Seasonal Performance Evaluation of Air-Based Solar Photovoltaic/Thermal Hybrid System
Abstract
:1. Introduction
2. Materials and Methods
3. Measurement Results
3.1. Comparison of Temperature Results
3.2. Comparison of Power Generation Change
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate. Climate Change 2021 The Physical Science Basis; Intergovernmental Panel on Climate: Geneva, Switzerland, 2021; ISBN 9789291691586. [Google Scholar]
- Clapp, C.; Briner, G.; Karousakis, K. Low-Emission Development Strategies(LEDS): Technical, Institutional and Policy Lessons; OECD Publishing: Paris, France, 2010. [Google Scholar]
- United Nations. Nationally Determined Contributions under the Paris Agreement; United Nations: Rome, Italy, 2021. [Google Scholar]
- Lämmle, M.; Oliva, A.; Hermann, M.; Kramer, K.; Kramer, W. PVT Collector Technologies in Solar Thermal Systems: A Systematic Assessment of Electrical and Thermal Yields with the Novel Characteristic Temperature Approach. Sol. Energy 2017, 155, 867–879. [Google Scholar] [CrossRef]
- Yu, G.; Yang, H.; Yan, Z.; Kyeredey, M. A Review of Designs and Performance of Façade-Based Building Integrated Photovoltaic-Thermal (BIPVT) Systems. Appl. Therm. Eng. 2021, 182, 116081. [Google Scholar] [CrossRef]
- Wajs, J.; Golabek, A.; Bochniak, R.; Mikielewicz, D. Air-Cooled Photovoltaic Roof Tile as an Example of the BIPVT System e An Experimental Study on the Energy and Exergy Performance. Energy 2020, 197, 117255. [Google Scholar] [CrossRef]
- Singh, G.; Kumar, S.; Tiwari, G.N. Design, Fabrication and Performance Evaluation of a Hybrid Photovoltaic Thermal ( PVT ) Double Slope Active Solar Still. DES 2011, 277, 399–406. [Google Scholar] [CrossRef]
- Syakirah, N.; Fudholi, A.; Bakhtyar, B.; Hoy, C.; Ibrahim, A.; Ha, M.; Mat, S.; Sopian, K. Energy Economic Analysis of Photovoltaic–Thermal-Thermoelectric (PVT-TE) Air Collectors. Renew. Sustain. Energy Rev. 2018, 92, 187–197. [Google Scholar] [CrossRef]
- Numan, A.; Kaya, F. Effect on the Exergy of the PVT System of Fi Ns Added to an Air-Cooled Channel: A Study on Temperature and Air Velocity with ANSYS Fluent. Sol. Energy 2019, 184, 561–569. [Google Scholar] [CrossRef]
- Lateef, A.; Misha, S.; Tamaldin, N.; Rosli, M.A.M.; Sachit, A. Case Studies in Thermal Engineering Theoretical Study and Indoor Experimental Validation of Performance of the New Photovoltaic Thermal Solar Collector (PVT) Based Water System. Case Stud. Therm. Eng. 2020, 18, 100595. [Google Scholar] [CrossRef]
- Vittorini, D.; Castellucci, N.; Cipollone, R. Heat Recovery Potential and Electrical Performances In- Fi Eld Investigation on a Hybrid PVT Module. Appl. Energy 2017, 205, 44–56. [Google Scholar] [CrossRef]
- Gu, G.; Gu, Y. Flow Analysis and Experimental Study of Air Type PVT Collector. In Proceedings of the SAREK Conference, Pyeongchang, Korea, 20–22 June 2018; pp. 949–952. [Google Scholar]
- Calder, N.; Jos, O.; Henrique, E.; Franco, M.; Eduardo, E.; Lora, S.; Scherer, H.F.; Mauricio, D.; Maya, Y.; Hideo, O.; et al. Numerical–Experimental Performance Assessment of a Non-Concentrating Solar Thermoelectric Generator ( STEG ) Operating in the Southern Hemisphere. Energies 2020, 13, 2666. [Google Scholar]
- Meneghel, B.; Miguel, A.; Nelson, S.; De Souza, M.; Secco, D.; Eduardo, C.; Nogueira, C.; Hideo, O.; Junior, A. Performance and Effect of Water-Cooling on a Microgeneration System of Photovoltaic Solar Energy in Paran A. J. Clean. Prod. 2018, 192, 477–485. [Google Scholar] [CrossRef]
- Pounraj, P.; Winston, D.P.; Kabeel, A.E.; Kumar, B.P.; Manokar, A.M.; Sathyamurthy, R.; Christabel, S.C. Experimental Investigation on Peltier Based Hybrid PV/T Active Solar Still for Enhancing the Overall Performance. Energy Convers. Manag. 2018, 168, 371–381. [Google Scholar] [CrossRef]
- Praveen, B.; Winston, D.P.; Pounraj, P.; Manokar, A.M.; Sathyamurthy, R.; Kabeel, A.E. Experimental Investigation on Hybrid PV/T Active Solar Still with effective Heating and Cover Cooling Method. Desalination 2018, 435, 140–151. [Google Scholar] [CrossRef]
