Influence of Hblock Fine-Grained Material on Selected Parameters of Cement Slurry
Abstract
:1. Introduction
The Role of Fine-Grained Material in the Technology of Cement Slurries
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Slurry Preparation
2.2.2. Density of the Cement Slurry
2.2.3. Rheological Parameters
2.2.4. Setting Time
2.2.5. Compressive Strength
2.2.6. Gas Permeability
3. Results and Discussion
Statistical Analysis of the Value of Compressive Strength
4. Conclusions
- The fine-grained material of Hblock causes an increase in the density of the slurry compared to the corresponding control samples without this additive.
- The use of Hblock in the formulation of the cement slurry based on CEM I 42.5R Portland cement shortens the setting time. On the other hand, when using G drilling cement, the presence of Hblock causes a slight increase in setting time.
- In all formulations, the presence of Hblock reduces the transit time from the initial time of the setting to the final time of the setting. This is very advantageous when designing cement slurries to seal columns of pipes in openings with an increased risk of gas migration.
- When analyzing the mechanical parameters of cement slurries with the addition of Hblock, a significant improvement in compressive strength is observed with the use of small amounts of Hblock (1% to 3% bwoc).
- The use of the Hblock agent in cement slurries tightens the structure of the hardened cement slurry, which is manifested by a reduction in the gas permeability of the tested samples.
- The Hblock fine-grained material causes a slight increase in the yield point according to the Herschel–Bulkley model, which may contribute to the improvement of the sedimentation stability of the cement slurry.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | Explanation |
mD | Milidarcy (Gas premability) |
cm2/g | Specific surface area |
MPa | Megapascal (Compressive strength) |
s−1 | Shear rate |
Pa | Shear stress |
Pa∙s | Apparent viscosity |
References
- Li, L.; Yuan, X.; Sun, J.; Xu, X.; Li, S.; Wang, L. Vital Role of Nanotechnology and Nanomaterials in the Field of Oilfield Chemistry. In Proceedings of the International Petroleum Technology Conference, Beijing, China, 26 March 2013. [Google Scholar] [CrossRef]
- Kremieniewski, M. Drobnoziarniste materiały wypełniające w technologii zaczynów cementowych. Wiadomości Naft. i Gazow. 2021, 5, 4–7. [Google Scholar]
- Stryczek, S.; Wiśniowski, R.; Gonet, A.; Złotkowski, A. Wpływ rodzaju cementu na właściwości reologiczne zaczynów uszczelniających stosowanych w technologiach wiertniczych. Wiert. Naft. Gaz. 2010, 27, 721–739. [Google Scholar]
- Rzepka, M.; Stryczek, S.; Kremieniewski, M.; Wiśniowski, R.; Dębińska, E. Recipes of cement slurries for sealing casing in deep wellbores. AGH Drill. Oil Gas 2016, 33, 455. [Google Scholar] [CrossRef] [Green Version]
- Stryczek, S.; Małolepszy, J.; Gonet, A.; Wiśniowski, R.; Kotwica, Ł. Wpływ dodatków mineralnych na kształtowanie się właściwości technologicznych zaczynów uszczelniających stosowanych w wiertnictwie i geoinżynierii Wydawnictwo. S.C.M.R. Kraków 2011, 1–164. Available online: http://katalog.nukat.edu.pl/lib/item?id=chamo:4133282&fromLocationLink=false&theme=nukat (accessed on 21 May 2015).
