Methods for Enhancing the Electrical Properties of Epoxy Matrix Composites
Abstract
:1. Introduction
2. Modification of Polymer Matrix to Improve Composite Conductivity
3. Reinforcement Modification and Its Effect on the Electrical Conductivity Properties of the Composite
4. Application of Additional Conductive Layers in Multilayer Polymer Composites
5. Summary
- much easier process of laminate preparation (no problem of increasing matrix viscosity when modifying it with a large amount of fillers)
- possibility to compose the composite from layers with different functional properties
- possibility to modify only one part of the laminate (if the composite is used as a protection against atmospheric discharges, it is enough to add conductive layers only in the upper part of the laminate)
- GPNP—graphene nanoplatelets
- CRGO—chemically reduced graphene oxide
- AgNWs—silver nanowires
- CB—carbon black
- CNTs—carbon nanotubes
- G—graphite powder
- PMMA-s—polymethylmethacrylate powder—spacer
- SiCnws—silicon carbide nanowires
- Ni—nickel
- Cu—copper powder
- CNFs—carbon nanofibers
- GNP—graphite nanoplatelets
- Ag-EG—silver plated expanded graphite
- AgNPs—silver nanoparticles
- EG—exfoliated graphite
- CtF—cotton fibers
- BF—basalt fibers
- GO—graphene oxide
- PANI—polyaniline
- MCF—milled carbon fibers
- EG-SA—sulfanilamide-modified expanded graphite
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uman, M.A.; Rakov, V.A. The Interaction of Lightning with Airborne Vehicles. Prog. Aerosp. Sci. 2003, 39, 61–81. [Google Scholar] [CrossRef]
- Willett, J.C.; Park, G.; Krider, E.P.; Peng, G.S.; Simmons, F.S.; Law, G.W. Triggeredlightning risk assessment for reusable launch vehicles at the southwest regional and Oklahoma spaceports. In Proceedings of the 86th AMS Annual Meeting, Atlanta, Georgia, 27 January–3 February 2006; pp. 2–4. [Google Scholar]
- Gardiner, G. Lightning strike protection for composite structures. High Perform. Compos. 2006, 14, 44–50. [Google Scholar]
- Hirano, Y.; Katsumata, S.; Iwahori, Y.; Todoroki, A. Fracture behavior of cfrp specimen after lightning test. In Proceedings of the 17th International Conference on Composite Materials, Edinburgh, UK, 27–31 July 2009; p. 9. [Google Scholar]
- Paolone, M.; Rachidi, F.; Borghetti, A.; Nucci, C.A.; Rubinstein, M.; Rakov, V.A.; Uman, M.A. Lightning Electromagnetic Field Coupling to Overhead Lines: Theory, Numerical Simulations, and Experimental Validation. IEEE Trans. Electromagn. Compat. 2009, 51, 532–547. [Google Scholar] [CrossRef] [Green Version]
- Micheli, D.; Vricella, A.; Pastore, R.; Marchetti, M. Synthesis and Electromagnetic Characterization of Frequency Selective Radar Absorbing Materials Using Carbon Nanopowders. Carbon 2014, 77, 756–774. [Google Scholar] [CrossRef]
- Carlo, K.; Kopp, C. A Doctrine for the Use of ElectroMagnetic Pulse Bombs (Revised Draft of RAAF APSC Working Paper #15, July, 1993); Air Power Studies Centre: Canberra, Australia, 1993; p. 15. [Google Scholar]
- Foster, S.; Gjelde, E.; Graham, W.; Hermann, R.; Kluepfel, H.; Lawson, R.; Soper, G.; Wood, L.; Woodard, J. Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack: Critical National Infrastructures; Technical Report; DTIC Document: Fort Belvoir, VA, USA, 2008; p. 208. [Google Scholar]
- Wilson, C. High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (HPM) Devices: Threat Assessments; CRS Report for Congress; CRS: Washington DC, USA, 2008; p. 26. [Google Scholar]
- Yadav, R.; Tirumali, M.; Wang, X.; Naebe, M.; Kandasubramanian, B. Polymer Composite for Antistatic Application in Aerospace. Def. Technol. 2020, 16, 107–118. [Google Scholar] [CrossRef]
- Hirano, Y.; Yokozeki, T.; Ishida, Y.; Goto, T.; Takahashi, T.; Qian, D.; Ito, S.; Ogasawara, T.; Ishibashi, M. Lightning Damage Suppression in a Carbon Fiber-Reinforced Polymer with a Polyaniline-Based Conductive Thermoset Matrix. Compos. Sci. Technol. 2016, 127, 1–7. [Google Scholar] [CrossRef]
- Soutis, C. Carbon Fiber Reinforced Plastics in Aircraft Construction. Mater. Sci. Eng. A 2005, 412, 171–176. [Google Scholar] [CrossRef]
