Toward a Carbon-Neutral State: A Carbon–Energy–Water Nexus Perspective of China’s Coal Power Industry
Abstract
:1. Introduction
1.1. Background on Carbon Neutrality and China’s Coal Industry
1.2. Literature Review on CEW Nexus Approach
1.3. Literature Review on CEW Model Selection
1.4. Research Gaps and Goals
- A general framework to analyze the perturbation of the CEW nexus driven by coupled effects of carbon–energy sectors;
- A mechanism to account for the coupled effects of energy transition and CCUS applications in China with carbon mitigation synergy and sustainability tradeoffs for the CEW nexus and financial profits;
- A life cycle analysis of China’s coal power industry; and
- Luxuriant and diverse empirical data for China’s coal power industry from experts.
2. Methodology
2.1. Conceptual Framework of ATPCC Design
- Energy consumption tradeoffs between the levels of energy transition and CCUS applications: Reducing more share of coal electricity would lead to less energy consumption. More carbon captured from CCUS would meanmore energy consumption.
- Water consumption tradeoffs between the levels of energy transition and CCUS adoptions: Reducing coal-generated electricity would lead to less water consumption. More carbon captured from CCUS would lead to more water consumption.
- Economic revenue tradeoffs between the levels of energy transition and CCUS applications: Reducing coal-based electricity would lead to less economic profits from electricity sales. More CCUS adoptions would increase economic profit from carbon trade.
2.2. The ATPCC
3. ATPCC Model Parameters
3.1. Energy Consumption in Life Cycle Coal Electricity Production
3.1.1. Energy Consumption in Coal Mining and Washing/Refinement
3.1.2. Energy Consumption in Coal Power Transportation
3.1.3. Energy Consumption in Coal Power Generation
3.2. Carbon Emission in Life Cycle Coal Electricity Production
3.3. Water Consumption in the Life Cycle of Coal Electricity Production
3.3.1. Water Consumption in Coal Mining and Washing/Refinement
3.3.2. Water Consumption in Coal Electricity Production
3.4. Profits in the Life Cycle of Coal Production
3.5. The CCUS Impacts
3.5.1. CCUS Impact on Energy and Water Consumption
3.5.2. CCUS Impacts on Economic Profits
4. Scenarios
4.1. Baseline Scenario
4.1.1. Predicted Electricity Demand in China
4.1.2. Predicted Change in the Coal Electricity Share
4.1.3. Predicted Change in the CCUS Implementation in Coal Electricity Production
4.2. Alternative Portfolios and the Difference with the Baseline Scenario
4.2.1. Share of Coal Electricity
4.2.2. Carbon Emission Mitigation from CCUS
5. Results
5.1. Scenario Outputs
5.1.1. Baseline Scenario Outputs
5.1.2. Slow Scenario Outputs
5.1.3. Radical Scenario Outputs
5.2. Tradeoffs between Scenarios
6. Discussion
6.1. Carbon Mitigation Policies and CEW Nexus in China
6.2. Limitations of the Study
7. Conclusions
- The carbon-neutral state in China’s coal-powered electricity industry is achievable with significant efforts on energy transition and CCUS applications.
- Different implementation levels for the coupling carbon mitigation policies with carbon-neutral synergy would lead to tradeoffs in the CEW nexus and economic profits in China’s coal power industry.
- The tradeoffs would impact the sustainability of China’s coal power system development. The tradeoffs are not simply an inverse correlation between one and the other. Sustainability in coal electricity generation in China’s future can be achieved by optimizing the energy transition and CCUS applications in different ways to balance carbon emissions, water consumption, energy consumption, and economic profits.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: London, UK, 2021; in press. [Google Scholar]
- Salvia, M.; Reckien, D.; Pietrapertosa, F.; Eckersley, P.; Spyridaki, N.A.; Krook-Riekkola, A.; Heidrich, O. Will climate mitigation ambitions lead to carbon neutrality? An analysis of the local-level plans of 327 cities in the EU. Renew. Sustain. Energy Rev. 2021, 135, 110253. [Google Scholar] [CrossRef]
- Altarhouni, A.; Danju, D.; Samour, A. Insurance Market Development, Energy Consumption, and Turkey’s CO2 Emissions. New Perspectives from a Bootstrap ARDL Test. Energies 2021, 14, 7830. [Google Scholar] [CrossRef]