- Stryczek, S.; Kotwica, Ł.; Wiśniowski, R.; Złotkowski, A.; Skrzypaszek, K.; Kremieniewski, M.; Rzepka, M. Analysis of technological parameters of cementing slurries for horizontal casing works in Pomeranian Basin. AGH Drill. Oil Gas 2015, 32, 431–442. [Google Scholar] [CrossRef] [Green Version]
- Stryczek, S.; Wiśniowski, R.; Kremieniewski, M.; Rzepka, M.; Kotwica, Ł.; Złotkowski, A. Analysis of technological parameters of cement slurries used for sealing casing in the Lublin Basin area. AGH Drill. Oil Gas 2016, 33, 145. [Google Scholar] [CrossRef]
- Kremieniewski, M.; Badawczy, I.N. Wpływ drobnoziarnistej krzemionki na parametr czasu oczekiwania na cement—WOC. Nafta-Gaz 2019, 75, 683–690. [Google Scholar] [CrossRef]
- Mahmoud, A.A.; Elkatatny, S.; Mahmoud, M. Improving Class G Cement Carbonation Resistance Using Nanoclay Particles for Geologic Carbon Sequestration Applications. In Proceedings of the Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, United Arab Emirates, 12 November 2018. [Google Scholar] [CrossRef]
- Kremieniewski, M. O konieczności prowadzenia serwisowych badań parametrów technologicznych zaczynów uszczelniających. Nafta-Gaz 2019, 75, 48–55. [Google Scholar] [CrossRef]
- Kremieniewski, M. Analiza parametrów technologicznych wybranych zaczynów lekkich stosowanych do uszczelniania płytkich otworów o temperaturze do 45 °C. Nafta-Gaz 2020, 76, 710–718. [Google Scholar] [CrossRef]
- Murtaza, M.; Rahman, M.K.; Al-Majed, A.A.; Samad, A. Mechanical, Rheological and Microstructural Properties of Saudi Type G Cement Slurry with Silica Flour Used in Saudi Oil Field under HTHP Conditions. In Proceedings of the SPE Saudi Arabia Section Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia, 19 May 2013. [Google Scholar] [CrossRef]
- Kremieniewski, M.; Stryczek, S. Zastosowanie cementu wysokoglinowego do sporządzania zaczynów uszczelniających w technologiach wiertniczych. Cem. Wapno Beton 2019, 22, 215–226. [Google Scholar] [CrossRef]
- Bensted, J.; Smith, J.R. Oilwell Cements Part 5: Applications of fly ash in well cementing. Cem. Wapno Beton 2008, 1, 17–30. [Google Scholar]
- Stryczek, S.; Wiśniowski, R.; Gonet, A.; Złotkowski, A. Influence of specific surface of lignite fluidal ashes on rheological properties of sealing slurries. Arch. Min. Sci. 2012, 57, 313–322. [Google Scholar]
- Stryczek, S.; Brylicki, W.; Małolepszy, J.; Gonet, A.; Wiśniowski, R.; Kotwica, Ł. Potential use of fly ash from fluidal combustion of brown coal in cementing slurries for drilling and geotechnical works. Arch. Min. Sci. 2009, 54, 775–786. [Google Scholar]
- Brylicki, W.; Małolepszy, J.; Stryczek, S.; Wiśniowski, R.; Kotwica, Ł. Effects of modification of alkali activated slag cementing slurries with natural clinoptilolite. Miner. Resour. Manag. 2009, 25, 61–76. [Google Scholar]
- Kotwica, Ł.; Chorembała, M.; Kapeluszna, E.; Stępień, P.; Deja, J.; Illikainen, M.; Gołek, Ł. Effect of metakaolinite on properties of alkali activated slag materials. Key Eng. Mater. 2018, 761, 69–72. [Google Scholar] [CrossRef]
- Kremieniewski, M. Influence of Graphene Oxide on Rheological Parameters of Cement Slurries. Energies 2020, 13, 5441. [Google Scholar] [CrossRef]