- Feraboli, P.; Miller, M. Damage Resistance and Tolerance of Carbon/Epoxy Composite Coupons Subjected to Simulated Lightning Strike. Compos. Part A Appl. Sci. Manuf. 2009, 40, 954–967. [Google Scholar] [CrossRef]
- Rana, S.; Alagirusamy, R.; Joshi, M. Development of Carbon Nanofibre Incorporated Three Phase Carbon/Epoxy Composites with Enhanced Mechanical, Electrical and Thermal Properties. Compos. Part A Appl. Sci. Manuf. 2011, 42, 439–445. [Google Scholar] [CrossRef]
- Taherian, R.; Kausar, A. Electrical Conductivity in Polymer-Based Composites: Experiments, Modelling, and Applications; William Andrew: Norwich, NY, USA, 2018. [Google Scholar]
- Tee, Z.Y.; Yeap, S.P.; Hassan, C.S.; Kiew, P.L. Nano and Non-Nano Fillers in Enhancing Mechanical Properties of Epoxy Resins: A Brief Review. Polym.-Plast. Technol. Mater. 2022, 61, 709–725. [Google Scholar] [CrossRef]
- Gantayat, S.; Rout, D.; Swain, S.K. Carbon Nanomaterial–Reinforced Epoxy Composites: A Review. Polym.-Plast. Technol. Eng. 2018, 57, 1–16. [Google Scholar] [CrossRef]
- Osman, A.; Elhakeem, A.; Kaytbay, S.; Ahmed, A. A Comprehensive Review on the Thermal, Electrical, and Mechanical Properties of Graphene-Based Multi-Functional Epoxy Composites. Adv. Compos. Hybrid Mater. 2022, 1–59. [Google Scholar] [CrossRef]
- Sharma, H.; Kumar, A.; Rana, S.; Guadagno, L. An Overview on Carbon Fiber-Reinforced Epoxy Composites: Effect of Graphene Oxide Incorporation on Composites Performance. Polymers 2022, 14, 1548. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.R.; Estaji, S.; Kiaei, H.; Mansourian-Tabaei, M.; Nouranian, S.; Jafari, S.H.; Ruckdäschel, H.; Arjmand, M.; Khonakdar, H.A. A Review of Electrical and Thermal Conductivities of Epoxy Resin Systems Reinforced with Carbon Nanotubes and Graphene-Based Nanoparticles. Polym. Test. 2022, 112, 107645. [Google Scholar] [CrossRef]
- Giménez, R.; Serrano, B.; San-Miguel, V.; Cabanelas, J.C. Recent Advances in MXene/Epoxy Composites: Trends and Prospects. Polymers 2022, 14, 1170. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jing, X. Intrinsically Conducting Polymers for Electromagnetic Interference Shielding. Polym. Adv. Technol. 2005, 16, 344–351. [Google Scholar] [CrossRef]
- Katunin, A.; Krukiewicz, K.; Herega, A.; Catalanotti, G. Concept of a Conducting Composite Material for Lightning Strike Protection. Adv. Mater. Sci. 2016, 16, 32–46. [Google Scholar] [CrossRef] [Green Version]
- Katunin, A.; Krukiewicz, K.; Turczyn, R.; Sul, P.; Łasica, A.; Bilewicz, M. Synthesis and Characterization of the Electrically Conductive Polymeric Composite for Lightning Strike Protection of Aircraft Structures. Compos. Struct. 2017, 159, 773–783. [Google Scholar] [CrossRef]
- Kamiyama, S.; Hirano, Y.; Okada, T.; Ogasawara, T. Lightning Strike Damage Behavior of Carbon Fiber Reinforced Epoxy, Bismaleimide, and Polyetheretherketone Composites. Compos. Sci. Technol. 2018, 161, 107–114. [Google Scholar] [CrossRef]
- Wei, T.; Song, L.; Zheng, C.; Wang, K.; Yan, J.; Shao, B.; Fan, Z.-J. The Synergy of a Three Filler Combination in the Conductivity of Epoxy Composites. Mater. Lett. 2010, 64, 2376–2379. [Google Scholar] [CrossRef]
- Radouane, N.; Depriester, M.; Maaroufi, A.; Singh, D.P.; Ouaki, B.; Duponchel, B.; Elass, A.; Tidahy, L.; Hadj-Sahraoui, A. Synthesis, Mechanical, Thermal, and Electrical Characterization of Graphite–Epoxy Composites. J. Chin. Chem. Soc. 2021, 68, 1456–1465. [Google Scholar] [CrossRef]
- Meng, Q.; Kenelak, V.; Chand, A.; Kang, H.; Han, S.; Liu, T. A Highly Flexible, Electrically Conductive, and Mechanically Robust Graphene/Epoxy Composite Film for Its Self-damage Detection. J. Appl. Polym. Sci. 2020, 137, 48991. [Google Scholar] [CrossRef]
- Meng, Q.; Araby, S.; Oh, J.; Chand, A.; Zhang, X.; Kenelak, V.; Ma, J.; Liu, T.; Ma, J. Accurate Self-Damage Detection by Electrically Conductive Epoxy/Graphene Nanocomposite Film. J. Appl. Polym. Sci. 2021, 138, 50452. [Google Scholar] [CrossRef]
- Senis, E.C.; Golosnoy, I.O.; Dulieu-Barton, J.M.; Thomsen, O.T. Enhancement of the Electrical and Thermal Properties of Unidirectional Carbon Fibre/Epoxy Laminates through the Addition of Graphene Oxide. J. Mater. Sci. 2019, 54, 8955–8970. [Google Scholar] [CrossRef] [Green Version]