- Zhao, Y.; Su, Q.; Li, B.; Zhang, Y.; Wang, X.; Zhao, H.; Guo, S. Have those countries declaring “zero carbon” or “carbon neutral” climate goals achieved carbon emissions-economic growth decoupling? J. Clean. Prod. 2022, 363, 132450. [Google Scholar] [CrossRef]
- CLP Media Energy Information Research Center. China Energy Big Data Report (2021); CLP Media Energy Information Research Center: Beijing, China, 2021. (In Chinese) [Google Scholar]
- Yan, J.; Yang, Y.; Elia Campana, P.; He, J. City-level analysis of subsidy-free solar photovoltaic electricity price, profits and grid parity in China. Nat. Energy 2019, 4, 709–717. [Google Scholar] [CrossRef]
- Meha, D.; Pfeifer, A.; Sahiti, N.; Schneider, D.R.; Yan, J. Sustainable transition pathways with high penetration of variable renewable energy in the coal-based energy systems. Appl. Energy 2021, 304, 117865. [Google Scholar] [CrossRef]
- Chen, J.; Liu, G.; Kang, Y.; Wu, B.; Sun, R.; Zhou, C.; Wu, D. Coal utilization in China: Environmental impacts and human health. Environ. Geochem. Health 2014, 36, 735–753. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Hong, J.; Gao, M. Environmental impact assessment of three coal-based electricity generation scenarios in China. Energy 2012, 45, 952–959. [Google Scholar] [CrossRef]
- Vujić, J.; Antić, D.P.; Vukmirović, Z. Environmental impact and cost analysis of coal versus nuclear power: The US case. Energy 2012, 45, 31–42. [Google Scholar] [CrossRef]
- Liu, J.; Wang, K.; Zou, J.; Kong, Y. The implications of coal consumption in the power sector for China’s CO2 peaking target. Appl. Energy 2019, 253, 113518. [Google Scholar] [CrossRef]
- Liu, Z.; Guan, D.; Wei, W.; Davis, S.J.; Ciais, P.; Bai, J.; Peng, S.; Zhang, Q.; Hubacek, K.; Marland, G.; et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 2015, 524, 335–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.P.; Wang, L.; Zhang, X.L. Environmental impact of coal mine methane emissions and responding strategies in China. Int. J. Greenh. Gas Control 2011, 5, 157–166. [Google Scholar] [CrossRef]
- Wang, J.; Wang, R.; Zhu, Y.; Li, J. Life cycle assessment and environmental cost accounting of coal-fired power generation in China. Energy Policy 2018, 115, 374–384. [Google Scholar] [CrossRef]
- Han, X.; Chen, N.; Yan, J.; Liu, J.; Liu, M.; Karellas, S. Thermodynamic analysis and life cycle assessment of supercritical pulverized coal-fired power plant integrated with No. 0 feedwater pre-heater under partial loads. J. Clean. Prod. 2019, 233, 1106–1122. [Google Scholar] [CrossRef]
- Dong, H.; Liu, Y.; Zhao, Z.; Tan, X.; Managi, S. Carbon neutrality commitment for China: From vision to action. Sustain. Sci. 2022, accepted/in press. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, W. Assessing the energy transition in China towards carbon neutrality with a probabilistic framework. Nat. Commun. 2022, 13, 87. [Google Scholar] [CrossRef]
- Liu, S.; Peng, G.; Sun, C.; Balezentis, T.; Guo, A. Comparison of improving energy use and mitigating pollutant emissions from industrial and non-industrial activities: Evidence from a variable-specific productivity analysis framework. Sci. Total Environ. 2022, 806, 151279. [Google Scholar] [CrossRef]
- Jiang, K.; Ashworth, P.; Zhang, S.; Liang, X.; Sun, Y.; Angus, D. China’s carbon capture, utilization and storage (CCUS) policy: A critical review. Renew. Sustain. Energy Rev. 2020, 119, 109601. [Google Scholar] [CrossRef]
- Yao, X.; Zhong, P.; Zhang, X.; Zhu, L. Business model design for the carbon capture utilization and storage (CCUS) project in China. Energy Policy 2018, 121, 519–533. [Google Scholar] [CrossRef]
- Metz, B.; Davidson, O.; De Coninck, H.C.; Loos, M.; Meyer, L. IPCC Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Chu, S. Carbon capture and sequestration. Science 2009, 325, 1599. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.F.; First, E.L.; Boukouvala, F.; Floudas, C.A. A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU. Comput. Chem. Eng. 2015, 81, 2–21. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Hou, Z.; Liu, H.; Cao, C.; Qi, J. The sustainability assessment of CO2 capture, utilization and storage (CCUS) and the conversion of cropland to forestland program (CCFP) in the Water–Energy–Food (WEF) framework towards China’s carbon neutrality by 2060. Environ. Earth Sci. 2021, 80, 1–17. [Google Scholar] [CrossRef]