- Sun, Y.F.; Zhou, T.S.; Gao, P.W.; Chen, M.; Liu, H.W.; Xun, Y. Microstructure and Microwave Absorption Properties of Cement-Based Material Reinforced with Reduced Graphene Oxide and Nanoparticles. Strength Mater. 2019, 51, 601–608. [Google Scholar] [CrossRef]
- Kremieniewski, M. Modyfikacja przestrzeni porowej kamieni cementowych. Nafta-Gaz 2012, 3, 165–170. [Google Scholar]
- Kremieniewski, M. Modyfikacje receptur zaczynów uszczelniających w celu zminimalizowania przepuszczalności powstałych kamieni cementowych. Nafta-Gaz 2014, 3, 170–175. [Google Scholar]
- Tarabani, S.; Hareland, G. New cement additives that eliminate cement body permeability. SPE 1995, 29269, 20–22. [Google Scholar]
- Oskarsen, R.T.; Wright, J.W.; Walzel, D. Analysis of gas flow yields recommendations for best cementing practices. World Oil 2010, 231, 33–39. [Google Scholar]
- Kremieniewski, M. Ocena przepuszczalności kamieni cementowych pod kątem ograniczenia migracji gazu. Pr. Nauk. INiG-PIB 2014, 196, 1–155. [Google Scholar]
- Radecki, S.; Witek, W. Dobór technik i technologii cementowania w aspekcie występowania migracji gazu. Nafta-Gaz 2000, 56, 487–497. [Google Scholar]
- Kremieniewski, M. Korelacja wynik & oacute;w badań wytrzymałości na ściskanie i przyczepności do rur stalowych płaszcza cementowego z zaczynu o obniżonej gęstości. Nafta-Gaz 2019, 75, 613–624. [Google Scholar] [CrossRef]
- Szaj, P. Wpływ wybranych dodatków mineralnych na właściwości reologiczne zaczynów cementowych. Pr. Nauk. Inst. Górnictwa Politech. Wrocławskiej 2012, 134, 285–294. [Google Scholar]
- Stryczek, S.; Wiśniowski, R.; Gonet, A.; Ferens, W. Parametry reologiczne świeżych zaczynów uszczelniających w zależności od czasu ich sporządzania. Wiert. Naft. Gaz 2009, 26, 369–382. [Google Scholar]
- Kremieniewski, M.; Rzepka, M. Oil and Gas Institute-National Research Institute Poprawa szczelności płaszcza cementowego za pomocą innowacyjnych dodatków antymigracyjnych. Nafta-Gaz 2018, 6, 8–15. [Google Scholar] [CrossRef]
- Bentz, D.; Garboczi, E.J.; Haecker, C.J.; Jensen, O.M. Effects of cement particle size distribution on performance properties of Portland cement-based materials. Cem. Concr. Res. 1999, 29, 1663–1671. [Google Scholar] [CrossRef]
- Stryczek, S.; Wiśniowski, R.; Gonet, A.; Złotkowski, A. The influence of time of rheological parameters of fresh cement slurries. AGH Drill. Oil Gas 2014, 31, 123–133. [Google Scholar] [CrossRef]
- Stryczek, S.; Gonet, A.; Wiśniowski, R. Wpływ wybranego dodatku mineralnego na własności technologiczne zaczynów cementowych. Wiert. Naft. Gaz 2005, 22, 333–341. [Google Scholar]
- Stryczek, S.; Wiśniowski, R.; Kumala, B. Wpływ superplastyfikatora na parametry technologiczne zaczynów uszczelniających sporządzonych na osnowie cementów portlandzko popiołowych. Wiert. Naft. Gaz 2008, 25, 717–731. [Google Scholar]
- PN-EN ISO 10426-2:2006; Przemysł Naftowy i Gazowniczy-Cementy i Materiały do Cementowania Otworów Wiertniczych-Część 2: Badania Cementów Wiertniczych. Polish Committee for Standardization: Warsaw, Poland, 2006.
