 197.8 | 158.3 | 44.8 |
61.9 | 0.2 | 235.2 | 2.5 | 0.97 | 105.2 | 84.2 | 32.7 |
58.3 | 3.6 | 235 | 0.2 | 0 | 13.2 | 0.0 | 0.0 |
57.7 | 0.6 | 234.4 | 0.6 | 0.1 | 39.5 | 0.0 | 0.0 |
57.3 | 0.4 | 217.6 | 16.8 | 4.99 | 1105.0 | 883.6 | 262.4 |
57.0 | 0.3 | 216.4 | 1.2 | 0.39 | 78.9 | 63.1 | 0.0 |
56.9 | 0.1 | 215.5 | 0.9 | 0.6 | 59.2 | 47.3 | 31.6 |
51.4 | 5.5 | 215.2 | 0.3 | 0.01 | 19.7 | 0.0 | 0.0 |
51.3 | 0.1 | 215.1 | 0.1 | 0.12 | 6.6 | 0.0 | 0.0 |
42.0 | 9.3 | 214.7 | 0.4 | 0 | 26.3 | 0.0 | 0.0 |
41.6 | 0.4 | 208.7 | 6 | 1.73 | 394.7 | 315.6 | 91.0 |
41.3 | 0.3 | 205.9 | 2.8 | 0.95 | 184.2 | 147.3 | 50.0 |
41.0 | 0.3 | 205.9 | 0 | 0 | 0.0 | 0.0 | 0.0 |
40.7 | 0.3 | 200.1 | 5.8 | 1.71 | 381.5 | 305.1 | 89.9 |
40.3 | 0.4 | 197.2 | 2.9 | 0.82 | 190.8 | 152.5 | 43.1 |
40.0 | 0.3 | 196.2 | 1 | 0.31 | 65.8 | 52.6 | 0.0 |
39.6 | 0.4 | 195.3 | 0.9 | 0.22 | 59.2 | 47.3 | 0.0 |
39.2 | 0.4 | 192.9 | 2.4 | 0.63 | 157.9 | 126.2 | 33.1 |
39.0 | 0.2 | 192.1 | 0.8 | 0.34 | 52.6 | 42.1 | 0.0 |
26.6 | 12.4 | 191.9 | 0.2 | 0 | 13.2 | 0.0 | 0.0 |
26.0 | 0.6 | 191.3 | 0.6 | 0.11 | 39.5 | 0.0 | 0.0 |
25.7 | 0.3 | 186.1 | 5.2 | 1.67 | 342.0 | 273.5 | 87.8 |
25.5 | 0.2 | 184.5 | 1.6 | 0.79 | 105.2 | 84.2 | 41.6 |
18.4 | 7.1 | 184.3 | 0.2 | 0 | 13.2 | 0.0 | 0.0 |
18.0 | 0.4 | 181.3 | 3 | 0.79 | 197.3 | 157.8 | 41.6 |
17.6 | 0.4 | 179.7 | 1.6 | 0.42 | 105.2 | 84.2 | 0.0 |
13.0 | 4.6 | 179.6 | 0.1 | 0 | 6.6 | 0.0 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tauš, P.; Beer, M. Evaluation of the Hydropower Potential of the Torysa River and Its Energy Use in the Process of Reducing Energy Poverty of Local Communities. Energies 2022, 15, 3584. https://doi.org/10.3390/en15103584
Tauš P, Beer M. Evaluation of the Hydropower Potential of the Torysa River and Its Energy Use in the Process of Reducing Energy Poverty of Local Communities. Energies. 2022; 15(10):3584. https://doi.org/10.3390/en15103584
Chicago/Turabian StyleTauš, Peter, and Martin Beer. 2022. "Evaluation of the Hydropower Potential of the Torysa River and Its Energy Use in the Process of Reducing Energy Poverty of Local Communities" Energies 15, no. 10: 3584. https://doi.org/10.3390/en15103584
APA StyleTauš, P., & Beer, M. (2022). Evaluation of the Hydropower Potential of the Torysa River and Its Energy Use in the Process of Reducing Energy Poverty of Local Communities. Energies, 15(10), 3584. https://doi.org/10.3390/en15103584