Improving the Efficiency of Oil Recovery in Research and Development
1. Introduction
2. A Short Review of the Contributions in This Issue
3. Conclusions
Conflicts of Interest
References
- Kremieniewski, M.; Wiśniowski, R.; Stryczek, S.; Orłowicz, G. Possibilities of Limiting Migration of Natural Gas in Boreholes in the Context of Laboratory Studies. Energies 2021, 14, 4251. [Google Scholar] [CrossRef]
- Kremieniewski, M. O konieczności prowadzenia serwisowych badań parametrów technologicznych zaczynów uszczelniających. Nafta-Gaz 2019, 1, 48–55. [Google Scholar] [CrossRef]
- Rogers, M.J.; Dillenbeck, R.L.; Eid, R.N. Transition time of cement slurries, definitions and misconceptions, related to annular fluid migration. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 26–29 September 2004; Society of Petroleum Engineers: Richardson, TX, USA, 2004. [Google Scholar]
- Kremieniewski, M. Recipe of Lightweight Slurry with High Early Strength of the Resultant Cement Sheath. Energies 2020, 13, 1583. [Google Scholar] [CrossRef] [Green Version]
- Kremieniewski, M.; Stryczek, S.; Wiśniowski, R.; Rzepka, M.; Gonet, A. Influence of bentonite addition on parameters of fresh and hardened cement slurry. AGH Drill. Oil Gas 2017, 34, 335–348. [Google Scholar] [CrossRef] [Green Version]
- Błaż, S.; Zima, G.; Jasiński, B.; Kremieniewski, M. Invert Drilling Fluids with High Internal Phase Content. Energies 2021, 14, 4532. [Google Scholar] [CrossRef]
- Błaż, S. Badania laboratoryjne nad opracowaniem składu płuczki inwersyjnej. Nafta-Gaz 2015, 3, 54–63. [Google Scholar]
- Błaż, S. Analiza właściwości technologicznych płuczki inwersyjnej w warunkach HPHT. Nafta-Gaz 2016, 6, 403–412. [Google Scholar] [CrossRef]
- Elkatatny, S. Mitigation of barite sagging during the drilling of high-pressure high-temperature wells using an invert emulsion drilling fluid. Powder Technol. 2019, 352, 325–330. [Google Scholar] [CrossRef]
- Askø, A.; Alsvik, E.T.; Danielsen, T.H.; Haga, M.A. Low-Density Invert Emulsion Drilling Fluid Enables Recovery of Oil Reserves in Extremely Depleted Reservoirs: A Case History from Valhall, Norway. In Proceedings of the IADC/SPE International Drilling Conference and Exhibition, Galveston, TX, USA, 3–5 March 2020. [Google Scholar]
- Warnecki, M.; Wojnicki, M.; Kuśnierczyk, J.; Szuflita, S. Study of the Long Term Acid Gas Sequestration Process in the Borzęcin Structure: Measurements Insight. Energies 2021, 14, 5301. [Google Scholar] [CrossRef]
- Lubaś, J.; Szott, W. 15-year experience of acid gas storage in the natural gas structure of Borzęcin—Poland. Nafta-Gaz 2010, 66, 333–338. [Google Scholar]
- Lubaś, J.; Szott, W.; Jakubowicz, P. Effects of Acid Gas Reinjection on CO2 Concentration in Natural Gas Produced from Borzęcin Reservoir. Nafta-Gaz 2012, 68, 405–410. [Google Scholar]
- Chadwick, R.A.; Marchant, B.; Williams, G.A. CO2 storage monitoring: Leakage detection and measurement in subsurface volumes from 3D seismic data at Sleipner. Energy Procedia 2014, 63, 4224–4239. [Google Scholar] [CrossRef] [Green Version]
- McGlade, C.; Sondak, G.; Han, M. Whatever Happened to Enhanced Oil Recovery? International Energy Agency. 2018. Available online: https://www.iea.org/commentaries/whatever-happened-to-enhanced-oil-recovery (accessed on 10 January 2022).
- Wojnicki, M.; Lubaś, J.; Gawroński, M.; Szuflita, S.; Kuśnierczyk, J.; Warnecki, M. An Experimental Investigation of WAG Injection in a Carbonate Reservoir and Prediction of the Recovery Factor Using Genetic Programming. Energies 2022, 15, 2127. [Google Scholar] [CrossRef]
- Mogensen, K.; Masalmeh, S. A review of EOR techniques for carbonate reservoirs in challenging geological settings. J. Pet. Sci. Eng. 2020, 195, 107889. [Google Scholar] [CrossRef]
- Afzali, S.; Rezaei, N.; Zendehboudi, S. A comprehensive review on Enhanced Oil Recovery by Water Alternating Gas (WAG) injection. Fuel 2018, 227, 218–246. [Google Scholar] [CrossRef]
- Kremieniewski, M. Cleaning of the casing string before cementation, based on research using a rotational viscometer. Nafta-Gaz 2018, 74, 676–683. [Google Scholar] [CrossRef]
- Lavrov, A.; Torsæter, M. Physics and Mechanics of Primary Well Cementing; Springer International Publishing: Houston, TX, USA, 2016; Available online: https://www.springer.com/gp/book/9783319431642 (accessed on 9 August 2021)ISBN 978-3-319-43165-9.