- Kernin, A.; Wan, K.; Liu, Y.; Shi, X.; Kong, J.; Bilotti, E.; Peijs, T.; Zhang, H. The Effect of Graphene Network Formation on the Electrical, Mechanical, and Multifunctional Properties of Graphene/Epoxy Nanocomposites. Compos. Sci. Technol. 2019, 169, 224–231. [Google Scholar] [CrossRef]
- Han, L.; Li, K.; Fu, Y.; Yin, X.; Jiao, Y.; Song, Q. Multifunctional Electromagnetic Interference Shielding 3D Reduced Graphene Oxide/Vertical Edge-Rich Graphene/Epoxy Nanocomposites with Remarkable Thermal Management Performance. Compos. Sci. Technol. 2022, 222, 109407. [Google Scholar] [CrossRef]
- Gao, Q.; Zhang, G.; Zhang, Y.; Fan, X.; Wang, Z.; Zhang, S.; Xiao, R.; Huang, F.; Shi, X.; Qin, J. Absorption Dominated High-Performance Electromagnetic Interference Shielding Epoxy/Functionalized Reduced Graphene Oxide/Ni-Chains Microcellular Foam with Asymmetric Conductive Structure. Compos. Sci. Technol. 2022, 223, 109419. [Google Scholar] [CrossRef]
- Kuzhir, P.; Paddubskaya, A.; Plyushch, A.; Volynets, N.; Maksimenko, S.; Macutkevic, J.; Kranauskaite, I.; Banys, J.; Ivanov, E.; Kotsilkova, R.; et al. Epoxy Composites Filled with High Surface Area-Carbon Fillers: Optimization of Electromagnetic Shielding, Electrical, Mechanical, and Thermal Properties. J. Appl. Phys. 2013, 114, 164304. [Google Scholar] [CrossRef] [Green Version]
- Domingues, D.; Logakis, E.; Skordos, A. The Use of an Electric Field in the Preparation of Glass Fibre/Epoxy Composites Containing Carbon Nanotubes. Carbon 2012, 50, 2493–2503. [Google Scholar] [CrossRef]
- Zakaria, M.Y.; Bakar, A.; Sahari, J.; Suherman, H. Effect of the Addition of Milled Carbon Fiber as a Secondary Filler on the Electrical Conductivity of Graphite/Epoxy Composites for Electrical Conductive Material. Compos. Part B Eng. 2015, 83, 75–80. [Google Scholar] [CrossRef]
- Suthar, J.K.; Vaidya, A.; Ravindran, S. Toxic Implications of Silver Nanoparticles on the Central Nervous System: A Systematic Literature Review. J. Appl. Toxicol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, A.; Singh, S.; Ravichandiran, V. Toxicity, Preparation Methods and Applications of Silver Nanoparticles: An Update. Toxicol. Mech. Methods 2022, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Beer, C.; Foldbjerg, R.; Hayashi, Y.; Sutherland, D.; Autrup, H. Toxicity of Silver Nanoparticles—Nanoparticle or Silver Ion? Toxicol. Lett. 2012, 208, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, C.A.; Seckler, M.; Ingle, A.P.; Gupta, I.; Galdiero, S.; Galdiero, M.; Gade, A.; Rai, M. Silver Nanoparticles: Therapeutical Uses, Toxicity, and Safety Issues. J. Pharm. Sci. 2014, 103, 1931–1944. [Google Scholar] [CrossRef]
- Prabhu, S.; Poulose, E.K. Silver Nanoparticles: Mechanism of Antimicrobial Action, Synthesis, Medical Applications, and Toxicity Effects. Int. Nano Lett. 2012, 2, 32. [Google Scholar] [CrossRef] [Green Version]
- Najjaran, A.; Moghaddam, N.A.; Zarchi, S.R.; Mohsenifar, J.; Rasoolzadeh, R. Toxicity effects of nanosilver on liver enzymes, liver and lung tissues. Int. J. Biomed. Eng. Sci. 2014, 1, 11–15. [Google Scholar]
- Qian, Y.; Hwang, S.; Lee, J.; Seo, J.S.; Baeck, S.-H.; Shim, S.E. Novel Electroless Plating of Silver Nanoparticles on Graphene Nanoplatelets and Its Application for Highly Conductive Epoxy Composites. J. Ind. Eng. Chem. 2021, 96, 156–162. [Google Scholar] [CrossRef]
- Kandare, E.; Khatibi, A.A.; Yoo, S.; Wang, R.; Ma, J.; Olivier, P.; Gleizes, N.; Wang, C.-H. Improving the Through-Thickness Thermal and Electrical Conductivity of Carbon Fibre/Epoxy Laminates by Exploiting Synergy between Graphene and Silver Nano-Inclusions. Compos. Part A Appl. Sci. Manuf. 2015, 69, 72–82. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, W.; Wang, X.; Liu, W.; Chen, K.; Gan, W. Low Effective Content of Reduced Graphene Oxide/Silver Nanowire Hybrids in Epoxy Composites with Enhanced Conductive Properties. J. Mater. Sci. Mater. Electron. 2019, 30, 7384–7392. [Google Scholar] [CrossRef]
