The Modified Heat Flux Modeling in Nanoparticles (Fe3O4 and Aggregation Nanoparticle) Based Fluid between Two Rotating Disks
Abstract
:1. Introduction
- The study of Cattaneo Christov heat flux model in nanofliuid between tow paralla disks.
- The comprehensive study of the nanoliquid flow (with Aggregation and without Aggregation) nanoparticles.
- The characteristics of slip and heat convective boundary conditions are considered.
- The study of heat sources (temperature dependent source and space dependent source) are analyzed.
- To compute the solution of the problem by using the shooting method.
2. Mathematical Formulation
3. Physical Quantities
3.1. Skin Friction
3.2. Nusselt Number
4. Shooting Method
5. Validity of the Numerical Solution
6. Results and Discussion
6.1. Radial and Axial Velocities
6.2. Tangential Velocity
6.3. Temperature Profile
7. Concluding Remarks
- The radial and axial velocity of the fluid reduces by higher-values and ß2 for Ferro FeO and Aggregation nanoparticle base fluid.
- The radial and axial velocity of the fluid reduces by higher-values and for Ferro FeO and Aggregation nanoparticle) based nanofliuid.
- A decline in the tangential velocity of nanofluid was noticed for magnetic parameter M, porous permeability parameter and Reynolds number . Declines in the temperature of fluid for both (Ferro FeO and Aggregation nanoparticle) with parameters , and .
- There are increases in temperature of the fluid by greater values of for Ferro FeO and Aggregation nanoparticle base fluids.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbles | Name |
MHD | Magnetohydrodynamics |
IVP | Initial Value Problem |
and | Stretching rate constants |
Velocity components | |
Velocity rate slip | |
M | Magnetic field parameter |
Temperature at lower and upper disc | |
Prandtl number | |
and | Local skin friction at (lower disk and upper disk) |
total shear stress | |
Specific heat at constant pressure | |
Wall heat flux | |
Nusselt number | |
D | Fractal index |
Aggregate thermal conductivity | |
Reynolds number | |
and | Nanoparticles and Radii of aggregates (m) |
Heat sources | |
Thermal relaxation | |
Rotation parameters | |
RK | Runge-Kutta |
BVP | Boundary value problem |
and z | Cylindrical coordinates |
Temperature | |
P | Pressure |
q | Heat flux |
Diffusion-limited aggregation | |
Dynomic viscosity | |
Slip boundary conditions | |
and | shear stress and tangential stress |
f | Dimensionless velocity |
Density of the nanofluid, | |
c | Stretching rate constant |
Thermal relaxation | |
Kinematic viscosity | |
Biot numbers | |
Maximum volume fraction of nanoparticles | |
Einstein coefficient | |
Porosity parameter |
References
- Khanafer, K.; Vafai, K.; Lightstone, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 2003, 46, 3639–3653. [Google Scholar] [CrossRef]
- Rostami, A.K.; Hosseinzadeh, K.; Ganji, D.D. Hydrothermal analysis of ethylene glycol nanofluid in a porous enclosure with complex snowflake shaped inner wall. Waves Random Complex Media 2020, 32, 1–18. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Pop, I. MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge. Appl. Math. Mech. 2020, 41, 507–520. [Google Scholar] [CrossRef]