- Liu, H.J.; Were, P.; Li, Q.; Hou, Z. Worldwide Status of CCUS Technologies and Their Development and Challenges in China. Geofluids 2017, 2017, 6126505. [Google Scholar] [CrossRef]
- Shirkey, G.; Belongeay, M.; Wu, S.; Ma, X.; Tavakol, H.; Anctil, A.; Marquette-Pyatt, S.; Stewart, R.; Sinha, P.; Corkish, R.; et al. An environmental and societal analysis of the US electrical energy industry based on the water–energy nexus. Energies 2021, 14, 2633. [Google Scholar] [CrossRef]
- Li, Q.; Wei, Y.N.; Chen, Z.A. Water-CCUS nexus: Challenges and opportunities of China’s coal chemical industry. Clean Technol. Environ. Policy 2016, 18, 775–786. [Google Scholar] [CrossRef]
- Zhai, H.; Rubina, E.S. Carbon capture effects on water use at pulverized coal power plants. Energy Procedia 2011, 4, 2238–2244. [Google Scholar] [CrossRef] [Green Version]
- Newmark, R.L.; Friedmann, S.J.; Carroll, S.A. Water challenges for geologic carbon capture and sequestration. Environ. Manag. 2010, 45, 651–661. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Liu, S.; Wang, F.; Liu, Y.; Li, M.; Wang, Q.; Dong, S.; Zhao, W.; Tran, L.-S.P.; Sun, Y.; et al. Effects of agricultural activities on energy-carbon-water nexus of the Qinghai-Tibet Plateau. J. Clean. Prod. 2022, 331, 129995. [Google Scholar] [CrossRef]
- Li, H.; Jiang, H.D.; Dong, K.Y.; Wei, Y.M.; Liao, H. A comparative analysis of the life cycle environmental emissions from wind and coal power: Evidence from China. J. Clean. Prod. 2020, 248, 119192. [Google Scholar] [CrossRef]
- Liang, M.S.; Huang, G.H.; Chen, J.P.; Li, Y.P. Energy-water-carbon nexus system planning: A case study of Yangtze River Delta urban agglomeration, China. Appl. Energy 2022, 308, 118144. [Google Scholar] [CrossRef]
- Lim, X.Y.; Foo, D.C.; Tan, R.R. Pinch analysis for the planning of power generation sector in the United Arab Emirates: A climate-energy-water nexus study. J. Clean. Prod. 2018, 180, 11–19. [Google Scholar] [CrossRef]
- DeNooyer, T.A.; Peschel, J.M.; Zhang, Z.; Stillwell, A.S. Integrating water resources and power generation: The energy–water nexus in Illinois. Appl. Energy 2016, 162, 363–371. [Google Scholar] [CrossRef]
- Chhipi-Shrestha, G.; Hewage, K.; Sadiq, R. Water–energy–carbon nexus modeling for urban water systems: System dynamics approach. J. Water Resour. Plan. Manag. 2017, 143, 04017016. [Google Scholar] [CrossRef]
- Lee, M.; Keller, A.A.; Chiang, P.C.; Den, W.; Wang, H.; Hou, C.H.; Wu, J.; Wang, X.; Yan, J. Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks. Appl. Energy 2017, 205, 589–601. [Google Scholar] [CrossRef] [Green Version]
- Trubetskaya, A.; Horan, W.; Conheady, P.; Stockil, K.; Moore, S. A methodology for industrial water footprint assessment using energy–water–carbon nexus. Processes 2021, 9, 393. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, Q.; Han, J.; Guo, M. Energy-Water-Carbon Nexus Optimization for the Path of Achieving Carbon Emission Peak in China considering Multiple Uncertainties: A Case Study in Inner Mongolia. Energies 2021, 14, 1067. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, Y.; Li, H.; Wang, L.; Li, L.; Jiang, S. Quantitative analysis of the water-energy-climate nexus in Shanxi Province, China. Energy Procedia 2017, 142, 2341–2347. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Xu, L.; Tong, Y.; Jia, X.; Tian, H. Water-energy-carbon nexus assessment of China’s iron and steel industry: Case study from plant level. J. Clean. Prod. 2020, 253, 119910. [Google Scholar] [CrossRef]
- Leivas, R.; Laso, J.; Abejón, R.; Margallo, M.; Aldaco, R. Environmental assessment of food and beverage under a NEXUS Water-Energy-Climate approach: Application to the spirit drinks. Sci. Total Environ. 2020, 720, 137576. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, T.; Shen, X.; Zhai, Y.; Hong, J. Environmental footprint assessment of China’s ceramic tile production from energy-carbon-water nexus insight. J. Clean. Prod. 2022, 1, 130606. [Google Scholar] [CrossRef]