- Porras, S.; Mucha, M. Electrical Properties Study of Fibre Reinforced Polymeric Materials Used in Aircraft Structures. J. KONES 2018, 25. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, H.-Y.; Du, X.; Zhou, H.; Pan, Z.; Mai, Y.-W.; Jia, Y.-Y.; Yan, W. Flame Synthesis of Carbon Nanotubes on Glass Fibre Fabrics and Their Enhancement in Electrical and Thermal Properties of Glass Fibre/Epoxy Composites. Compos. Part B Eng. 2020, 198, 108249. [Google Scholar] [CrossRef]
- Yan, F.; Liu, L.; Li, M.; Zhang, M.; Shang, L.; Xiao, L.; Ao, Y. One-Step Electrodeposition of Cu/CNT/CF Multiscale Reinforcement with Substantially Improved Thermal/Electrical Conductivity and Interfacial Properties of Epoxy Composites. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105530. [Google Scholar] [CrossRef]
- Xu, J.; Chen, R.; Yun, Z.; Bai, Z.; Li, K.; Shi, S.; Hou, J.; Guo, X.; Zhang, X.; Chen, J. Lightweight Epoxy/Cotton Fiber-Based Nanocomposites with Carbon and Fe3O4 for Electromagnetic Interference Shielding. ACS Omega 2022, 7, 15215–15222. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, T.-W.; Park, S.-M.; Jeong, Y.G. Structures, Electrical and Mechanical Properties of Epoxy Composites Reinforced with MWCNT-Coated Basalt Fibers. Compos. Part A Appl. Sci. Manuf. 2019, 123, 123–131. [Google Scholar] [CrossRef]
- Wu, X.; Tang, B.; Chen, J.; Shan, L.; Gao, Y.; Yang, K.; Wang, Y.; Sun, K.; Fan, R.; Yu, J. Epoxy Composites with High Cross-Plane Thermal Conductivity by Constructing All-Carbon Multidimensional Carbon Fiber/Graphite Networks. Compos. Sci. Technol. 2021, 203, 108610. [Google Scholar] [CrossRef]
- Maity, S.; Chatterjee, A. Conductive Polymer-Based Electro-Conductive Textile Composites for Electromagnetic Interference Shielding: A Review. J. Ind. Text. 2018, 47, 2228–2252. [Google Scholar] [CrossRef]
- Archambault, G.; Jodoin, B.; Gaydos, S.; Yandouzi, M. Metallization of Carbon Fiber Reinforced Polymer Composite by Cold Spray and Lay-up Molding Processes. Surf. Coat. Technol. 2016, 300, 78–86. [Google Scholar] [CrossRef]
- Rehbein, J.; Wierach, P.; Gries, T.; Wiedemann, M. Improved Electrical Conductivity of NCF-Reinforced CFRP for Higher Damage Resistance to Lightning Strike. Compos. Part A Appl. Sci. Manuf. 2017, 100, 352–360. [Google Scholar] [CrossRef]
- Han, J.-H.; Zhang, H.; Chen, M.-J.; Wang, D.; Liu, Q.; Wu, Q.-L.; Zhang, Z. The Combination of Carbon Nanotube Buckypaper and Insulating Adhesive for Lightning Strike Protection of the Carbon Fiber/Epoxy Laminates. Carbon 2015, 94, 101–113. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, S.; Pathak, A.; Singh, B.P.; Dhakate, S.R.; Yokozeki, T.; Okada, T.; Ogasawara, T. Interleaved MWCNT Buckypaper between CFRP Laminates to Improve Through-Thickness Electrical Conductivity and Reducing Lightning Strike Damage. Compos. Struct. 2019, 210, 581–589. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Kuwata, M.; Bilotti, E.; Peijs, T. Improved Fracture Toughness and Integrated Damage Sensing Capability by Spray Coated CNTs on Carbon Fibre Prepreg. Compos. Part A Appl. Sci. Manuf. 2015, 70, 102–110. [Google Scholar] [CrossRef]
- Sobolewski, K.; Dydek, K. Composite Panels as Electromagnetic Field Shields. In Proceedings of the 2016 17th International Conference Computational Problems of Electrical Engineering (CPEE), Sandomierz, Poland, 14–17 September 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Cheng, X.; Hei, Y.; Xing, L.; Li, Z. Lightning Strike Damage on the Composite Laminates with Carbon Nanotube Films: Protection Effect and Damage Mechanism. Compos. Part B Eng. 2019, 168, 342–352. [Google Scholar] [CrossRef]
- Zhang, B.; Soltani, S.; Le, L.; Asmatulu, R. Fabrication and Assessment of a Thin Flexible Surface Coating Made of Pristine Graphene for Lightning Strike Protection. Mater. Sci. Eng. B 2017, 216, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Duan, Y.; Xin, Z.; Yao, X.; Abliz, D.; Ziegmann, G. Fabrication of an Enriched Graphene Surface Protection of Carbon Fiber/Epoxy Composites for Lightning Strike via a Percolating-Assisted Resin Film Infusion Method. Compos. Sci. Technol. 2018, 158, 51–60. [Google Scholar] [CrossRef]
- Zhao, Z.; Ma, Y.; Yang, Z.; Yu, J.; Wang, J.; Tong, J.; Yi, X.; Moreira, P.; Sguazzo, C. Light Weight Non-Metallic Lightning Strike Protection Film for CFRP. Mater. Today Commun. 2020, 25, 101502. [Google Scholar] [CrossRef]