- Devi, S.S.U.; Devi, S.A. Numerical investigation of three-dimensional hybrid Cu–Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Can. J. Phys. 2016, 94, 490–496. [Google Scholar] [CrossRef]
- Hosseinzadeh, K.; Roghani, S.; Asadi, A.; Mogharrebi, A.; Ganji, D.D. Investigation of micropolar hybrid ferrofluid flow over a vertical plate by considering various base fluid and nanoparticle shape factor. Int. J. Numer. Methods Heat Fluid Flow 2020, 190, 112–120. [Google Scholar] [CrossRef]
- Shoaib, M.; Raja, M.A.Z.; Sabir, M.T.; Awais, M.; Islam, S.; Shah, Z.; Kumam, P. Numerical analysis of 3-D MHD hybrid nanofluid over a rotational disk in presence of thermal radiation with Joule heating and viscous dissipation effects using Lobatto IIIA technique. Alex. Eng. J. 2021, 60, 3605–3619. [Google Scholar] [CrossRef]
- Hassan, M.; Marin, M.; Ellahi, R.; Alamri, S.Z. Exploration of convective heat transfer and flow characteristics synthesis by Cu–Ag/water hybrid-nanofluids. Heat Transf. Res. 2018, 49, 125394608. [Google Scholar] [CrossRef]
- Dinarvand, S. Nodal/saddle stagnation-point boundary layer flow of CuO–Ag/water hybrid nanofluid: A novel hybridity model. Microsyst. Technol. 2019, 25, 2609–2623. [Google Scholar] [CrossRef]
- Anuar, N.S.; Bachok, N.; Arifin, N.M.; Rosali, H. Effect of suction/injection on stagnation point flow of hybrid nanofluid over an exponentially shrinking sheet with stability analysis. CDF Lett. 2019, 11, 21–33. [Google Scholar]
- Ahmed, A.; Nadeem, S. Effects of magnetohydrodynamics and hybrid nanoparticles on a micropolar fluid with 6-types of stenosis. Results Phys. 2017, 7, 4130–4139. [Google Scholar] [CrossRef]
- Yousefi, M.; Dinarvand, S.; Yazdi, M.E.; Pop, I. Stagnation-point flow of an aqueous titania-copper hybrid nanofluid toward a wavy cylinder. Int. J. Numer. Methods Heat Fluid Flow 2018, 28, 1716–1735. [Google Scholar] [CrossRef]
- Emslie, A.G.; Bonner, F.T.; Peck, L.G. Flow of a viscous liquid on a rotating disk. J. Appl. Phys. 1958, 29, 858–862. [Google Scholar] [CrossRef]
- Rout, B.C.; Mishra, S.R.; Nayak, B. Semi-analytical solution of axisymmetric flows of Cu- and Ag-water nanofluids between two rotating disks. Heat Transf.-Asian Res. 2019, 48, 957–981. [Google Scholar] [CrossRef]
- Khan, J.A.; Mustafa, M.; Hayat, T.; Turkyilmazoglu, M.; Alsaedi, A. Numerical study of nanofluid flow and heat transfer over a rotating disk using Buongiorno’s model. Int. J. Numer. Methods Heat Fluid Flow 2017, 48, 221–234. [Google Scholar] [CrossRef]
- Hayat, T.; Qayyum, S.; Imtiaz, M.; Alsaedi, A. Flow between two stretchable rotating disks with Cattaneo-Cristov heat flux model. Result. Phys 2017, 48, 126–133. [Google Scholar] [CrossRef]
- Li, J.J.; Xu, H.; Raees, A.; Zhao, Q.K. Unsteady mixed bioconvection flow of a nanofluid between two contracting or expanding rotating discs. Z. Naturforsch. 2016, 48, 221–234. [Google Scholar] [CrossRef]
- He, Y.; Jin, Y.; Chen, H.; Ding, Y.; Cang, D.; Lu, H. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int. J. Heat Mass Transf. 2007, 50, 2272–2281. [Google Scholar] [CrossRef]
