Effect of Endogenous Methane Production: A Step Forward in the Validation of Biochemical Methane Potential (BMP) Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inocula
2.2. Degassing Process
2.3. BMP Assays
2.4. Methane Quantification and BMP Calculation
- (i)
- relative standard deviation (RSD) of the volume of methane produced in the control assays amended with microcrystalline cellulose should be <6% (RSD < 6%);
- (ii)
- BMP of microcrystalline cellulose should range from 340 to 395 L · kg−1 (BMP_Control), corresponding to 82–95% of the theoretical maximum BMP value (BMPmax = 414 L · kg−1).
2.5. Analytical Methods
2.6. Statistical Analysis
3. Results and Discussion
3.1. Degassing Process
3.2. Effect of Endogenous Methane Production in BMP Tests
3.2.1. Digested Sewage Sludge (DSS)
3.2.2. Anaerobic Granular Sludge (GS)
3.2.3. Dairy Manure (DM)
3.3. Effect on BMP of the Inoculum Source and Blanks’ Headspace Volume
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EBA Statistical Report. Available online: https://www.europeanbiogas.eu/eba-statistical-report-2021/ (accessed on 14 June 2022).
- Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions—REPowerEU Plan (COM/2022/230 final). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A230%3AFIN&qid=1653033742483 (accessed on 14 June 2022).
- Koch, K.; Hafner, S.D.; Weinrich, S.; Astals, S.; Holliger, C. Power and limitations of Biochemical Methane Potential (BMP) tests. Front. Energy Res. 2020, 8, 63. [Google Scholar] [CrossRef]
- Angelidaki, I.; Alves, M.M.; Bolzonella, D.; Borzacconi, L.; Campos, J.L.; Guwy, A.J.; Kalyuzhnyi, S.; Jenicek, P.; Van Lier, J.B. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 2009, 59, 927–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, T.L.; Schmidt, J.E.; Angelidaki, I.; Marca, E.; Jansen, J.L.C.; Mosbæk, H.; Christensen, T.H. Method for determination of methane potentials of solid organic waste. Waste Manag. 2004, 24, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Raposo, F.; De La Rubia, M.A.; Fernández-Cegrí, V.; Borja, R. Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renew. Sustain. Energy Rev. 2012, 16, 861–877. [Google Scholar] [CrossRef]
- Holliger, C.; Alves, M.M.; Andrade, D.; Angelidaki, I.; Astals, S.; Baier, U.; Bougrier, C.; Buffiere, P.; Carballa, M.; de Wilde, V.; et al. Towards a standardization of biomethane potential tests. Water Sci. Technol. 2016, 74, 2515–2522. [Google Scholar] [CrossRef]
- Filer, J.; Ding, H.H.; Chang, S. Biochemical Methane Potential (BMP) assay method for anaerobic digestion research. Water 2019, 11, 921. [Google Scholar] [CrossRef] [Green Version]
- Dechrugsa, S.; Kantachote, D.; Chaiprapat, S. Effects of inoculum to substrate ratio, substrate mix ratio and inoculum source on batch co-digestion of grass and pig manure. Bioresour. Technol. 2013, 146, 101–108. [Google Scholar] [CrossRef]
- Wang, B.; Björn, A.; Strömberg, S.; Nges, I.A.; Nistor, M.; Liu, J. Evaluating the influences of mixing strategies on the Biochemical Methane Potential test. J. Environ. Manag. 2017, 185, 54–59. [Google Scholar] [CrossRef]
- Nilsson Påledal, S.; Hellman, E.; Moestedt, J. The effect of temperature, storage time and collection method on biomethane potential of source separated household food waste. Waste Manag. 2018, 71, 636–643. [Google Scholar] [CrossRef]
- Koch, K.; Hafner, S.D.; Weinrich, S.; Astals, S. Identification of critical problems in Biochemical Methane Potential (BMP) tests from methane production curves. Front. Environ. Sci. 2019, 7, 178. [Google Scholar] [CrossRef]
- Hafner, S.D.; Fruteau de Laclos, H.; Koch, K.; Holliger, C. Improving inter-laboratory reproducibility in measurement of Biochemical Methane Potential (BMP). Water 2020, 12, 1752. [Google Scholar] [CrossRef]
- Raposo, F.; Borja, R.; Ibelli-Bianco, C. Predictive regression models for biochemical methane potential tests of biomass samples: Pitfalls and challenges of laboratory measurements. Renew. Sustain. Energy Rev. 2020, 127, 109890. [Google Scholar] [CrossRef]
- Hafner, S.D.; Koch, K.; Carrere, H.; Astals, S.; Weinrich, S.; Rennuit, C. Software for biogas research: Tools for measurement and prediction of methane production. SoftwareX 2018, 7, 205–210. [Google Scholar] [CrossRef]