- Kawakami, H.; Feraboli, P. Lightning Strike Damage Resistance and Tolerance of Scarf-Repaired Mesh-Protected Carbon Fiber Composites. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1247–1262. [Google Scholar] [CrossRef]
- Wang, F.; Ji, Y.; Yu, X.; Chen, H.; Yue, Z. Ablation Damage Assessment of Aircraft Carbon Fiber/Epoxy Composite and Its Protection Structures Suffered from Lightning Strike. Compos. Struct. 2016, 145, 226–241. [Google Scholar] [CrossRef]
- Guo, M.; Yi, X. The Production of Tough, Electrically Conductive Carbon Fiber Composite Laminates for Use in Airframes. Carbon 2013, 58, 241–244. [Google Scholar] [CrossRef]
- Guo, M.; Yi, X.; Liu, G.; Liu, L. Simultaneously Increasing the Electrical Conductivity and Fracture Toughness of Carbon–Fiber Composites by Using Silver Nanowires-Loaded Interleaves. Compos. Sci. Technol. 2014, 97, 27–33. [Google Scholar] [CrossRef]
- Zhang, P.; Wyman, I.; Hu, J.; Lin, S.; Zhong, Z.; Tu, Y.; Huang, Z.; Wei, Y. Silver Nanowires: Synthesis Technologies, Growth Mechanism and Multifunctional Applications. Mater. Sci. Eng. B 2017, 223, 1–23. [Google Scholar] [CrossRef]
- Dong, Q.; Wan, G.S.; Xu, Y.Z.; Guo, Y.L.; Du, T.X.; Yi, X.S.; Jia, Y.X. Lightning Damage of Carbon Fiber/Epoxy Laminates with Interlayers Modified by Nickel-Coated Multi-Walled Carbon Nanotubes. Appl. Compos. Mater. 2017, 24, 1339–1351. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, Y.; Wang, Q.; Dong, Q.; Yi, X.; Jia, Y. Eliminating Lightning Strike Damage to Carbon Fiber Composite Structures in Zone 2 of Aircraft by Ni-Coated Carbon Fiber Nonwoven Veils. Compos. Sci. Technol. 2019, 169, 95–102. [Google Scholar] [CrossRef]
- Kumar, V.; Yokozeki, T.; Okada, T.; Hirano, Y.; Goto, T.; Takahashi, T.; Hassen, A.A.; Ogasawara, T. Polyaniline-Based All-Polymeric Adhesive Layer: An Effective Lightning Strike Protection Technology for High Residual Mechanical Strength of CFRPs. Compos. Sci. Technol. 2019, 172, 49–57. [Google Scholar] [CrossRef]
- Kunrath, K.; Kerche, E.F.; Rezende, M.C.; Amico, S.C. Mechanical, Electrical, and Electromagnetic Properties of Hybrid Graphene/Glass Fiber/Epoxy Composite. Polym. Polym. Compos. 2019, 27, 262–267. [Google Scholar] [CrossRef]
- Zha, J.-W.; Zhang, B.; Li, R.; Dang, Z.-M. High-Performance Strain Sensors Based on Functionalized Graphene Nanoplates for Damage Monitoring. Compos. Sci. Technol. 2016, 123, 32–38. [Google Scholar] [CrossRef]
- Gungor, S.; E Bakis, C. Anisotropic Networking of Carbon Black in Glass/Epoxy Composites Using Electric Field. J. Compos. Mater. 2015, 49, 535–544. [Google Scholar] [CrossRef]
- Tung, T.T.; Karunagaran, R.; Tran, D.N.H.; Gao, B.; Nag-Chowdhury, S.; Pillin, I.; Castro, M.; Feller, J.-F.; Losic, D. Engineering of Graphene/Epoxy Nanocomposites with Improved Distribution of Graphene Nanosheets for Advanced Piezo-Resistive Mechanical Sensing. J. Mater. Chem. C 2016, 4, 3422–3430. [Google Scholar] [CrossRef]
- Xia, T.; Zeng, D.; Li, Z.; Young, R.J.; Vallés, C.; Kinloch, I.A. Electrically Conductive GNP/Epoxy Composites for out-of-Autoclave Thermoset Curing through Joule Heating. Compos. Sci. Technol. 2018, 164, 304–312. [Google Scholar] [CrossRef]
- Ravindran, A.R.; Feng, C.; Huang, S.; Wang, Y.; Zhao, Z.; Yang, J. Effects of Graphene Nanoplatelet Size and Surface Area on the AC Electrical Conductivity and Dielectric Constant of Epoxy Nanocomposites. Polymers 2018, 10, 477. [Google Scholar] [CrossRef] [Green Version]
- A Imran, K.; Shivakumar, K.N. Enhancement of Electrical Conductivity of Epoxy Using Graphene and Determination of Their Thermo-Mechanical Properties. J. Reinf. Plast. Compos. 2018, 37, 118–133. [Google Scholar] [CrossRef]
- Macutkevic, J.; Kuzhir, P.; Paddubskaya, A.; Maksimenko, S.; Banys, J.; Celzard, A.; Fierro, V.; Bistarelli, S.; Cataldo, A.; Micciulla, F.; et al. Electrical transport in carbon black-epoxy resin composites at different temperatures. J. Appl. Phys. 2013, 114, 033707. [Google Scholar] [CrossRef]
- Gong, L.-X.; Zhao, L.; Tang, L.-C.; Liu, H.-Y.; Mai, Y.-W. Balanced Electrical, Thermal and Mechanical Properties of Epoxy Composites Filled with Chemically Reduced Graphene Oxide and Rubber Nanoparticles. Compos. Sci. Technol. 2015, 121, 104–114. [Google Scholar] [CrossRef]