- IS: 4031-PART 4-1988; VICAT APPARATUS Metchods of Physical Tests for Hydraulic Cement, Part 4 Determination of Consistency of Standard Cement Paste. Available online: https://www.scribd.com/doc/41585859/IS-4031-Part4 (accessed on 18 March 2022).
Composition No. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Type of Cement | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Portland cement CEM I 42.5R, % | 100.0 | - | ||||||||
Drilling cement G, % | - | 100.0 | ||||||||
Hblok small-particle agent, % | - | 1.0 | 3.0 | 6.0 | 20.0 | - | 1.0 | 3.0 | 6.0 | 20.0 |
Composition No. | Type of Cement | Temp, °C Hydration Pressure, MPa | Density | Cement Slurry Setting Time, min | Compressive Strength after 24 h of Hydration | Gas Permeability | ||
---|---|---|---|---|---|---|---|---|
Initial Time of the Setting PW | Final Time of the Setting KW | Transition Time PW to KW | ||||||
[kg/m3] | [min] | [min] | [min] | [MPa] | [mD] | |||
1 | Portland cement CEM I 42.5R | 30 °C 3 MPa | 1890 | 338 | 532 | 194 | 15.5 | 0.245 ± 0.002 |
2 | 1900 | 269 | 343 | 74 | 20.0 | 0.043 ± 0.002 | ||
3 | 1910 | 278 | 340 | 62 | 24.5 | 0.032 ± 0.002 | ||
4 | 1920 | 272 | 344 | 72 | 17.5 | 0.021 ± 0.002 | ||
5 | 1960 | 339 | 382 | 43 | 25.5 | 0.013 ± 0.002 | ||
6 | Drilling cement G | 1870 | 322 | 538 | 216 | 14.5 | 0.337 ± 0.002 | |
7 | 1880 | 401 | 546 | 145 | 17.5 | 0.126 ± 0.002 | ||
8 | 1890 | 400 | 513 | 113 | 18.0 | 0.042 ± 0.002 | ||
9 | 1910 | 387 | 532 | 145 | 15.0 | 0.033 ± 0.002 | ||
10 | 1970 | 451 | 555 | 104 | 16.0 | 0.021 ± 0.002 |
Mesurement | ||||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | Average Value | |
P1 | 16 | 15.8 | 14.7 | 15.5 | 15.5 | 15.5 |
P2 | 19.9 | 20 | 20.1 | 20 | 20 | 20 |
P3 | 24 | 24.5 | 25 | 24.5 | 24.5 | 24.5 |
P4 | 18.5 | 17 | 17 | 17.5 | 17.5 | 17.5 |
P5 | 24.6 | 25 | 26.9 | 25.5 | 25.5 | 25.5 |
P6 | 13 | 15 | 15.5 | 14.5 | 14.5 | 14.5 |
P7 | 17.8 | 17.3 | 17.4 | 17.5 | 17.5 | 17.5 |
P8 | 17 | 18 | 19 | 18 | 18 | 18 |
P9 | 15.5 | 15.6 | 13.9 | 15 | 15 | 15 |
P10 | 14.9 | 15.4 | 17.7 | 16 | 16 | 16 |
P1 | P2 − P1 | P3 − P1 | P4 − P1 | P5 − P1 | |
---|---|---|---|---|---|
Average | 15.5 | 20 | 24.5 | 17.5 | 25.5 |
Variance | 0.245 | 0.005 | 0.125 | 0.375 | 0.755 |
Observations | 5 | 5 | 5 | 5 | 5 |
Pearson’s correlation | 0.92857 | 0.92857 | 0.61859 | 0.9998 | |
Difference of means according to the hypothesis | 0 | 0 | 0 | 0 | |
df | 4 | 4 | 4 | 4 | |
t Stat | 17.92843 | 24.13988 | 9.035079 | 16.39565 | |
P(T ≤ t) unilateral | 2.84 × 10−5 | 8.73 × 10−6 | 0.000416 | 4.05 × 10−5 | |
Test T unilateral | 2.131847 | 2.131847 | 2.131847 | 2.131847 | |
P(T ≤ t) bilateral | 5.69 × 10−5 | 1.75 × 10−5 | 0.000831 | 8.1 × 10−5 | |
Test t bilateral | 2.776445 | 2.776445 | 2.776445 | 2.776445 |
P6 | P7 − P6 | P8 − P6 | P9 − P6 | P10 − P6 | |
---|---|---|---|---|---|
Average | 14.5 | 17.5 | 18 | 15 | 16 |
Variance | 0.875 | 0.035 | 0.5 | 0.455 | 1.115 |
Observations | 5 | 5 | 5 | 5 | 5 |
Pearson’s correlation | 0.92857 | 0.944911 | 0.61413 | 0.771966 | |
Difference of means according to the hypothesis | 0 | 0 | 0 | 0 | |
df | 4 | 4 | 4 | 4 | |
t Stat | 6.036327 | 22.13594 | 0.7706 | 4.918694 | |
P(T ≤ t) unilateral | 0.001899 | 1.23 × 10−5 | 0.241967 | 0.003968 | |
Test T unilateral | 2.131847 | 2.131847 | 2.131847 | 2.131847 | |