- Pearse, L.F.; Hettiaratchi, J.P.; Kumar, S.; Moreno-Andrade, I.; Buitrón, G. Towards developing a representative biochemical methane potential (BMP) assay for landfilled municipal solid waste—A review. Water Sci. Technol. 2018, 49, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.; Cresson, R.; Pommier, S.; Preys, S.; André, L.; Béline, F.; Bouchez, T.; Bougrier, C.; Buffière, P.; Cacho, J.; et al. Measurement of Biochemical Methane Potential of heterogeneous solid substrates: Results of a two-phase French inter-laboratory study. Water 2020, 12, 2814. [Google Scholar] [CrossRef]
- Holliger, C.; Astals, S.; de Laclos, H.F.; Hafner, S.D.; Koch, K.; Weinrich, S. Towards a standardization of biomethane potential tests: A commentary. Water Sci. Technol. 2021, 83, 247–250. [Google Scholar] [CrossRef]
- De Vrieze, J.; Raport, L.; Willems, B.; Verbrugge, S.; Volcke, E.; Meers, E.; Angenent, L.T.; Boon, N. Inoculum selection influences the biochemical methane potential of agro-industrial substrates. Microb. Biotechnol. 2015, 8, 776–786. [Google Scholar] [CrossRef]
- Koch, K.; Lippert, T.; Drewes, J.E. The role of inoculum’s origin on the methane yield of different substrates in biochemical methane potential (BMP) tests. Biores. Technol. 2017, 243, 457–463. [Google Scholar] [CrossRef]
- Hülsemann, B.; Zhou, L.; Merkle, W.; Hassa, J.; Müller, J.; Oechsner, H. Biomethane Potential Test: Influence of inoculum and the digestion system. Appl. Sci. 2020, 10, 2589. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.P.P.; Castañares, G.; Van Lier, J.B. An OxiTop® protocol for screening plant material for its biochemical methane potential (BMP). Water Sci. Technol. 2012, 66, 1416–1423. [Google Scholar] [CrossRef]
- Hafner, S.D.; Astals, S. Systematic error in manometric measurement of biochemical methane potential: Sources and solutions. Waste Manag. 2019, 91, 147–155. [Google Scholar] [CrossRef]
- Justesen, C.G.; Astals, S.; Mortensen, J.R.; Thorsen, R.; Koch, K.; Weinrich, S.; Triolo, J.M.; Hafner, S.D. Development and validation of a low-cost gas density method for measuring Biochemical Methane Potential (BMP). Water 2019, 11, 2431. [Google Scholar] [CrossRef] [Green Version]
- Amodeo, C.; Hafner, S.D.; Teixeira Franco, R.; Benbelkacem, H.; Moretti, P.; Bayard, R.; Buffière, P. How different are manometric, gravimetric, and automated volumetric BMP results? Water 2020, 12, 1839. [Google Scholar] [CrossRef]
- Hagen, L.H.; Vivekanand, V.; Pope, P.B.; Eijsink, V.G.H.; Horn, S.J. The effect of storage conditions on microbial community composition and biomethane potential in a biogas starter culture. Appl. Microbiol. Biotechnol. 2015, 99, 5749–5761. [Google Scholar] [CrossRef]
- Astals, S.; Koch, K.; Weinrich, S.; Hafner, S.D.; Tait, S.; Peces, M. Impact of storage conditions on the methanogenic activity of anaerobic digestion inocula. Water 2020, 12, 1321. [Google Scholar] [CrossRef]
- Valero, D.; Montes, J.A.; Rico, J.L.; Rico, C. Influence of headspace pressure on methane production in Biochemical Methane Potential (BMP) tests. Waste Manag. 2016, 48, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Himanshu, H.; Voelklein, M.A.; Murphy, J.D.; Grant, J.; O’Kiely, P. Factors controlling headspace pressure in a manual manometric BMP method can be used to produce a methane output comparable to AMPTS. Bioresour. Technol. 2017, 238, 633–642. [Google Scholar] [CrossRef]
- Coates, J.; Coughlan, M.F.; Colleran, E. Simple method for the measurement of the hydrogenotrophic methanogenic activity of anaerobic sludges. J. Microbiol. Methods 1996, 26, 237–246. [Google Scholar] [CrossRef]
- Alves, M.M.; Mota Vieira, J.A.; Álvares Pereira, R.M.; Pereira, M.A.; Mota, M. Effect of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part I: Biofilm growth and activity. Water Res. 2001, 35, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Hafner, S.D.; Astals, S.; Holliger, C.; Koch, K.; Weinrich, S. Calculation of Biochemical Methane Potential (BMP). Stand. BMP Methods Doc. 2020, 200. Available online: https://raw.githubusercontent.com/sashahafner/BMP-methods/master/200_BMP_calculations.pdf (accessed on 14 June 2022).