- Stryczek, S.; Wiśniowski, R.; Gonet, A.; Rzyczniak, M.; Sapińska-Śliwa, A. Wpływ wybranych superplastyfikatorów na właściwości reologiczne zaczynów cementowych stosowanych podczas cementowania kolumn rur okładzinowych w otworach wiertniczych. Przemysł Chem. 2018, 97, 903–905. [Google Scholar] [CrossRef]
- Kremieniewski, M.; Błaż, S.; Stryczek, S.; Wiśniowski, R.; Gonet, A. Effect of Cleaning the Annular Space on the Adhesion of the Cement Sheath to the Rock. Energies 2021, 14, 5187. [Google Scholar] [CrossRef]
- Jasiński, B. Ocena wpływu cieczy przemywającej na jakość zacementowania rur w otworze wiertniczym po użyciu płuczki glikolowo-potasowej. Nafta-Gaz 2016, 6, 413–421. [Google Scholar] [CrossRef]
- Mandal, P.P.; Rezaee, R.; Emelyanova, I. Ensemble Learning for Predicting TOC from Well-Logs of the Unconventional Goldwyer Shale. Energies 2021, 15, 216. [Google Scholar] [CrossRef]
- Ma, L.; Slater, T.; Dowey, P.J.; Yue, S.; Rutter, E.; Taylor, K.G.; Lee, P.D. Hierarchical integration of porosity in shales. Sci. Rep. 2018, 8, 11683. [Google Scholar] [CrossRef] [PubMed]
- Kwilosz, T.; Filar, B.; Miziołek, M. Use of Cluster Analysis to Group Organic Shale Gas Rocks by Hydrocarbon Generation Zones. Energies 2022, 15, 1464. [Google Scholar] [CrossRef]
- Piesik-Buś, B.; Filar, B. Analysis of the current state of natural gas resources in domestic deposits and a forecast of domestic gas production until 2030. Nafta-Gaz 2016, 6, 376–382. [Google Scholar]
- Puskarczyk, E. Application of Multivariate Statistical Methods and Artificial Neural Network for Facies Analysis from Well Logs Data: An Example of Miocene Deposits. Energies 2020, 13, 1548. [Google Scholar] [CrossRef] [Green Version]
- Mroczkowska-Szerszeń, M.; Ziemianin, K.; Brzuszek, P.; Matyasik, I.; Jankowski, L. The organic matter type in the shale rock samples assessed by FTIR-ART analyses. Nafta-Gaz 2015, 6, 361–369. [Google Scholar]
- Łętkowski, P.; Gołąbek, A.; Budak, P.; Szpunar, T.; Nowak, R.; Arabas, J. Determination of the statistical similarity of the physicochemical measurement data of shale formations based on the methods of cluster analysis. Nafta-Gaz 2016, 72, 910–918. [Google Scholar] [CrossRef]
- Ning, T.; Xi, M.; Hu, B.; Wang, L.; Huang, C.; Su, J. Effect of Viscosity Action and Capillarity on Pore-Scale Oil–Water Flowing Behaviors in a Low-Permeability Sandstone Waterflood. Energies 2021, 14, 8200. [Google Scholar] [CrossRef]
- Su, J.; Wang, L.; Gu, Z.; Zhang, Y.; Chen, C. Advances in Pore-Scale Simulation of Oil Reservoirs. Energies 2018, 11, 1132. [Google Scholar] [CrossRef] [Green Version]
- Kamal, M.S.; Hussein, I.A.; Sultan, A.S. Review on Surfactant Flooding: Phase Behavior, Retention, IFT, and Field Applications. Energy Fuels 2017, 31, 7701–7720. [Google Scholar] [CrossRef]
- Tsuji, T.; Jiang, F.; Christensen, K. Characterization of immiscible fluid displacement processes with various capillary numbers and viscosity ratios in 3D natural sandstone. Adv. Water Resour. 2016, 95, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zhang, L.; Zhu, G.; Yao, J.; Sun, H.; Song, W.; Yang, Y.; Zhao, J. A Pore-Scale Investigation of Residual Oil Distributions and Enhanced Oil Recovery Methods. Energies 2019, 12, 3732. [Google Scholar] [CrossRef] [Green Version]
- El-Gamal, S.M.; Hashem, F.S.; Amin, M.S. Influence of carbon nanotubes, nanosilica and nanometakaolin on some morphologicalmechanical properties of oil well cement pastes subjected to elevated water curing temperature and regular room air curing temperature. Constr. Build. Mater. 2017, 146, 531–546. [Google Scholar] [CrossRef]
- Khalil, M.; Jan, B.M.; Tong, C.W.; Berawi, M.A. Advanced nanomaterials in oil and gas industry: Design, application and challenges. Appl. Energy 2017, 191, 287–310. [Google Scholar] [CrossRef]
- Lau, H.C.; Yu, M.; Nguyen, Q.P. Nanotechnology for oilfield applications: Challenges and impact. J. Pet. Sci. Eng. 2017, 157, 1160–1169. [Google Scholar] [CrossRef]