- Mackolil, J.; Mahanthesh, B. Inclined magnetic field and nanoparticle aggregation effects on thermal Marangoni convection in nanoliquid: A sensitivity analysis. Chin. J. Phys. 2020, 69, 24–37. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, C.; Wang, B. Effect of nanoparticle aggregation on the thermal radiation properties of nanofluids: An experimental and theoretical study. Int. J. Heat Mass Transf. 2020, 154, 119690. [Google Scholar] [CrossRef]
- Wang, F.; Rani, S.P.; Sarada, K.; Gowda, R.P.; Zahran, H.Y.; Mahmoud, E.E. The effects of nanoparticle aggregation and radiation on the flow of nanofluid between the gap of a disk and cone. Case Stud. Therm. Eng. 2022, 33, 101930. [Google Scholar] [CrossRef]
- Wang, F.; Kumar, R.N.; Prasannakumara, B.C.; Khan, U.; Zaib, A.; Abdel-Aty, A.H.; Yahia, I.S.; Alqahtani, M.S.; Galal, A.M. Aspects of Uniform Horizontal Magnetic Field and Nanoparticle Aggregation in the Flow of Nanofluid with Melting Heat Transfer. Nanomaterials 2022, 12, 1000. [Google Scholar] [CrossRef]
- Aziz, A.; Jamshed, W.; Aziz, T.; Bahaidarah, H.; Ur Rehman, K. Entropy analysis of Powell–Eyring hybrid nanofluid including effect of linear thermal radiation and viscous dissipation. J. Therm. Anal. Calorim. 2021, 143, 1331–1343. [Google Scholar] [CrossRef]
- Saif, R.S.; Muhammad, T.; Sadia, H.; Ellahi, R. Boundary layer flow due to a nonlinear stretching curved surface with convective boundary condition and homogeneous and heterogeneous reactions. Phys. A 2020, 551, 123996. [Google Scholar] [CrossRef]
- Hayat, T.; Saif, R.S.; Ellahi, R.; Muhammad, T.; Ahmad, B. Numerical study of boundary-layer flow due to a nonlinear curved stretching sheet with convective heat and mass conditions. Result Phys. 2017, 7, 2601–2606. [Google Scholar] [CrossRef]
- Saleem, S.; Nadeem, S.; Rashidi, M.M.; Raju, C.S.K. An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source. Microsyst. Technol. 2019, 25, 683–689. [Google Scholar] [CrossRef]
- Zia, Q.Z.; Ullah, I.; Waqas, M.A.; Alsaedi, A.; Hayat, T. Cross diffusion and exponential space dependent heat source impacts in radiated three-dimensional (3D) flow of Casson fluid by heated surface. Results Phys. 2018, 8, 1275–1282. [Google Scholar]
- Mahanthesh, B.; Mackolil, J.; Shehzad, S.A. Statistical analysis of stagnation-point heat flow in Williamson fluid with viscous dissipation and exponential heat source effects. Heat Transf. 2020, 49, 4580–4591. [Google Scholar] [CrossRef]
- Gireesha, B.; Kumar, P.S.; Mahanthesh, B.; Shehzad, S.; Abbasi, F. Nonlinear gravitational and radiation aspects in nanoliquid with exponential space dependent heat source and variable viscosity. Microgravity Sci. Technol. 2018, 30, 257–264. [Google Scholar] [CrossRef]
- Hayat, T.; Waqas, M.; Khan, M.I.; Alsaedi, A.; Shehzad, S. Magnetohydrodynamic flow of burgers fluid with heat source and power law heat flux. Chin. J. Phys. 2017, 55, 318–330. [Google Scholar] [CrossRef]
- Said, Z.; Sharma, P.; Sundar, L.S.; Afzal, A.; Li, C. Synthesis, stability, thermophysical properties and AI approach for predictive modelling of Fe3O4 coated MWCNT hybrid nanofluids. J. Mol. Liq. 2021, 340, 117291. [Google Scholar] [CrossRef]