P(T ≤ t) bilateral | 0.003798 | 2.47 × 10−5 | 0.483935 | 0.007937 | |
Test t bilateral | 2.776445 | 2.776445 | 2.776445 | 2.776445 |
P1 − P6 | P2 − P7 | P3 − P8 | P4 − P9 | P5 − P9 | |
---|---|---|---|---|---|
Average | 14.5 | 20 | 17.5 | 17.5 | 25.5 |
Variance | 0.875 | 0.005 | 0.375 | 0.375 | 0.755 |
Observations | 5 | 5 | 5 | 5 | 5 |
Pearson’s correlation | 0.75593 | 0.75593 | 0.86603 | 0.453921 | 0.999989 |
Difference of means according to the hypothesis | 0 | 0 | 0 | 0 | 0 |
df | 4 | 4 | 4 | 4 | 4 |
t Stat | −1.65748 | 22.82177 | −0.87706 | 8.287419 | 113.5467 |
P(T ≤ t) unilateral | 0.086381 | 1.09 × 10−5 | 0.214987 | 0.000579 | 1.8 × 10−8 |
Test T unilateral | 2.131847 | 2.131847 | 2.131847 | 2.131847 | 2.131847 |
P(T ≤ t) bilateral | 0.172762 | 2.18 × 10−5 | 0.429973 | 0.001157 | 3.61 × 10−8 |
Test t bilateral | 2.776445 | 2.776445 | 2.776445 | 2.776445 | 2.776445 |
Shear Rate, s−1 | Shear Stress, Pa | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Composition No. | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
1.703 | 8.176 | 6.643 | 6.643 | 9.709 | 10.220 | 3.577 | 3.577 | 3.066 | 3.577 | 5.110 |
3.407 | 10.220 | 8.687 | 8.687 | 12.775 | 14.308 | 4.599 | 4.599 | 4.599 | 5.621 | 7.665 |
5.110 | 12.775 | 10.731 | 10.731 | 15.330 | 17.374 | 5.621 | 6.132 | 6.643 | 7.154 | 8.687 |
10.220 | 17.885 | 15.841 | 15.841 | 21.462 | 24.017 | 9.198 | 9.198 | 9.709 | 10.220 | 12.775 |
17.034 | 23.506 | 21.462 | 21.462 | 30.149 | 32.704 | 12.264 | 12.775 | 12.775 | 13.286 | 16.863 |
34.068 | 33.215 | 32.193 | 32.193 | 42.924 | 44.968 | 16.863 | 15.330 | 17.374 | 19.418 | 26.061 |
51.102 | 42.924 | 43.946 | 45.479 | 58.254 | 55.699 | 18.907 | 16.863 | 18.396 | 21.462 | 30.660 |
102.204 | 65.408 | 55.699 | 55.188 | 71.029 | 85.337 | 25.039 | 24.528 | 24.528 | 26.572 | 38.325 |
170.340 | 79.716 | 65.408 | 63.875 | 81.249 | 102.200 | 31.682 | 27.083 | 30.660 | 33.215 | 46.501 |
340.680 | 104.244 | 84.315 | 81.249 | 100.156 | 131.327 | 44.457 | 38.325 | 43.946 | 45.990 | 64.386 |
511.020 | 121.618 | 100.156 | 92.491 | 116.508 | 155.344 | 55.188 | 51.100 | 56.210 | 57.743 | 80.227 |
1022.040 | 170.674 | 134.393 | 130.816 | 157.388 | 174.762 | 81.760 | 80.738 | 89.425 | 87.892 | 120.085 |
Shear Rate, s−1 | Apparent Viscosity, Pa∙s | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Composition No. | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
1.703 | 4.7998 | 3.8998 | 3.8998 | 5.6998 | 5.9998 | 2.0999 | 2.0999 | 1.7999 | 2.0999 | 2.9999 |
3.407 | 2.9999 | 2.5499 | 2.5499 | 3.7499 | 4.1998 | 1.3499 | 1.3499 | 1.3499 | 1.6499 | 2.2499 |
5.110 | 2.4999 | 2.0999 | 2.0999 | 2.9999 | 3.3999 | 1.1000 | 1.2000 | 1.2999 | 1.3999 | 1.6999 |
10.220 | 1.7499 | 1.5499 | 1.5499 | 2.0999 | 2.3499 | 0.9000 | 0.9000 | 0.9500 | 1.0000 | 1.2500 |
17.034 | 1.3799 | 1.2600 | 1.2600 | 1.7699 | 1.9199 | 0.7200 | 0.7500 | 0.7500 | 0.7800 | 0.9900 |
34.068 | 0.9750 | 0.9450 | 0.9450 | 1.2600 | 1.3199 | 0.4950 | 0.4500 | 0.5100 | 0.5700 | 0.7650 |
51.102 | 0.8400 | 0.8600 | 0.8900 | 1.1400 | 1.0900 | 0.3700 | 0.3300 | 0.3600 | 0.4200 | 0.6000 |
102.204 | 0.6400 | 0.5450 | 0.5400 | 0.6950 | 0.8350 | 0.2450 | 0.2400 | 0.2400 | 0.2600 | 0.3750 |