- Scott, C.A. The water-energy-climate nexus: Resources and policy outlook for aquifers in Mexico. Water Resour. Res. 2011, 47, W00L04.1–W00L04.18. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Dong, Y.N.; Wang, H.; Keller, A.; Xu, J.; Chiramba, T.; Li, F. Quantification of the water, energy and carbon footprints of wastewater treatment plants in China considering a water–energy nexus perspective. Ecol. Indic. 2016, 60, 402–409. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wang, Y.; Sun, M.; Wang, R.; Zheng, P. Exploring the environmental pressures in urban sectors: An energy-water-carbon nexus perspective. Appl. Energy 2018, 228, 2298–2307. [Google Scholar] [CrossRef]
- Yang, X.; Yi, S.; Qu, S.; Wang, R.; Wang, Y.; Xu, M. Key transmission sectors of energy-water-carbon nexus pressures in Shanghai, China. J. Clean. Prod. 2019, 225, 27–35. [Google Scholar] [CrossRef]
- Li, H.; Lin, J.; Zhao, Y.; Kang, J.N. Identifying the driving factors of energy-water nexus in Beijing from both economy-and sector-wide perspectives. J. Clean. Prod. 2019, 235, 1450–1464. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Zheng, L.; Wang, S.; Kang, J.; Liu, Y.; Shan, Y. Dynamic characteristics and drivers of the regional household energy-carbon-water nexus in China. Environ. Sci. Pollut. Res. 2021, 28, 55220–55232. [Google Scholar] [CrossRef]
- Wang, X.C.; Klemeš, J.J.; Long, X.; Zhang, P.; Varbanov, P.S.; Fan, W.; Dong, X.; Wang, Y. Measuring the environmental performance of the EU27 from the Water-Energy-Carbon nexus perspective. J. Clean. Prod. 2020, 265, 121832. [Google Scholar] [CrossRef]
- Meng, F.; Liu, G.; Chang, Y.; Su, M.; Hu, Y.; Yang, Z. Quantification of urban water-carbon nexus using disaggregated input-output model: A case study in Beijing (China). Energy 2019, 171, 403–418. [Google Scholar] [CrossRef]
- Wang, X.C.; Klemeš, J.J.; Wang, Y.; Dong, X.; Wei, H.; Xu, Z.; Varbanov, P.S. Water-Energy-Carbon Emissions nexus analysis of China: An environmental input-output model-based approach. Appl. Energy 2020, 261, 114431. [Google Scholar] [CrossRef]
- Tian, P.; Lu, H.; Reinout, H.; Li, D.; Zhang, K.; Yang, Y. Water-energy-carbon nexus in China’s intra and inter-regional trade. Sci. Total Environ. 2022, 806, 150666. [Google Scholar] [CrossRef]
- Mroue, A.M.; Mohtar, R.H.; Pistikopoulos, E.N.; Holtzapple, M.T. Energy Portfolio Assessment Tool (EPAT): Sustainable energy planning using the WEF nexus approach–Texas case. Sci. Total Environ. 2019, 648, 1649–1664. [Google Scholar] [CrossRef]
- Ifaei, P.; Yoo, C. The compatibility of controlled power plants with self-sustainable models using a hybrid input/output and water-energy-carbon nexus analysis for climate change adaptation. J. Clean. Prod. 2019, 208, 753–777. [Google Scholar] [CrossRef]
- Zhou, N.; Zhang, J.; Khanna, N.; Fridley, D.; Jiang, S.; Liu, X. Intertwined impacts of water, energy development, and carbon emissions in China. Appl. Energy 2019, 238, 78–91. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Shi, Q.; Qian, Z.; Zheng, L.; Wang, S.; He, Y. Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China. Energy 2022, 238, 121783. [Google Scholar] [CrossRef]
- Liu, X.; Gao, X.; Wu, X.; Yu, W.; Chen, L.; Ni, R.; Zhao, Y.; Duan, H.; Zhao, F.; Chen, L.; et al. Updated hourly emissions factors for Chinese power plants showing the impact of widespread ultralow emissions technology deployment. Environ. Sci. Technol. 2019, 53, 2570–2578. [Google Scholar] [CrossRef]
- Department of Energy Statistics, National Bureau of Statistics. China Energy Statistics Yearbook 2021; Department of Energy Statistics, National Bureau of Statistics: Beijing, China, 2021. Available online: http://www.stats.gov.cn/tjsj/ndsj/2021/indexch.htm (accessed on 1 June 2021). (In Chinese)
- Zhang, K.; Li, Q.S. Strategic research on clean and efficient development and utilization of coal in China under carbon constraint conditions. Coal Econ. Res. 2019, 39, 10–14. [Google Scholar] [CrossRef]
- Ren, S.H.; Xie, Y.C.; Jiao, X.M.; Xie, H.P. Characteristics of Carbon Emissions During Coal Development and Technical Approaches for Carbon Neutral Development. Adv. Eng. Sci. 2022, 54, 60–68. [Google Scholar] [CrossRef]
- Ge, S.R.; Liu, H.T.; Liu, J.L.; Hu, H.S. Energy consumption and energy-saving strategies for coal mine production in China. J. China Univ. Min. Technol. 2018, 47, 9–14. [Google Scholar] [CrossRef]