- Said, Z.; Sundar, L.S.; Tiwari, A.K.; Ali, H.M.; Sheikholeslami, M.; Bellos, E.; Babar, H. Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids. Phys. Rep. 2021, 946, 1–94. [Google Scholar] [CrossRef]
- Negi, A.S.; Kumar, B.; Kumar, A.; Kumari, C.; Prachi, K.; Chamkha, A.J. Transportation of TiO2/GO–H2O hybrid nanofluid between two discs. Indian J. Pysics 2021. [Google Scholar] [CrossRef]
- Esfandiari, R.S. Numerical Methods for Engineers and Scientists Using MATLAB; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Hosseinzadeh, K.; Asadi, A.; Mogharrebi, A.; Khalesi, J.; Mousavisani, S.; Ganji, D. Entropy generation analysis of (CH2OH)2 containing CNTs nanofluid flow under effect of MHD and thermal radiation. Case Stud. Therm. Eng. 2019, 14, 100482. [Google Scholar] [CrossRef]
- Raju, S.S.K.; Babu, M.J.; Raju, C. Irreversibility analysis in hybrid nanofluid flow between two rotating disks with activation energy and cross-diffusion effects. Chin. J. Phys. 2021, 72, 499–529. [Google Scholar] [CrossRef]
Properties | H2O Water | Fe3O4 Ferro |
---|---|---|
(kgm) | 997.1 | 5180 |
(JK/kg) | 4180.0 | 650 |
k (W m/K) | 0.6071 | 9.7 |
(s/m) | 0.05 | 0.74 × |
Properties | Without Aggregation | With Aggregation |
---|---|---|
Dynamic viscosity | ; | |
Density | ||
Specific heat capacity | ||
Thermal conductivity | ||
Electrical conductivity |
Hosseinzadeh et al. [34] | Raju et al. [35] | Present Work | Hosseinzadeh et al. [34] | Raju et al. [35] | Present Work | |
−0.3 | 0.1039497753 | 0.10394927 | 0.1039494 | 1.304432381 | 1.30443757 | 1.3044354 |
0.0 | 0.09996773288 | 0.09996441 | 0.0999676 | 1.004285714 | 1.00428589 | 1.0042856 |
0.5 | 0.06663026596 | 0.06663987 | 0.0666397 | 0.502619047 | 0.50261334 | 0.5026132 |
M | Aggregation | Ferro Fe3O4 | Aggregation | Aggregation | |||||
---|---|---|---|---|---|---|---|---|---|
0.3 | 1.0 | 0.5 | 0.4 | 0.5 | 1.0 | 1.59747 | 2.67953 | 3.19359 | 2.37679 |
0.6 | 1.61142 | 2.84218 | 3.19359 | 4.28574 | |||||
0.9 | 1.61651 | 2.98472 | 3.19359 | 4.49434 | |||||
1.2 | 1.61882 | 3.10041 | 3.19359 | 4.68053 | |||||
0.3 | 0.0 | 0.5 | 0.4 | 0.5 | 1.0 | 1.52958 | 2.29524 | 2.29219 | 2.29524 |
0.5 | 1.56974 | 2.34557 | 2.48519 | 3.76718 | |||||
1.0 | 1.59747 | 2.37679 | 2.67955 | 4.05128 | |||||
1.5 | 1.61255 | 2.38949 | 2.87299 | 4.31965 | |||||
0.3 | 1.0 | 0.3 | 0.4 | 0.5 | 1.0 | 1.59747 | 2.37679 | 2.67953 | 2.37679 |
0.6 | 1.59747 | 2.37679 | 2.67955 | 4.05128 | |||||
0.9 | 1.59747 | 2.37679 | 2.67955 | 4.05128 | |||||
1.2 | 1.59747 | 2.37679 | 2.67955 | 4.05128 | |||||
0.3 | 1.0 | 0.5 | 0.3 | 0.5 | 1.0 | 1.59747 | 2.37679 | 2.67953 | 2.37679 |
0.6 | 1.59747 | 2.37679 | 2.67955 | 4.05128 | |||||
0.9 | 1.59747 | 2.37679 | 2.67955 | 4.05128 | |||||
1.2 | 1.59747 | 2.37679 | 2.67955 | 4.05128 | |||||
0.3 | 1.0 | 0.5 | 0.4 | 0.3 | 1.0 | 1.59747 | 2.37679 | 2.67953 | 2.37679 |
0.6 | 1.59747 | 2.37679 | 2.67955 | 4.05128 | |||||
0.9 | 1.59747 | 2.37679 | 2.67955 | 4.05128 | |||||
1.2 | 1.59747 | 2.37679 | 2.67955 | 4.05128 | |||||
0.3 | 1.0 | 0.5 | 0.4 | 0.5 | 0.5 | 1.61774 | 2.39031 | 2.95552 | 2.39031 |