- Monti, M.; Rallini, M.; Puglia, D.; Peponi, L.; Torre, L.; Kenny, J. Morphology and Electrical Properties of Graphene–Epoxy Nanocomposites Obtained by Different Solvent Assisted Processing Methods. Compos. Part A Appl. Sci. Manuf. 2013, 46, 166–172. [Google Scholar] [CrossRef]
- Martin, C.A.; Sandler, J.K.W.; Shaffer, M.S.P.; Schwarz, M.-K.; Bauhofer, W.; Schulte, K.; Windle, A.H. Formation of Percolating Networks in Multi-Wall Carbon-Nanotube–Epoxy Composites. Compos. Sci. Technol. 2004, 64, 2309–2316. [Google Scholar] [CrossRef]
- Ghaleb, Z.A.; Mariatti, M.; Ariff, Z.M.; Ervina, J. Preparation and Properties of Amine Functionalized Graphene Filled Epoxy Thin Film Nano Composites for Electrically Conductive Adhesive. J. Mater. Sci. Mater. Electron. 2018, 29, 3160–3169. [Google Scholar] [CrossRef]
- A Imran, K.; Shivakumar, K.N. Graphene-Modified Carbon/Epoxy Nanocomposites: Electrical, Thermal and Mechanical Properties. J. Compos. Mater. 2019, 53, 93–106. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Cha, J.Y.; Ham, H.; Huh, H.; So, D.-S.; Kang, I. Preparation of Piezoresistive Nano Smart Hybrid Material Based on Graphene. Curr. Appl. Phys. 2011, 11, S350–S352. [Google Scholar] [CrossRef]
- Zhang, J.; Zhuang, R.; Liu, J.; Mäder, E.; Heinrich, G.; Gao, S. Functional Interphases with Multi-Walled Carbon Nanotubes in Glass Fibre/Epoxy Composites. Carbon 2010, 48, 2273–2281. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Porwal, H.; Huang, Z.; Bilotti, E.; Peijs, T. Mechanical, Electrical and Thermal Properties of in-Situ Exfoliated Graphene/Epoxy Nanocomposites. Compos. Part A Appl. Sci. Manuf. 2017, 95, 229–236. [Google Scholar] [CrossRef]
- Phua, J.-L.; Teh, P.-L.; Ghani, S.A.; Yeoh, C.-K. Influence of Thermoplastic Spacer on the Mechanical, Electrical, and Thermal Properties of Carbon Black Filled Epoxy Adhesives. Polym. Adv. Technol. 2017, 28, 345–352. [Google Scholar] [CrossRef]
- Reis, J.M.L.; Martins, S.A.; Mattos, H.S.D.C. Combination of Temperature and Electrical Conductivity on Semiconductor Graphite/Epoxy Composites. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 404. [Google Scholar] [CrossRef]
- Wang, T.; Song, Q.; Zhang, S.; Li, K.; Xiao, C.; Lin, H.; Shen, Q.; Li, H. Simultaneous Enhancement of Mechanical and Electrical/Thermal Properties of Carbon Fiber/Polymer Composites via SiC Nanowires/Graphene Hybrid Nanofillers. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106404. [Google Scholar] [CrossRef]
- Krieg, A.S.; A King, J.; Jaszczak, D.C.; Miskoglu, I.; Mills, O.P.; Odegard, G.M. Tensile and Conductivity Properties of Epoxy Composites Containing Carbon Black and Graphene Nanoplatelets. J. Compos. Mater. 2018, 52, 3909–3918. [Google Scholar] [CrossRef]
- Tang, L.-C.; Wan, Y.-J.; Peng, K.; Pei, Y.-B.; Wu, L.-B.; Chen, L.-M.; Shu, L.-J.; Jiang, J.-X.; Lai, G.-Q. Fracture Toughness and Electrical Conductivity of Epoxy Composites Filled with Carbon Nanotubes and Spherical Particles. Compos. Part A Appl. Sci. Manuf. 2013, 45, 95–101. [Google Scholar] [CrossRef]
- Etika, K.C.; Liu, L.; Hess, L.A.; Grunlan, J.C. The Influence of Synergistic Stabilization of Carbon Black and Clay on the Electrical and Mechanical Properties of Epoxy Composites. Carbon 2009, 47, 3128–3136. [Google Scholar] [CrossRef]
- Kim, H.-S.; Hahn, H.T. Graphite Nanoplatelets Interlayered Carbon/Epoxy Composites. AIAA J. 2009, 47, 2779–2784. [Google Scholar] [CrossRef]
- El-Tantawy, F.; Kamada, K.; Ohnabe, H. A Novel Way of Enhancing the Electrical and Thermal Stability of Conductive Epoxy Resin–Carbon Black Composites via the Joule Heating Effect for Heating-Element Applications. J. Appl. Polym. Sci. 2003, 87, 97–109. [Google Scholar] [CrossRef]
- Park, J.-M.; Kim, D.-S.; Kim, S.-J.; Kim, P.-G.; Yoon, D.-J.; DeVries, K.L. Inherent Sensing and Interfacial Evaluation of Carbon Nanofiber and Nanotube/Epoxy Composites Using Electrical Resistance Measurement and Micromechanical Technique. Compos. Part B Eng. 2007, 38, 847–861. [Google Scholar] [CrossRef]