- Ou, X.; Yan, X.; Zhang, X. Using coal for transportation in China: Life cycle GHG of coal-based fuel and electric vehicle, and policy implications. Int. J. Greenh. Gas Control 2010, 4, 878–887. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, Q.; Wang, L.; Wang, S.; Li, J.; Zhang, X.; Fantozzi, F. VOC emissions of coal-fired power plants in China based on life cycle assessment method. Fuel 2021, 292, 120325. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, H. The impact of China’s carbon trading market on regional carbon emission efficiency. China Popul. Resour. Environ. 2019, 29, 50–58. (In Chinese) [Google Scholar]
- Bao, W.W.; Yang, Y.; Kang, J.N.; Yu, H.P. Thermal Design and Economy Analysis of 1350MW Ultra Super Critical Double Reheat Unit. Turbine Technol. 2017, 59, 21–25. (In Chinese) [Google Scholar]
- Development and Reform Office Climate No.2920. Guidelines for Accounting Methods and Reporting of Greenhouse Gas Emissions of Chinese Coal Production Enterprises (Trial); National Development and Reform Commission: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Tu, H.; Liu, C.J. Calculation of carbon dioxide emission from standard coal. Coal Qual. Technol. 2014, 2, 57–60. (In Chinese) [Google Scholar]
- Miller, S.M.; Michalak, A.M.; Detmers, R.G.; Hasekamp, O.P.; Bruhwiler, L.M.; Schwietzke, S. China’s coal mine methane regulations have not curbed growing emissions. Nat. Commun. 2019, 10, 303. [Google Scholar] [CrossRef] [Green Version]
- Zhou, A.; Hu, J.; Wang, K. Carbon emission assessment and control measures for coal mining in China. Environ. Earth Sci. 2020, 79, 1–15. [Google Scholar] [CrossRef]
- Sheng, J.; Song, S.; Zhang, Y.; Prinn, R.G.; Janssens-Maenhout, G. Bottom-Up estimates of coal mine methane emissions in China: A gridded inventory, emission factors, and trends. Environ. Sci. Technol. Lett. 2019, 6, 473–478. [Google Scholar] [CrossRef]
- Gao, J.; Guan, C.; Zhang, B. China’s CH4 emissions from coal mining: A review of current bottom-up inventories. Sci. Total Environ. 2020, 725, 138295. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiang, S.; Zhao, Y.; Li, H.; He, G.; Li, L. Life-cycle-based water footprint assessment of coal-fired power generation in China. J. Clean. Prod. 2020, 254, 120098. [Google Scholar] [CrossRef]
- Shang, Y.; Hei, P.; Lu, S.; Shang, L.; Li, X.; Wei, Y.; Jia, D.; Jiang, D.; Ye, Y.; Gong, J.; et al. China’s energy-water nexus: Assessing water conservation synergies of the total coal consumption cap strategy until 2050. Appl. Energy 2018, 210, 643–660. [Google Scholar] [CrossRef]
- Pan, L.Y.; Liu, P.; Ma, L.; Zheng, L. A supply chain-based assessment of water issues in the coal industry in China. Energy Policy 2012, 48, 93–102. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, Y.; Lu, S.; Chen, Q.; An, T.; Han, X.; Zhuo, L. Impact of coal power production on sustainable water resources management in the coal-fired power energy bases of Northern China. Appl. Energy 2019, 250, 821–833. [Google Scholar] [CrossRef]
- Zhang, C.; Li, J.W. Evaluation of Water Use Efficiency of China’s Coal-Fired Units and Analysis of the Effect of Water Quota Improvement. Energy Found. Grant Proj. Tech. Rep. 2020. Available online: https://www.efchina.org/Attachments/Report/report-cemp-20201103/%E4%B8%AD%E5%9B%BD%E7%87%83%E7%85%A4%E6%9C%BA%E7%BB%84%E7%94%A8%E6%B0%B4%E6%95%88%E7%8E%87%E8%AF%84%E4%BC%B0%E5%8F%8A%E7%94%A8%E6%B0%B4%E5%AE%9A%E9%A2%9D%E6%8F%90%E6%A0%87%E6%95%88%E6%9E%9C%E5%88%86%E6%9E%90.pdf (accessed on 24 April 2022).
- Li, J.; Zhang, Y.; Deng, Y.; Xu, D.; Xie, K. Water consumption and conservation assessment of the coal power industry in China. Sustain. Energy Technol. Assess. 2021, 47, 101464. [Google Scholar] [CrossRef]
- Zhang, C.; Zhong, L.K.; Wang, J. Decoupling between water use and thermoelectric power generation growth in China. Nat. Energy 2018, 3, 792–799. [Google Scholar] [CrossRef]
- Fennell, P.S. Comparative Energy Analysis of Renewable Electricity and Carbon Capture and Storage. Joule 2019, 3, 1406–1408. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Ma, Q.; Liu, L.N. Development of Carbon Capture, Utilization and Storage Technology in China. Eng. Sci. 2021, 23, 070–080. [Google Scholar] [CrossRef]
- Yi, L.; He, Q.; Li, Z.P.; Yang, L. Research on the Pathways of Carbon Market Development: International Experiences and Implications for China. Clim. Chang. Res. 2019, 15, 232–245. Available online: http://www.chinacarbon.info/ (accessed on 24 April 2022). (In Chinese).