- Pikłowska, A.; Ziaja, J.; Kremieniewski, M. Influence of the Addition of Silica Nanoparticles on the Compressive Strength of Cement Slurries under Elevated Temperature Condition. Energies 2021, 14, 5493. [Google Scholar] [CrossRef]
- Kremieniewski, M. Influence of Graphene Oxide on Rheological Parameters of Cement Slurries. Energies 2020, 13, 5441. [Google Scholar] [CrossRef]
- Błaż, S. Nowe rodzaje cieczy przemywających osady z płuczki inwersyjnej przed zabiegiem cementowania otworów wiertniczych. Nafta-Gaz 2017, 5, 302–311. [Google Scholar] [CrossRef]
- Wiśniowski, R.; Skrzypaszek, K.; Małachowski, T. Selection of a suitable rheological model for drilling fluid using applied numerical methods. Energies 2020, 13, 3192. [Google Scholar] [CrossRef]
- Kremieniewski, M.; Kędzierski, M.; Błaż, S. Increasing the Efficiency of Sealing the Borehole in Terms of Spacer Pumping Time. Energies 2021, 14, 6702. [Google Scholar] [CrossRef]
- Kremieniewski, M. Hybrid Washer Fluid for Primary Cementing. Energies 2021, 14, 1295. [Google Scholar] [CrossRef]
- Bęben, D. The Influence of Temperature on Degradation of Oil and Gas Tubing Made of L80-1 Steel. Energies 2021, 14, 6855. [Google Scholar] [CrossRef]
- Zhang, Y.; Pang, X.; Qu, S.; Gao, X.; Li, K. The relationship between fracture toughness of CO2 corrosion scale and corrosion rate of X65 pipeline steel under supercritical CO2 condition. Int. J. Greenh. Gas Control 2011, 5, 1643–1650. [Google Scholar] [CrossRef]
- Bęben, D. Badania skuteczności działania wybranych inhibitorów korozji stosowanych okresowo w przemyśle wydobywczym. Ochr. Przed Korozją 2019, 62, 376–381. [Google Scholar]
- Mahmoodian, M.; Qingi, C. Failure assessment and safe life prediction of corroded oil and gas pipelines. J. Pet. Sci. Eng. 2017, 151, 434–438. [Google Scholar] [CrossRef]
- Yougui, Z. Electrochemical Mechanism and Model of H2S Corrosion of Carbon Steel. Ph.D. Thesis, Ohio University, Athens, GA, USA, 2015. [Google Scholar]
- Stachowicz, A. Korozja rur wydobywczych odwiertów gazowych zawierających CO2. Nafta-Gaz 2011, 11, 395–400. [Google Scholar]
- Falkowicz, S.; Urbaniec, A.; Stadtműller, M.; Majkrzak, M. A New Strategy for Pre-Selecting Gas Wells for the Water Shut-Off Treatment Based on Geological Integrated Data. Energies 2021, 14, 7316. [Google Scholar] [CrossRef]
- Lakatos, I.J.; Lakatos-Szabo, J.; Szentes, G.; Jobbik, A.; Vago, A. Application of Self-Conforming well Stimulation technology in Oil and Gas Fields—Fundamentals and Case Histories. In Proceedings of the IOR 2017—19th European Symposium on Improved Oil Recovery, Stavanger, Norway, 24–27 April 2017. [Google Scholar]
- Alfarge, D.K.; Wei, M.; Bai, B. Numerical simulation study of factors affecting relative permeability modification for water-shutoff treatments. Fuel 2017, 207, 226–239. [Google Scholar] [CrossRef]
- Myśliwiec, M. Poszukiwania złóż gazu ziemnego w osadach miocenu zapadliska przedkarpackiego na podstawie interpretacji anomalii sejsmicznych—podstawy fizyczne i dotychczasowe wyniki. Prz. Geol. 2004, 52, 299–306. [Google Scholar]
- Dziadzio, P. Sekwencje depozycyjne w utworach badenu i sarmatu w SE części zapadliska przedkarpackiego. Prz. Geol. 2000, 48, 1124–1138. [Google Scholar]
- Stryczek, S.; Wiśniowski, R.; Gonet, A.; Złotkowski, A. Wpływ rodzaju cementu na właściwości reologiczne zaczynów uszczelniających stosowanych w technologiach wiertniczych. Wiert. Naft. Gaz 2010, 27, 721–739. [Google Scholar]
- Kremieniewski, M. Influence of Hblock Fine-Grained Material on Selected Parameters of Cement Slurry. Energies 2022, 15, 2768. [Google Scholar] [CrossRef]
- Stryczek, S.; Małolepszy, J.; Gonet, A.; Wiśniowski, R.; Kotwica, Ł. Wpływ Dodatków Mineralnych na Kształtowanie Się Właściwości Technologicznych Zaczynów Uszczelniających Stosowanych w Wiertnictwie i Geoinżynierii Wydawnictwo; S.C.M.R: Kraków, Poland, 2011; pp. 1–164. Available online: http://katalog.nukat.edu.pl/lib/item?id=chamo:4133282&fromLocationLink=false&theme=nukat (accessed on 21 May 2015).