- APHA; AWWA; WPCF. Standard Methods for the Examination of Water and Wastewater, 17th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Park, J.; Cho, K.H.; Ligaray, M.; Choi, M.-J. Organic matter composition of manure and its potential impact on plant growth. Sustainability 2019, 11, 2346. [Google Scholar] [CrossRef] [Green Version]
- Yue, Z.; Teater, C.; MacLellan, J.; Liu, Y.; Liao, W. Development of a new bioethanol feedstock—Anaerobically digested fiber from confined dairy operations using different digestion configurations. Biomass Bioenergy 2011, 35, 1946–1953. [Google Scholar] [CrossRef]
- Fruteau de Laclos, H.; Hafner, S.; Holliger, C. Report on International Inter-Laboratory Study on BMP Tests; 2018. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwia8_H_-sn4AhU7wQIHHQf8AjIQFnoECAQQAQ&url=https%3A%2F%2Fwww.ktbl.de%2Ffileadmin%2Fuser_upload%2FAllgemeines%2FDownload%2FRingversuch-Biogas%2FReport_Interlab-study_BMP-tests_February2018_korr.pdf&usg=AOvVaw0XTzSyg9rJwt4G07uY1VVC (accessed on 14 June 2022).
- Costa, J.C.; Oliveira, J.V.; Alves, M.M. Response surface design to study the influence of inoculum, particle size and inoculum to substrate ratio on the methane production from Ulex sp. Renew. Energy 2016, 96, 1071–1077. [Google Scholar] [CrossRef] [Green Version]
- Ohemeng-Ntiamoah, J.; Datta, T. Perspectives on variabilities in biomethane potential test parameters and outcomes: A review of studies published between 2007 and 2018. Sci. Total Environ. 2019, 664, 1052–1062. [Google Scholar] [CrossRef]
- Elbeshbishy, E.; Nakhla, G.; Hafez, H. Biochemical methane potential (BMP) of food waste and primary sludge: Influence of inoculum pre-incubation and inoculum source. Bioresour. Technol. 2012, 110, 18–25. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, R.; Chen, C.; Liu, G.; He, Y.; Liu, X. Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions. Bioresour. Technol. 2013, 149, 406–412. [Google Scholar] [CrossRef]
- Raposo, F.; Fernández-Cegrí, V.; De la Rubia, M.A.; Borja, R.; Béline, F.; Cavinato, C.; Demirer, G.; Fernández, B.; Fernández-Polanco, M.; Frigon, J.C.; et al. Biochemical methane potential (BMP) of solid organic substrates: Evaluation of anaerobic biodegradability using data from an international interlaboratory study. J. Chem. Technol. Biotechnol. 2011, 86, 1088–1098. [Google Scholar] [CrossRef]
- Strömberg, S.; Nistor, M.; Liu, J. Towards eliminating systematic errors caused by the experimental conditions in Biochemical Methane Potential (BMP) tests. Waste Manag. 2014, 34, 1939–1948. [Google Scholar] [CrossRef]
Inoculum | ||||
DSS | 25.2 ± 0.3 | 17.1 ± 0.2 | 52 ± 4 | 267 ± 10 |
dDSS | 22.2 ± 0.7 | 14.8 ± 0.5 | <10 | 91 ± 4 |
GS | 97.3 ± 2.6 | 88.8 ± 2.4 | 216 ± 15 | 497 ± 32 |
dGS | 89.8 ± 1.0 | 81.9 ± 1.0 | 112 ± 1 | 528 ± 36 |
DM | 20.6 ± 0.2 | 15.6 ± 0.1 | <10 | 206 ± 5 |
dDM | 10.2 ± 0.1 | 6.6 ± 0.0 | 49 ± 3 | 101 ± 15 |