1.0 | 1.59747 | 2.37679 | 2.67955 | 4.05128 | |||||
1.5 | 1.58143 | 2.36462 | 2.5756 | 3.94069 | |||||
2.0 | 1.57147 | 2.35697 | 2.5215 | 3.88348 |
M | Pr | Fe3O4 | Aggregation | Fe3O4 | Aggregation | |||||
---|---|---|---|---|---|---|---|---|---|---|
0.3 | 1.0 | 0.5 | 0.4 | 0.5 | 1.0 | 6.2 | 0.901395 | 0.903215 | 0.437520 | 0.457395 |
0.6 | 0.900171 | 0.905945 | 0.422796 | 0.454138 | ||||||
0.9 | 0.899351 | 0.905886 | 0.414839 | 0.449039 | ||||||
1.2 | 0.899074 | 0.905724 | 0.410834 | 0.445677 | ||||||
0.3 | 0.0 | 0.5 | 0.5 | 0.5 | 1.0 | 6.2 | 0.883823 | 0.888842 | 0.485561 | 0.502841 |
0.5 | 0.891532 | 0.895359 | 0.459554 | 0.478391 | ||||||
1.0 | 0.901397 | 0.903215 | 0.437521 | 0.457395 | ||||||
1.5 | 0.909188 | 0.909387 | 0.414029 | 0.436354 | ||||||
0.3 | 1.0 | 0.3 | 0.5 | 0.5 | 1.0 | 6.2 | 0.901360 | 0.903183 | 0.437461 | 0.457335 |
0.6 | 0.901415 | 0.903232 | 0.437550 | 0.457426 | ||||||
0.9 | 0.901468 | 0.903280 | 0.437639 | 0.457517 | ||||||
1.2 | 0.901522 | 0.903329 | 0.437727 | 0.457608 | ||||||
0.3 | 1.0 | 0.5 | 0.2 | 0.5 | 1.0 | 6.2 | 0.901395 | 0.903215 | 0.437520 | 0.457395 |
0.6 | 0.901397 | 0.903215 | 0.437521 | 0.457395 | ||||||
1.0 | 0.901397 | 0.903215 | 0.437521 | 0.457395 | ||||||
1.4 | 0.901397 | 0.903215 | 0.437521 | 0.457395 | ||||||
0.3 | 1.0 | 0.5 | 0.5 | 0.2 | 1.0 | 6.2 | 0.900753 | 0.902628 | 0.435430 | 0.455262 |
0.6 | 0.901619 | 0.903419 | 0.438228 | 0.458117 | ||||||
1.0 | 0.902546 | 0.904273 | 0.441115 | 0.461060 | ||||||
1.4 | 0.903540 | 0.905194 | 0.444094 | 0.464094 | ||||||
0.3 | 1.0 | 0.5 | 0.5 | 0.5 | 0.0 | 6.2 | 0.678303 | 0.903215 | 1.176870 | 0.457395 |
0.5 | 0.974260 | 0.973073 | 0.451158 | 0.485320 | ||||||
1.0 | 0.901397 | 0.903215 | 0.437521 | 0.457395 | ||||||
1.5 | 0.860176 | 0.863914 | 0.413998 | 0.431130 | ||||||
0.3 | 1.0 | 0.5 | 0.5 | 0.5 | 1.0 | 6.2 | 0.901395 | 0.903215 | 0.437520 | 0.457395 |
7.2 | 0.901734 | 0.903532 | 0.437180 | 0.457096 | ||||||
8.2 | 0.902000 | 0.90378 | 0.436934 | 0.456875 | ||||||
9.2 | 0.902214 | 0.90398 | 0.436749 | 0.456707 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeb, H.; Wahab, H.A.; Khan, U.; Ehab, M.; Malik, M.Y. The Modified Heat Flux Modeling in Nanoparticles (Fe3O4 and Aggregation Nanoparticle) Based Fluid between Two Rotating Disks. Energies 2022, 15, 4088. https://doi.org/10.3390/en15114088
Zeb H, Wahab HA, Khan U, Ehab M, Malik MY. The Modified Heat Flux Modeling in Nanoparticles (Fe3O4 and Aggregation Nanoparticle) Based Fluid between Two Rotating Disks. Energies. 2022; 15(11):4088. https://doi.org/10.3390/en15114088
Chicago/Turabian StyleZeb, Hussan, Hafiz Abdul Wahab, Umar Khan, Mohamed Ehab, and Muhammad Yousaf Malik. 2022. "The Modified Heat Flux Modeling in Nanoparticles (Fe3O4 and Aggregation Nanoparticle) Based Fluid between Two Rotating Disks" Energies 15, no. 11: 4088. https://doi.org/10.3390/en15114088
APA StyleZeb, H., Wahab, H. A., Khan, U., Ehab, M., & Malik, M. Y. (2022). The Modified Heat Flux Modeling in Nanoparticles (Fe3O4 and Aggregation Nanoparticle) Based Fluid between Two Rotating Disks. Energies, 15(11), 4088. https://doi.org/10.3390/en15114088