- Slater, H.; De Boer, D.; Qian, G.; Wang, S. 2021 China Carbon Pricing Survey; China Carbon Forum (CCF): Beijing, China, 2021. (In Chinese) [Google Scholar]
- Cozzi, L.; Gould, T.; Bouckart, S.; Crow, D.; Kim, T.Y.; Mcglade, C.; Wetzel, D. World Energy Outlook 2020; International Energy Agency: Paris, France, 2020; pp. 1–461. [Google Scholar]
- Xiong, J.; Xu, D. Relationship between energy consumption, economic growth and environmental pollution in China. Environ. Res. 2021, 194, 110718. [Google Scholar] [CrossRef]
- Xie, H.P.; Ren, S.H.; Xie, Y.C. Development opportunities of the coal industry towards the goal of carbon neutrality. J. China Coal Soc. 2021, 46, 1808–1820. (In Chinese) [Google Scholar] [CrossRef]
- Cai, B.F.; Li, Q.; Zhang, X.; Cao, C.; Cao, L.; Chen, W.; Chen, Z.; Dong, J.; Fan, J.; Jiang, Y.; et al. China Carbon Dioxide Capture, Utilization and Storage (CCUS) Annual Report: China CCUS Path Study; Chinese Academy of Environmental Planning, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, The Administrative Center for China’s Agenda 21: Beijing, China, 2021. (In Chinese) [Google Scholar]
- International Energy Agency (IEA). Energy technology perspectives 2020. In Special Report on Carbon Capture, Utilization and Storage; IEA: Paris, France, 2020. [Google Scholar]
- Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- Räsänen, T.A.; Varis, O.; Scherer, L.; Kummu, M. Greenhouse gas emissions of hydropower in the Mekong River Basin. Environ. Res. Lett. 2018, 13, 034030. [Google Scholar] [CrossRef]
- Fan, Y.V.; Klemeš, J.J.; Ko, C.H. Bioenergy carbon emissions footprint considering the biogenic carbon and secondary effects. Int. J. Energy Res. 2021, 45, 283–296. [Google Scholar] [CrossRef]
- Wilkins, R.; Menefee, A.H.; Clarens, A.F. Environmental life cycle analysis of water and CO2-based fracturing fluids used in unconventional gas production. Environ. Sci. Technol. 2016, 50, 13134–13141. [Google Scholar] [CrossRef] [PubMed]
- Dijkman, J.G.; Van Haeringen, H.; De Lange, S.J. Fuzzy numbers. J. Math. Anal. Appl. 1983, 92, 301–341. [Google Scholar] [CrossRef] [Green Version]
Energy Category | Comprehensive | Coal | Coke | Oil | Gasoline | Kerosene | Diesel | Fuel Oil | Natural Gas | Power |
---|---|---|---|---|---|---|---|---|---|---|
Convert coefficient (kgce/kg) or (kgce/m3) or (kgce/kW·h) | 0.7143 | 0.9714 | 1.4286 | 1.4714 | 1.4714 | 1.4571 | 1.4286 | 1.330 | 0.1720 | |
Energy consumption in coal mining and washing/refinement by sources | 27.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 2.4 | 9.3 | |
Energy consumption of coal mining and washing converted for standard coal (kgce/t) | 24.6 | 19.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 3.2 | 1.6 |
Energy consumption in coal transportation (kgce/t) | 4.2 | 0.5 | 2.5 | 1.2 |
Year | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | 2055 | 2060 |
---|---|---|---|---|---|---|---|---|---|
Comprehensive coal consumption of coal mining and washing (gce/t) | 24.6 | 20.1 | 16.4 | 14.0 | 12.1 | 10.9 | 9.9 | 9.4 | 8.9 |
Comprehensive coal consumption in power generation and power supply (gce/kWh) | 351.2 | 342.5 | 334.1 | 325.8 | 317.8 | 309.8 | 302.1 | 294.7 | 287.4 |
Coal consumption of coal power generation and power supply (gce/kWh) | 305.5 | 297.9 | 290.6 | 283.4 | 276.4 | 269.5 | 262.8 | 256.3 | 250.0 |
Type | Capacity (MW) | Comprehensive (gce/kW·h) | Coal (gce/kW·h) | Coke (mgce/kW·h) | Oil (mgce/kW·h) | Gasoline (mgce/kW·h) | Kerosene (mgce/kW·h) | Diesel (mgce/kW·h) | Fuel Oil (mgce/kW·h) | Natural Gas (gce/kW·h) | Power (gce/kW·h) |
---|---|---|---|---|---|---|---|---|---|---|---|
Domestic | 100 | 417.9 | 363.5 | 114.6 | 0.45 | 85.1 | 8.1 | 195.1 | 13.3 | 15.96 | 38.01 |
Domestic | 125 | 342.7 | 298.1 | 94.0 | 0.37 | 69.8 | 6.7 | 160.0 | 94.0 | 13.1 | 31.2 |
Subcritical | 300 Water-cooling | 326.9 | 284.3 | 89.6 | 0.35 | 66.6 | 6.3 | 152.6 | 89.6 | 12.5 | 29.7 |
Supercritical | 660 Water-cooling | 314.2 | 273.3 | 86.2 | 0.34 | 64.0 | 6.1 | 146.7 | 86.2 | 12.0 | 28.6 |
Subcritical | 600 Water-cooling | 321.9 | 280.0 | 88.3 | 0.34 | 65.6 | 6.2 | 150.3 | 88.3 | 12.3 | 29.3 |
Ultra-supercritical | 660 Water-cooling | 294.2 | 255.9 | 80.7 | 0.31 | 59.9 | 5.7 | 137.4 | 80.7 | 11.2 | 26.8 |