- Han, S.; Chand, A.R.; Araby, S.; Cai, R.; Chen, S.; Kang, H.; Cheng, R.; Meng, Q. Thermally and Electrically Conductive Multifunctional Sensor Based on Epoxy/Graphene Composite. Nanotechnology 2019, 31, 075702. [Google Scholar] [CrossRef]
- Sandler, J.; Kirk, J.; Kinloch, I.; Shaffer, M.; Windle, A. Ultra-Low Electrical Percolation Threshold in Carbon-Nanotube-Epoxy Composites. Polymer 2003, 44, 5893–5899. [Google Scholar] [CrossRef]
- Du, X.; Xu, F.; Liu, H.-Y.; Miao, Y.; Guo, W.-G.; Mai, Y.-W. Improving the Electrical Conductivity and Interface Properties of Carbon Fiber/Epoxy Composites by Low Temperature Flame Growth of Carbon Nanotubes. RSC Adv. 2016, 6, 48896–48904. [Google Scholar] [CrossRef]
- Quan, D.; Mischo, C.; Li, X.; Scarselli, G.; Ivanković, A.; Murphy, N. Improving the Electrical Conductivity and Fracture Toughness of Carbon Fibre/Epoxy Composites by Interleaving MWCNT-Doped Thermoplastic Veils. Compos. Sci. Technol. 2019, 182, 107775. [Google Scholar] [CrossRef]
- Yim, Y.-J.; Park, S.-J. Effect of Silver-Plated Expanded Graphite Addition on Thermal and Electrical Conductivities of Epoxy Composites in the Presence of Graphite and Copper. Compos. Part A Appl. Sci. Manuf. 2019, 123, 253–259. [Google Scholar] [CrossRef]
- Chan, K.L.; Mariatti, M.; Lockman, Z.; Sim, L.C. Effects of the Size and Filler Loading on the Properties of Copper- and Silver-Nanoparticle-Filled Epoxy Composites. J. Appl. Polym. Sci. 2011, 121, 3145–3152. [Google Scholar] [CrossRef]
- He, D.; Salem, D.; Cinquin, J.; Piau, G.-P.; Bai, J. Impact of the Spatial Distribution of High Content of Carbon Nanotubes on the Electrical Conductivity of Glass Fiber Fabrics/Epoxy Composites Fabricated by RTM Technique. Compos. Sci. Technol. 2017, 147, 107–115. [Google Scholar] [CrossRef]
- Hu, N.; Karube, Y.; Arai, M.; Watanabe, T.; Yan, C.; Li, Y.; Liu, Y.; Fukunaga, H. Investigation on Sensitivity of a Polymer/Carbon Nanotube Composite Strain Sensor. Carbon 2010, 48, 680–687. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, B.P.; Chauhan, S.S.; Jyoti, J.; Arya, A.K.; Dhakate, S.; Kumar, V.; Yokozeki, T. Enhanced Thermomechanical and Electrical Properties of Multiwalled Carbon Nanotube Paper Reinforced Epoxy Laminar Composites. Compos. Part A Appl. Sci. Manuf. 2018, 104, 129–138. [Google Scholar] [CrossRef]
- Qin, W.; Vautard, F.; Drzal, L.T.; Yu, J. Mechanical and Electrical Properties of Carbon Fiber Composites with Incorporation of Graphene Nanoplatelets at the Fiber–Matrix Interphase. Compos. Part B Eng. 2015, 69, 335–341. [Google Scholar] [CrossRef]
- Zhang, D.; Ye, L.; Deng, S.; Zhang, J.; Tang, Y.; Chen, Y. CF/EP Composite Laminates with Carbon Black and Copper Chloride for Improved Electrical Conductivity and Interlaminar Fracture Toughness. Compos. Sci. Technol. 2012, 72, 412–420. [Google Scholar] [CrossRef]
- Lu, S.; Tian, C.; Wang, X.; Zhang, L.; Du, K.; Ma, K.; Xu, T. Strain Sensing Behaviors of GnPs/Epoxy Sensor and Health Monitoring for Composite Materials under Monotonic Tensile and Cyclic Deformation. Compos. Sci. Technol. 2018, 158, 94–100. [Google Scholar] [CrossRef]
- Bao, D.; Gao, Y.; Cui, Y.; Xu, F.; Shen, X.; Geng, H.; Zhang, X.; Lin, D.; Zhu, Y.; Wang, H. A Novel Modified Expanded Graphite/Epoxy 3D Composite with Ultrahigh Thermal Conductivity. Chem. Eng. J. 2022, 433, 133519. [Google Scholar] [CrossRef]
- Shamchi, S.P.; de Moura, M.F.; Zhao, Z.; Yi, X.; Moreira, P.M. Dynamic Mode II Interlaminar Fracture Toughness of Electrically Modified Carbon/Epoxy Composites. Int. J. Impact Eng. 2022, 159, 104030. [Google Scholar] [CrossRef]
- Rosca, I.D.; Hoa, S.V. Highly Conductive Multiwall Carbon Nanotube and Epoxy Composites Produced by Three-Roll Milling. Carbon 2009, 47, 1958–1968. [Google Scholar] [CrossRef]
- Meng, Q.; Wu, H.; Zhao, Z.; Araby, S.; Lu, S.; Ma, J. Free-Standing, Flexible, Electrically Conductive Epoxy/Graphene Composite Films. Compos. Part A Appl. Sci. Manuf. 2017, 92, 42–50. [Google Scholar] [CrossRef]
N | Type of Filler | Filler Amount [wt.%] | Type of Fabric (Reinforcement) | Fiber Volume Fractions [vol.%] | Fiber Weight [g/m2] | Volume Conductivity [S/cm] | Ref. |
---|---|---|---|---|---|---|---|
1 | GPNP | 4.0 | GF | - | 300 | 1.44 × 10−13 | [71] |
2 | - | - | GF | 10−12 | [35] | ||