Inoculum | Not Subtracted | After Subtracting Methane from Blanks with Different Hv … Wv−1 | |||
---|---|---|---|---|---|
0.6 | 2.3 | 5.0 | 10.1 | ||
DSS | 718 ± 7 | 449 ± 7 | 437 ± 7 | 404 ± 6 | 385 ± 9 |
CH4_Blk < 20% | - | 🗴 | 🗴 | 🗴 | 🗴 |
RSD < 6% | ● | ● | ● | ● | ● |
BMP_Control (%) | 🗴 (173 ± 2) | 🗴 (108 ± 2) | 🗴 (106 ± 2) | ● (97 ± 2) | ● (93 ± 2) |
dDSS | 507 ± 3 | 403 ± 6 | 371 ± 3 | 346 ± 6 | 354 ± 3 |
CH4_Blk < 20% | - | 🗴 | 🗴 | 🗴 | 🗴 |
RSD < 6% | ● | ● | ● | ● | ● |
BMP_Control (%) | 🗴 (122 ± 1) | ● (97 ± 2) | ● (90 ± 1) | ● (84 ± 2) | ● (86 ± 1) |
Inoculum | Not Subtracted | After Subtracting Methane from Blanks with Different Hv Wv−1 | |||
---|---|---|---|---|---|
0.6 | 2.3 | 5.0 | 10.1 | ||
GS | 477 ± 4 | 301 ± 4 | 303 ± 4 | 297 ± 6 | 306 ± 8 |
CH4_Blk < 20% | - | 🗴 | 🗴 | 🗴 | 🗴 |
RSD < 6% | ● | ● | ● | ● | ● |
BMP_Control (%) | 🗴 (115 ± 1) | 🗴 (73 ± 1) | 🗴 (73 ± 1) | 🗴 (72 ± 1) | 🗴 (74 ± 2) |
dGS | 524 ± 1 | 376 ± 4 | 321 ± 6 | 305 ± 5 | 315 ± 4 |
CH4_Blk < 20% | - | 🗴 | 🗴 | 🗴 | 🗴 |
RSD < 6% | ● | ● | ● | ● | ● |
BMP_Control (%) | 🗴 (127 ± 0) | ● (91 ± 1) | 🗴 (78 ± 2) | 🗴 (74 ± 2) | 🗴 (76 ± 1) |
dGS-5d | 454 ± 1 | 355 ± 6 | 370 ± 2 | 370 ± 1 | 365 ± 3 |
CH4_Blk < 20% | - | 🗴 | 🗴 | ● | ● |
RSD < 6% | ● | ● | ● | ● | ● |
BMP_Control (%) | 🗴 (110 ± 0) | ● (86 ± 2) | ● (89 ± 1) | ● (89 ± 0) | ● (88 ± 1) |
Inoculum | Not Subtracted | After Subtracting Methane from Blanks with Different Hv Wv−1 | |||
---|---|---|---|---|---|
0.6 | 2.3 | 5.0 | 10.1 | ||
DM | 661 ± 25 | 230 ± 20 | 115 ± 26 | 0 | 0 |
CH4_Blk < 20% | - | 🗴 | 🗴 | 🗴 | 🗴 |
RSD < 6% | ● | ● | ● | ● | ● |
BMP_Control (%) | 🗴 (160 ± 6) | 🗴 (56 ± 6) | 🗴 (28 ± 6) | 🗴 (0) | 🗴 (0) |
dDM | 593 ± 3 | 395 ± 15 | 344 ± 2 | 294 ± 6 | 335 ± 16 |
CH4_Blk < 20% | - | 🗴 | 🗴 | 🗴 | 🗴 |
RSD < 6% | ● | ● | ● | ● | ● |
BMP_Control (%) | 🗴 (143 ± 1) | ● (95 ± 7) | ● (83 ± 1) | 🗴 (71 ± 2) | 🗴 (81 ± 7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, J.V.; Costa, J.C.; Cavaleiro, A.J.; Pereira, M.A.; Alves, M.M. Effect of Endogenous Methane Production: A Step Forward in the Validation of Biochemical Methane Potential (BMP) Tests. Energies 2022, 15, 4696. https://doi.org/10.3390/en15134696
Oliveira JV, Costa JC, Cavaleiro AJ, Pereira MA, Alves MM. Effect of Endogenous Methane Production: A Step Forward in the Validation of Biochemical Methane Potential (BMP) Tests. Energies. 2022; 15(13):4696. https://doi.org/10.3390/en15134696
Chicago/Turabian StyleOliveira, João V., José C. Costa, Ana J. Cavaleiro, Maria Alcina Pereira, and Maria Madalena Alves. 2022. "Effect of Endogenous Methane Production: A Step Forward in the Validation of Biochemical Methane Potential (BMP) Tests" Energies 15, no. 13: 4696. https://doi.org/10.3390/en15134696
APA StyleOliveira, J. V., Costa, J. C., Cavaleiro, A. J., Pereira, M. A., & Alves, M. M. (2022). Effect of Endogenous Methane Production: A Step Forward in the Validation of Biochemical Methane Potential (BMP) Tests. Energies, 15(13), 4696. https://doi.org/10.3390/en15134696