Ultra-supercritical | 600 Air-cooling | 341.1 | 296.7 | 93.5 | 0.36 | 69.5 | 6.6 | 159.3 | 93.5 | 13.0 | 31.0 |
Subcritical | 600 Air-cooling | 337.7 | 293.7 | 92.6 | 0.36 | 68.8 | 6.6 | 157.7 | 92.6 | 12.9 | 30.7 |
Ultra-supercritical | 1000 Water-cooling | 303.4 | 263.9 | 83.2 | 0.32 | 61.8 | 5.9 | 141.7 | 83.2 | 11.6 | 27.6 |
Energy Category | Integrated | Coal | Coke | Oil | Gasoline | Kerosene | Diesel | Fuel Oil | Natural Gas | Power |
---|---|---|---|---|---|---|---|---|---|---|
Energy consumption in coal power generation (gce/kW·h) | 351.2 | 305.5 | 0.1 | 0.0 | 0.1 | 0.0 | 0.2 | 0.0 | 13.4 | 32 |
Proportion of energy consumption (%) | 100.00 | 86.98 | 0.03 | 0.00 | 0.02 | 0.00 | 0.05 | 0.00 | 3.82 | 9.10 |
Year | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | 2055 | 2060 |
---|---|---|---|---|---|---|---|---|---|
Carbon emission intensity of coal mining and washing/refinement (kg CO2/t) | 65.4 | 53.5 | 43.6 | 37.2 | 32.2 | 29.0 | 26.3 | 25.0 | 23.7 |
Carbon emission intensity of coal transportation (kg CO2/t) | 11.46 | 11.46 | 11.46 | 11.46 | 11.46 | 11.46 | 11.46 | 11.46 | 11.46 |
Carbon emission intensity of coal-fired power supply (g CO2/kWh) | 934.3 | 911.0 | 888.7 | 866.7 | 845.3 | 824.2 | 803.7 | 783.8 | 764.5 |
Gas carbon emission intensity per ton of coal (kgCO2/t) | 67.6 | 50.1 | 37.2 | 27.6 | 20.5 | 15.2 | 11.3 | 8.4 | 6.2 |
Carbon emission intensity of post-mine activities (kgCO2/t) | 18.0 | 16.5 | 15.2 | 13.9 | 12.8 | 11.7 | 10.8 | 9.9 | 9.1 |
Year | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | 2055 | 2060 |
---|---|---|---|---|---|---|---|---|---|
Water consumption in coal mining and washing | 3.1 | 2.55 | 2 | 1.35 | 0.85 | 0.68 | 0.47 | 0.33 | 0.14 |
Water consumption in coal power generation (m3/MWh) | 1.34 | 1.22 | 1.10 | 1.00 | 0.90 | 0.80 | 0.75 | 0.71 | 0.68 |
Cooling Method | Capacity (MW) | Leading (m3/MWh) | Advanced (m3/MWh) | Base (m3/MWh) |
---|---|---|---|---|
Closed-loop cooling | <300 | 1.73 | 1.85 | 3.20 |
300 | 1.60 | 1.70 | 2.70 | |
600 | 1.54 | 1.65 | 2.35 | |
1000 | 1.52 | 1.60 | 2.00 | |
Open-loop cooling | <300 | 0.25 | 0.30 | 0.72 |
300 | 0.22 | 0.28 | 0.49 | |
600 | 0.20 | 0.24 | 0.42 | |
1000 | 0.19 | 0.22 | 0.35 | |
Air cooling | <300 | 0.30 | 0.32 | 0.80 |
300 | 0.23 | 0.30 | 0.57 | |
600 | 0.22 | 0.27 | 0.49 | |
1000 | 0.21 | 0.24 | 0.42 | |
Average | 0.68 | 0.75 | 1.21 |
Energy Category | Comprehensive | Coal | Coke | Oil | Gasoline | Kerosene | Diesel | Fuel Oil | Natural Gas | Power |
---|---|---|---|---|---|---|---|---|---|---|
Energy prices (Yuanton) or (Yuan/m3) or (Yuan/kW·h) | 600 | 2600 | 4800 | 5700 | 3600 | 4800 | 3600 | 3.40 | 0.45 | |
Energy consumption of coal power generation (gce/kW·h) | 351.2 | 305.5 | 0.1 | 0.0 | 0.1 | 0.0 | 0.2 | 0.0 | 13.4 | 32.0 |
Cost of coal power generation (Yuan/kW·h) | 0.397 | 0.26 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.08 |
Year | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | 2055 | 2060 |
---|---|---|---|---|---|---|---|---|---|
Cost of coal power generation (Yuan/kW·h) | 0.40 | 0.39 | 0.38 | 0.37 | 0.36 | 0.35 | 0.34 | 0.33 | 0.32 |
Year | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | 2055 | 2060 |
---|---|---|---|---|---|---|---|---|---|
Increase in energy consumption by adding CCUS (kgce/ton) | 76.8 | 59.4 | 46 | 35.6 | 27.5 | 21.3 | 16.5 | 12.8 | 9.9 |
Water consumption increase intensity (m3/ton) | 30 | 23.2 | 18 | 13.9 | 10.8 | 8.3 | 6.4 | 5 | 3.9 |
Year | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | 2055 | 2060 |
---|---|---|---|---|---|---|---|---|---|
Carbon Price (Yuan/ton) | 28.6 | 87 | 139 | 214 | 329 | 483 | 710 | 996 | 1397 |
Year | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | 2055 | 2060 |
---|---|---|---|---|---|---|---|---|---|
Electricity demand (trillion kWh) | 7.4 | 8.8 | 10.2 | 11.3 | 12.2 | 13.1 | 13.6 | 14.1 | 14.4 |
Year | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | 2055 | 2060 |
---|---|---|---|---|---|---|---|---|---|
Coal electricity share (%) | 60.8 | 49.9 | 40.9 | 33.5 | 27.5 | 22.5 | 18.5 | 15.2 | 12.4 |
Year | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | 2055 | 2060 |
---|---|---|---|---|---|---|---|---|---|
From coal power (Mt/Year) | 3 | 20 | 190 | 370 | 520 | 655 | 775 | 880 | 985 |