3 | CRGO/AgNWs (1:2) | 0.6 | - | - | - | 2.1 × 10−9 | [45] |
4 | GPNP | 1.75 [vol.%] | - | - | - | 5 × 10−8 | [72] |
5 | CB | 1.5 | GF | 225 | 10−6 | [73] | |
6 | GPNP | 2 | - | - | - | 10−6 | [74] |
7 | GPNP | 10 | - | - | - | 2.5 × 10−6 | [75] |
8 | GPNP | 10 | - | - | - | 2.8 × 10−6 | [76] |
9 | GPNP | 2 | - | - | - | 3.1 × 10−6 | [77] |
10 | CB | 2.0 | - | - | - | 5 × 10−6 | [78] |
11 | CRGO | 0.5 | - | - | - | 5 × 10−6 | [79] |
12 | GPNP | 3.0 | - | - | - | 5.8 × 10−6 | [80] |
13 | CNTs | 0.01 | - | - | - | 10−5 | [81] |
14 | GPNP | 0.1 | - | - | - | 1.02 × 10−5 | [82] |
15 | GPNP | 1.0 | CF | 53 | 372 | 1.31 × 10−5 | [83] |
16 | G | 20 [vol.%] | - | - | - | 1.57 × 10−5 | [27] |
17 | GPNP | 3 | - | - | - | 2 × 10−5 | [84] |
18 | CNTs | 0.5 | GF | - | - | 10−4 | [85] |
19 | GPNP | 3.0 | - | - | - | ≈10−4 | [86] |
20 | GPNP | 7.5 [vol.%] | - | - | - | 10−4 | [28] |
21 | CNTs | 0.1 | GF | 1.7 × 10−4 | [35] | ||
22 | - | - | CF | 3.4 × 10−4 | [14] | ||
23 | CB/PMMA-s | 15/40 [vol.%] | - | - | - | 5.36 × 10−4 | [87] |
24 | G | 55 | - | - | - | 9.1 × 10−4 | [46] |
25 | CRGO | 0.5 | - | - | - | 9.1 × 10−4 | [88] |
26 | SiCnws | 0.85 | GF | 45 | 160 | 1.06 × 10−3 | [31] |
27 | CRGO | 5 [vol.%] | Ni-chains | 5 | - | 1.13 × 10−3 | [89] |
28 | CB | 1.0 | - | - | - | 1.3 × 10−3 | [33] |
29 | CNTs/Silica | 1.0/10.0 | - | - | - | 1.63 × 10−3 | [90] |
30 | CNTs/Cu | 15.7 (in fabrics) | CF | 56.3 | - | 1.86 × 10−3 | [91] |
31 | GPNP/AgNWs | 0.95/0.05 [vol.%] | CF | 45 | 199 | 3 × 10−3 | [70] |
32 | CB | 5.0 | - | - | - | 5.24 × 10−3 | [44] |
33 | CNFs | 0.5 | CF | - | - | 6.8 × 10−3 | [92] |
34 | GNP | 2.0 | CF | 56.7 | - | 9.8 × 10−3 | [14] |
35 | G | 6.34 [vol.%] | CF | 17.48 | - | 10−2 | [93] |
36 | CB | 7.0 | - | - | - | 10−2 | [51] |
37 | CNTs | 2.0 | - | - | - | 10−2 | [94] |
38 | GPNP | 10 [vol.%] | - | - | - | 10−2 | [95] |
39 | GNP/CB/CNTs | 2 | - | - | - | 10−2 | [96] |
40 | CNTs | 1 | - | - | - | 2 × 10−2 | [26] |
41 | CNTs | 12 (in fabrics) | CF | 58 | - | 2.5 × 10−2 | [97] |
42 | CNTs | 0.8 | CF | 60 | - | 4.5 × 10−2 | [98] |
43 | Ag-EG/G/Cu | 10 | - | - | - | 4.54 × 10−2 | [99] |
44 | AgNPs | 7 [vol.%] | - | - | - | 5 × 10−2 | [100] |
45 | CNTs | 11.76 | GF | 45 | - | 5.4 × 10−2 | [101] |
46 | CNTs | 30 | CtF | - | - | 8 × 10−2 | [63] |
47 | CNTs | 6.0 | GF | 36.1 | 190 | 8.3 × 10−2 | [71] |
48 | CNTs | 5 | - | - | - | 0.1 | [102] |
49 | EG | 2 | - | - | - | 0.1 | [103] |
50 | CNTs | 0.05 | - | - | - | 0.116 | [33] |
51 | CNTs | 2.65 | BF | - | 600 | 0.144 | [104] |
52 | GO | 6.3 [vol.%] | CF | 57 | 852 | 0.18 | [30] |
53 | GPNP | 3.0 | CF | 65 | - | 0.44 | [105] |
54 | PANI | 50 [vol.%] | - | - | - | 0.44 | [24] |
55 | CB | 3.0 | CF | 65 | 205 | 0.6 | [106] |
56 | GPNP | 2.64 [vol.%] | - | - | - | ≈0.6 | [107] |
57 | CRGO | 3.98 | - | - | - | 0.682 | [32] |
58 | GPNP | 9 [vol.%] | - | - | - | 3.3 | [29] |
59 | MCF/G | 2.0/80 | - | - | - | 50 | [42] |
60 | EG-SA | 70 | - | - | - | 71.5 | [108] |
61 | AgNWs | - | CF | - | - | 2.1 × 102 | [109] |
62 | AgNPs/GPNP | 20 [vol.%] | - | - | - | 2.13 × 102 | [43] |
63 | CNTs | 1 | - | - | - | 3.6 × 102 | [110] |
64 | GPNP | 20 [vol.%] | - | - | - | 1.3 × 103 | [111] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krajewski, D.; Oleksy, M.; Oliwa, R.; Bulanda, K.; Czech, K.; Mazur, D.; Masłowski, G. Methods for Enhancing the Electrical Properties of Epoxy Matrix Composites. Energies 2022, 15, 4562. https://doi.org/10.3390/en15134562
Krajewski D, Oleksy M, Oliwa R, Bulanda K, Czech K, Mazur D, Masłowski G. Methods for Enhancing the Electrical Properties of Epoxy Matrix Composites. Energies. 2022; 15(13):4562. https://doi.org/10.3390/en15134562
Chicago/Turabian StyleKrajewski, Dariusz, Mariusz Oleksy, Rafał Oliwa, Katarzyna Bulanda, Kamil Czech, Damian Mazur, and Grzegorz Masłowski. 2022. "Methods for Enhancing the Electrical Properties of Epoxy Matrix Composites" Energies 15, no. 13: 4562. https://doi.org/10.3390/en15134562
APA StyleKrajewski, D., Oleksy, M., Oliwa, R., Bulanda, K., Czech, K., Mazur, D., & Masłowski, G. (2022). Methods for Enhancing the Electrical Properties of Epoxy Matrix Composites. Energies, 15(13), 4562. https://doi.org/10.3390/en15134562