- Kremieniewski, M.; Stryczek, S. Zastosowanie cementu wysokoglinowego do sporządzania zaczynów uszczelniających w technologiach wiertniczych. Cem. Wapno Beton 2019, 22, 215–226. [Google Scholar]
- Stryczek, S.; Brylicki, W.; Małolepszy, J.; Gonet, A.; Wi´sniowski, R.; Kotwica, Ł. Potential use of fly ash from fluidal combustion of brown coal in cementing slurries for drilling and geotechnical works. Arch. Min. Sci. 2009, 54, 775–786. [Google Scholar]
- Bazaluk, O.; Dubei, O.; Ropyak, L.; Shovkoplias, M.; Pryhorovska, T.; Lozynskyi, V. Strategy of Compatible Use of Jet and Plunger Pump with Chrome Parts in Oil Well. Energies 2022, 15, 83. [Google Scholar] [CrossRef]
- Le Billon, P.; Kristoffersen, B. Just cuts for fossil fuels? Supplyside carbon constraints and energy transition. Environ. Plan. A Econ. Space 2020, 52, 1072–1092. [Google Scholar] [CrossRef]
- Pavlychenko, A.; Kovalenko, A. The investigation of rock dumps influence to the levels of heavy metals contamination of soil. In Mining of Mineral Deposits; CRC Press: Boca Raton, FL, USA, 2013; pp. 237–238. [Google Scholar]
- Skitsa, L.; Yatsyshyn, T.; Liakh, M.; Sydorenko, O. Ways to improve safety of a pumping-circulatory system of a drilling rig. Min. Miner. Depos. 2018, 12, 71–79. [Google Scholar] [CrossRef]
- Uliasz, M.; Zima, G.; Błaż, S.; Jasiński, B. Enzymatic and Oxidizing Agents for the Decomposition of Polymers Used in the Composition of Drilling Muds. Energies 2021, 14, 5032. [Google Scholar] [CrossRef]
- Błaż, S. Dobór środków chemicznych do degradacji polimerów i koloidów ochronnych w płuczkach wiertniczych. Nafta-Gaz 2009, 5, 371–383. [Google Scholar]
- Jasiński, B. Wpływ oksydantów na wielkość sedymentacji fazy stałej w zasolonych płuczkach wiertniczych. Nafta-Gaz 2012, 9, 602–610. [Google Scholar]
- Uliasz, M.; Zima, G.; Błaż, S.; Jasiński, B. Ocena właściwości cieczy wiertniczych w aspekcie zapobiegania migracji gazu w otworach na przedgórzu Karpat. Nafta-Gaz 2015, 1, 11–17. [Google Scholar]
- Nasr-El-Din, H.A.; Al-Otaibi, M.B.; Al-Qahtani, A.A.; Samuel, M.M. An Effective Fluid Formulation to Remove Drilling Fluid Mud Cake in Horizontal and Multi-LateralWells. SPE Drill. Complet. 2007, 22, 26–32. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kremieniewski, M. Improving the Efficiency of Oil Recovery in Research and Development. Energies 2022, 15, 4488. https://doi.org/10.3390/en15124488
Kremieniewski M. Improving the Efficiency of Oil Recovery in Research and Development. Energies. 2022; 15(12):4488. https://doi.org/10.3390/en15124488
Chicago/Turabian StyleKremieniewski, Marcin. 2022. "Improving the Efficiency of Oil Recovery in Research and Development" Energies 15, no. 12: 4488. https://doi.org/10.3390/en15124488
APA StyleKremieniewski, M. (2022). Improving the Efficiency of Oil Recovery in Research and Development. Energies, 15(12), 4488. https://doi.org/10.3390/en15124488