- Kang, J.; Kim, J.; Kim, J. A Study on the Performance Comparisons of Air Type BIPVT Collector Applied on Roofs and Facades. J. Korean Sol. Energy Soc. 2010, 30, 56–62. [Google Scholar]
- Hengel, F.; Heschl, C.; Inschlag, F.; Klanatsky, P. International Journal of Thermo Fl Uids System efficiency of Pvt Collector-Driven Heat Pumps. Int. J. Thermofluids 2020, 5–6, 100034. [Google Scholar] [CrossRef]
- Ramos, A.; Chatzopoulou, M.A.; Guarracino, I.; Freeman, J.; Markides, C.N. Hybrid Photovoltaic-Thermal Solar Systems for Combined Heating, Cooling and Power Provision in the Urban Environment. Energy Convers. Manag. 2017, 150, 838–850. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, H.B. Analysis of Solar Energy Utilization Effect of Air-Based Photovoltaic/Thermal System. Energies 2021, 14, 8586. [Google Scholar] [CrossRef]
Items | Instrument | Specification |
---|---|---|
Temperature | Thermal couple T-type | Range: −200–250 °C, Accuracy: ±0.5 °C, Resolution: 0.1 °C |
Solar radiation | EKO MS-40 pyranometer ISO 9060:2018 Class C (second class) | Range: 0–2000 W/m2, Accuracy: ±0.2% |
Electric energy | Solar volt/Current unit | 10 A/50 mV shunt |
Wind speed | Testo 405i hot-wire anemometer | Range: 0–30 m/s, Accuracy: ±0.1–0.3 m/s |
Data logger | Hioki Memory Hilogger LR8400 | Temperature resolution: 0.01 °C, Voltage resolution: 500 nV |
Number | Item | Number | Item |
---|---|---|---|
1 | Outside temperature | 15 | PVT lower air temperature |
2 | PVT air inlet temperature 1 | 16 | PV upper air temperature |
3 | PVT air inlet temperature 2 | 17 | PV upper-surface temperature 1 |
4 | PVT air inlet temperature 3 | 18 | PV upper-surface temperature 2 |
5 | PVT upper-air temperature | 19 | PV upper-surface temperature 3 |
6 | PVT upper-surface temperature 1 | 20 | PV lower-surface temperature 1 |
7 | PVT upper-surface temperature 2 | 21 | PV lower-surface temperature 2 |
8 | PVT upper-surface temperature 3 | 22 | PV lower-surface temperature 3 |
9 | PVT lower-surface temperature 1 | 23 | PV lower-air temperature |
10 | PVT lower-surface temperature 2 | 24 | Pyranometer |
11 | PVT lower-surface temperature 3 | 25 | PVT current |
12 | PVT air outlet temperature 1 | 26 | PVT voltage |
13 | PVT air outlet temperature 2 | 27 | PV current |
14 | PVT air outlet temperature 3 | 28 | PV voltage |
PVT Results | PV Results | ||||
---|---|---|---|---|---|
Regression Statistics | Regression Statistics | ||||
Multiple R | 0.960 | Multiple R | 0.952 | ||
R Square | 0.922 | R Square | 0.907 | ||
Adjusted R Square | 0.922 | Adjusted R Square | 0.907 | ||
Standard Error | 22.710 | Standard Error | 21.954 | ||
Observations | 437 | Observations | 436 | ||
ANOVA | ANOVA | ||||
Significance F | Significance F | ||||
Regression | 2.7276 × 10−241 | Regression | 3.9829 × 10−224 | ||
Coefficients | p-Value | Coefficients | p-Value | ||
Intercept | 20.29 | 2.60443 × 10−14 | Intercept | 17.53 | 6.53258 × 10−12 |
Outdoor temperature | −0.62 | 2.23992 × 10−11 | Outdoor temperature | −0.27 | 0.001779559 |
Solar radiation | 0.26 | 7.0797 × 10−242 | Solar radiation | 0.23 | 1.8234 × 10−225 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y. Seasonal Performance Evaluation of Air-Based Solar Photovoltaic/Thermal Hybrid System. Energies 2022, 15, 4695. https://doi.org/10.3390/en15134695
Choi Y. Seasonal Performance Evaluation of Air-Based Solar Photovoltaic/Thermal Hybrid System. Energies. 2022; 15(13):4695. https://doi.org/10.3390/en15134695
Chicago/Turabian StyleChoi, Youngjin. 2022. "Seasonal Performance Evaluation of Air-Based Solar Photovoltaic/Thermal Hybrid System" Energies 15, no. 13: 4695. https://doi.org/10.3390/en15134695
APA StyleChoi, Y. (2022). Seasonal Performance Evaluation of Air-Based Solar Photovoltaic/Thermal Hybrid System. Energies, 15(13), 4695. https://doi.org/10.3390/en15134695