Total carbon mitigation (Mt/Year) | 5 | 9–30 | 20–408 | 119–850 | 370–1300 | 500–1350 | 600–1450 | 800–1650 | 1000–1820 |
Year | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | 2055 | 2060 |
---|---|---|---|---|---|---|---|---|---|
Coal electricity share (Baseline) | 60.8 | 49.9 | 40.9 | 33.5 | 27.5 | 22.5 | 18.5 | 15.2 | 12.4 |
Coal electricity share (Slow) | 60.8 | 52.9 | 46.0 | 40.0 | 34.8 | 30.3 | 26.4 | 22.9 | 20.0 |
Coal electricity share (Radical) | 60.8 | 46.8 | 36.0 | 27.8 | 21.4 | 16.5 | 12.7 | 9.8 | 7.5 |
Year | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | 2055 | 2060 |
---|---|---|---|---|---|---|---|---|---|
CCUS capture in coal power plants (Mt/Year) (Baseline) | 3 | 20 | 190 | 370 | 520 | 655 | 775 | 880 | 985 |
CCUS capture in coal power plants (Mt/Year) (Slow) | 3 | 16 | 152 | 296 | 416 | 524 | 620 | 704 | 788 |
CCUS capture in coal power plants (Mt/Year) (Radical) | 3 | 24 | 228 | 444 | 624 | 786 | 930 | 1056 | 1182 |
Year | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | 2055 | 2060 |
---|---|---|---|---|---|---|---|---|---|
Total energy consumption (Gtce) | 2.4 | 3.1 | 10.4 | 14.6 | 15.5 | 15.0 | 13.6 | 12.0 | 10.3 |
Energy consumption from CCUS (Gtce) | 0.2 | 1.2 | 8.7 | 13.2 | 14.3 | 14.0 | 12.8 | 11.3 | 9.8 |
Total water consumption (billion m3) | 12.7 | 10.5 | 11.4 | 11.0 | 9.7 | 8.6 | 7.3 | 6.2 | 5.1 |
Water consumption from CCUS (billion m3) | 0.1 | 0.5 | 3.4 | 5.1 | 5.6 | 5.4 | 5.0 | 4.4 | 3.8 |
Total carbon emission (Gt) | 4.8 | 4.2 | 3.7 | 3.0 | 2.4 | 1.8 | 1.3 | 0.8 | 0.4 |
Revenue from CCUS carbon trade (billion Yuan) | 0.1 | 1.7 | 26.4 | 79.2 | 171.1 | 316.4 | 550.3 | 876.5 | 1376.0 |
Total revenue (billion Yuan) | 251.2 | 277.7 | 328.1 | 388.4 | 475.6 | 610.4 | 823.1 | 1127.0 | 1599.4 |
Year | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | 2055 | 2060 |
---|---|---|---|---|---|---|---|---|---|
Total energy consumption (Gtce) | 2.4 | 2.9 | 8.9 | 12.3 | 13.0 | 12.6 | 11.5 | 10.1 | 8.7 |
Energy consumption from CCUS (Gtce) | 0.2 | 1.0 | 7.0 | 10.5 | 11.4 | 11.2 | 10.2 | 9.0 | 7.8 |
Total water consumption (billion m3) | 12.7 | 11.0 | 11.7 | 11.1 | 9.7 | 8.5 | 7.3 | 6.2 | 5.2 |
Water consumption from CCUS (billion m3) | 0.1 | 0.4 | 2.7 | 4.1 | 4.5 | 4.4 | 4.0 | 3.5 | 3.1 |
Total carbon emission (Gt) | 4.8 | 4.5 | 4.2 | 3.8 | 3.3 | 2.8 | 2.3 | 1.9 | 1.5 |
Revenue from CCUS carbon trade (billion Yuan) | 0.1 | 1.4 | 21.1 | 63.3 | 136.9 | 253.1 | 440.2 | 701.2 | 1100.8 |
Total revenue (billion Yuan) | 251.2 | 293.9 | 360.5 | 432.5 | 522.3 | 649.0 | 829.6 | 1078.6 | 1461.1 |
Year | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | 2055 | 2060 |
---|---|---|---|---|---|---|---|---|---|
Total energy consumption (Gtce) | 2.4 | 3.2 | 12.0 | 17.0 | 18.1 | 17.5 | 15.9 | 14.0 | 8.6 |
Enrgy consumption from CCUS (Gtce) | 0.2 | 1.4 | 10.5 | 15.8 | 17.2 | 16.7 | 15.4 | 13.5 | 8.2 |
Total water consumption (billion m3) | 12.7 | 10.0 | 11.1 | 11.0 | 10.0 | 8.8 | 7.6 | 6.4 | 4.0 |
Water consumption from CCUS (billion m3) | 0.1 | 0.6 | 4.1 | 6.2 | 6.7 | 6.5 | 6.0 | 5.3 | 3.2 |
Total carbon emission (Gt) | 4.8 | 3.9 | 3.2 | 2.4 | 1.7 | 1.0 | 0.5 | 0.1 | 0.0 |
Revenue from CCUS carbon trade (billion Yuan) | 0.1 | 2.1 | 31.7 | 95.0 | 205.3 | 379.6 | 660.3 | 1051.8 | 1159.5 |
Total revenue (billion Yuan) | 251.2 | 260.9 | 297.3 | 351.6 | 442.3 | 595.2 | 847.6 | 1213.3 | 1294.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Qi, J.; Zhang, R.; Jiao, X.; Shirkey, G.; Ren, S. Toward a Carbon-Neutral State: A Carbon–Energy–Water Nexus Perspective of China’s Coal Power Industry. Energies 2022, 15, 4466. https://doi.org/10.3390/en15124466
Xie Y, Qi J, Zhang R, Jiao X, Shirkey G, Ren S. Toward a Carbon-Neutral State: A Carbon–Energy–Water Nexus Perspective of China’s Coal Power Industry. Energies. 2022; 15(12):4466. https://doi.org/10.3390/en15124466
Chicago/Turabian StyleXie, Yachen, Jiaguo Qi, Rui Zhang, Xiaomiao Jiao, Gabriela Shirkey, and Shihua Ren. 2022. "Toward a Carbon-Neutral State: A Carbon–Energy–Water Nexus Perspective of China’s Coal Power Industry" Energies 15, no. 12: 4466. https://doi.org/10.3390/en15124466
APA StyleXie, Y., Qi, J., Zhang, R., Jiao, X., Shirkey, G., & Ren, S. (2022). Toward a Carbon-Neutral State: A Carbon–Energy–Water Nexus Perspective of China’s Coal Power Industry. Energies, 15(12), 4466. https://doi.org/10.3390/en15124466