170.340 | 0.4680 | 0.3840 | 0.3750 | 0.4770 | 0.6000 | 0.1860 | 0.1590 | 0.1800 | 0.1950 | 0.2730 |
340.680 | 0.3060 | 0.2475 | 0.2385 | 0.2940 | 0.3855 | 0.1305 | 0.1125 | 0.1290 | 0.1350 | 0.1890 |
511.020 | 0.2380 | 0.1960 | 0.1810 | 0.2280 | 0.3040 | 0.1080 | 0.1000 | 0.1100 | 0.1130 | 0.1570 |
1022.040 | 0.1670 | 0.1315 | 0.1280 | 0.1540 | 0.1710 | 0.0800 | 0.0790 | 0.0875 | 0.0860 | 0.1175 |
Rheological Model | Rheological Parameters | Composition No. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
Newton’s model | Newton’s dynamic viscosity, Pa∙s | 0.2022 | 0.1625 | 0.1559 | 0.1917 | 0.2281 | 0.0933 | 0.0891 | 0.0988 | 0988 | 0.1368 |
Correlation coefficient. - | 0.8231 | 0.7599 | 0.7812 | 0.6736 | 0.6622 | 0.8717 | 0.8953 | 0.9047 | 0.8765 | 0.8624 | |
Bingham’s model | Plastic viscosity, Pa∙s | 0.1600 | 0.1240 | 0.1202 | 0.1403 | 0.1677 | 0.0756 | 0.0730 | 0.0817 | 0.0799 | 0.1100 |
Flow limit, Pa | 27.2736 | 24.8480 | 23.0535 | 33.2245 | 38.9787 | 11.4776 | 10.3816 | 10.9878 | 12.1882 | 17.3186 | |
Correlation coefficient, - | 0.9428 | 0.9276 | 0.9346 | 0.9162 | 0.8868 | 0.9679 | 0.9801 | 0.9801 | 0.9742 | 0.9661 | |
Ostwald–de Waele’s model | Coefficient of consistency, Pa∙ss | 5.2967 | 5.2854 | 5.2419 | 8.0588 | 8.3847 | 2.7714 | 2.8778 | 2.7498 | 3.2356 | 4.2045 |
Exponent, - | 0.4929 | 0.4841 | 0.4740 | 0.4442 | 0.4685 | 0.4840 | 0.4628 | 0.4895 | 0.4649 | 0.4797 | |
Correlation coefficient, - | 0.9962 | 0.9865 | 0.9920 | 0.9844 | 0.9740 | 0.9983 | 0.9882 | 0.9929 | 0.9920 | 0.9973 | |
Casson’s model | Casson’s viscosity, Pa∙s | 0.1146 | 0.0866 | 0.0830 | 0.0915 | 0.1184 | 0.0519 | 0.0477 | 0.0554 | 0.0523 | 0.0748 |
Flow limit, Pa | 11.7086 | 11.2039 | 10.5368 | 16.5485 | 17.6915 | 5.2151 | 5.0616 | 5.0643 | 5.9163 | 7.9848 | |
Correlation coefficient, - | 0.9652 | 0.9539 | 0.9600 | 0.9483 | 0.9217 | 0.9852 | 0.9928 | 0.9926 | 0.9893 | 0.9839 | |
Herschel–Bulkley’s model | Flow limit, Pa | 6.1029 | 10.0769 | 5.8080 | 15.6180 | 31.9790 | 1.8997 | 4.6380 | 4.2584 | 4.3869 | 2.7504 |
Coefficient of consistency, Pa∙sn | 9.5936 | 12.2924 | 9.1489 | 19.6989 | 31.2099 | 1.9809 | 0.8940 | 1.0721 | 1.3721 | 3.1114 | |
Exponent. - | 0.4196 | 0.3541 | 0.3880 | 0.3104 | 0.2791 | 0.5313 | 0.4381 | 0.6284 | 0.5903 | 0.5207 | |
Correlation coefficient, - | 0.9989 | 0.9986 | 0.9967 | 0.9971 | 0.9950 | 0.9988 | 0.9958 | 0.9971 | 0.9955 | 0.9972 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kremieniewski, M. Influence of Hblock Fine-Grained Material on Selected Parameters of Cement Slurry. Energies 2022, 15, 2768. https://doi.org/10.3390/en15082768
Kremieniewski M. Influence of Hblock Fine-Grained Material on Selected Parameters of Cement Slurry. Energies. 2022; 15(8):2768. https://doi.org/10.3390/en15082768
Chicago/Turabian StyleKremieniewski, Marcin. 2022. "Influence of Hblock Fine-Grained Material on Selected Parameters of Cement Slurry" Energies 15, no. 8: 2768. https://doi.org/10.3390/en15082768
APA StyleKremieniewski, M. (2022). Influence of Hblock Fine-Grained Material on Selected Parameters of Cement Slurry. Energies, 15(8), 2768. https://doi.org/10.3390/en15082768