Mechanism of Casing String Curvature Due to Displacement of Surface Strata
Abstract
:1. Introduction
2. Materials and Methods
2.1. Output Data and Problem Statement
2.2. Boundary Value Problem of String Bend
3. Results and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schultz, R.A.; Mutlu, U.; Bere, A. Critical Issues in Subsurface Integrity. In Proceedings of the 50th U.S. Rock Mechanics/Geomechanics Symposium, Houston, TX, USA, 26–29 June 2016. paper number ARMA-2016-037. [Google Scholar]
- Khalifeh, M.; Saasen, A. General Principles of Well Barriers. In Introduction to Permanent Plug and Abandonment of Wells; Ocean Engineering & Oceanography; Springer: Cham, Switzerland, 2020; Volume 12. [Google Scholar] [CrossRef] [Green Version]
- Yakoot, M.S.; Elgibaly, A.A.; Ragab, A.M.S. Well integrity management in mature fields: A state-of-the-art review on the system structure and maturity. J. Pet. Explor. Prod. Technol. 2021, 11, 1833–1853. [Google Scholar] [CrossRef]
- Nwankwo, C.D.; Arewa, A.O.; Theophilus, S.C.; Esenowo, V.N. Analysis of accidents caused by human factors in the oil and gas industry using the HFACS-OGI framework. Int. J. Occup. Saf. Ergon. 2022, 28, 1642–1654. [Google Scholar] [CrossRef]
- Abdideh, M.; Hedayati Khah, S. Analytical and Numerical Study of Casing Collapse in Iranian Oil Field. Geotech. Geol. Eng. 2018, 36, 1723–1734. [Google Scholar] [CrossRef]
- Ghodusi, F.; Jalalifar, H.; Jafari, S. Analysis of the Casing Collapse in Terms of Geomechanical Parameters and Solid Mechanics. J. Chem. Pet. Eng. 2019, 53, 211–225. [Google Scholar] [CrossRef]
- Zhang, B.; Guan, Z.; Zhang, Q.; Han, D. Prediction of sustained annular pressure and the pressure control measures for high pressure gas wells. Pet. Explor. Dev. 2015, 42, 567–572. [Google Scholar] [CrossRef]
- Lin, Y.; Deng, K.; Sun, Y.; Zeng, D.; Xia, T. Through-wall yield collapse pressure of casing based on unified strength theory. Pet. Explor. Dev. 2016, 43, 506–513. [Google Scholar] [CrossRef]
- Zachary, C.; Bello, O.; Teodoriu, C. Calculation and prediction of casing collapse strength based on a new yield strength acquisition method. J. Nat. Gas Sci. Eng. 2021, 95, 104149. [Google Scholar] [CrossRef]
- Kovbasiuk, I.M.; Martsynkiv, O.B.; Femiak, Y.M.; Vytvytskyi, I.I.; Zhdanov, Y.D. Research of the stressed state of saline rocks of Prykarpattia deposits under the influence of thermobaric conditions. In Proceedings of the XIV International Scientific Conference “Monitoring of Geological Processes and Ecological Condition of the Environment”, Kyiv, Ukraine, 10–13 November 2020; European Association of Geoscientists & Engineers: Bunnik, The Netherlands, 2020; Volume 2020, pp. 1–5. [Google Scholar] [CrossRef]
- Kovbasiuk, I.M.; Martsynkiv, O.B.; Vytvytskyi, I.I.; Pavlyshyn, L.V.; Zhdanov, Y.D.; Paliichuk, I.I. Problems of casing wells in potassium-magnesium salts of the Dnieper-Donets Rift and ways of their solution. In Proceedings of the 15th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment, Kyiv, Ukraine, 17–19 November 2021; European Association of Geoscientists & Engineers: Bunnik, The Netherlands; Volume 2021, pp. 1–5. [Google Scholar] [CrossRef]
- Zhao, W.; Ge, J.; Pathegama Gamage, R.; Li, Y.; Song, Z.; Wang, T. Study of Deformation Law of Casing Local Lateral Collapse Based on the Principle of Virtual Work. Energies 2019, 12, 3717. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Coe, D.; Harris, R.; Timothy, T. On Some Factors Affecting Casing Collapse Resistance under External Pressure. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 5–7 October 2020. SPE-201352-MS. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, B.; Yan, G.; Wang, Z.; Huang, M. Distribution laws and effects analysis of casing external pressure taking elastic parameters matching into account. Petroleum 2016, 2, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Deng, K.; Lin, Y.; Liu, W.; Zeng, D.; Sun, Y.; Li, K. Equations to Calculate Casing Collapse Strength Under Nonuniform Load Based on New ISO Model. J. Press. Vessel Technol. 2016, 138, 054501. [Google Scholar] [CrossRef]
- Li, D.; Yu, F.; Fan, H.; Wang, R.; Yang, S.; Yan, X. Casing Collapse Strength Analysis under Nonuniform Loading Using Experimental and Numerical Approach. Math. Probl. Eng. 2021, 2021, 5577250. [Google Scholar] [CrossRef]
- Kuanhai, D.; Bing, L.; Yuanhua, L.; Yongxing, S.; Jiping, Y.; Zuwen, T. Experimental study on the influence of axial length on collapse properties of N80 casings under non-uniform load. Thin-Walled Struct. 2019, 138, 137–142. [Google Scholar] [CrossRef]
- Gouveia, L.P.; Lima Junior, E.T.; Santos, J.P.L.; Lira, W.W.M.; Anjos, J.L.R.; Oliveira, F.L. Probabilistic assessment of API casing strength in serviceability limit state. J. Pet. Explor. Prod. Technol. 2020, 10, 2089–2104. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Dou, Y.; Li, M.; Suo, H. Theoretical and Simulation Study on the Collapse Strength of a Curved Casing in Horizontal Wells. Procedia Struct. Integr. 2019, 22, 84–92. [Google Scholar] [CrossRef]
- Dashtaki, B.B.; Lashkaripour, G.R.; Ghafoori, M.; Moghaddas, N.H. Numerical modeling of casing collapse in Gachsaran formation in Sirri-E oilfield in Persian Gulf. J. Pet. Sci. Eng. 2021, 196, 108009. [Google Scholar] [CrossRef]
- Brechan, B.; Teigland, A.; Dale, S.; Sangesland, S.; Kornberg, E. Collapse prediction of pipe subjected to combined loads. J. Pet. Sci. Eng. 2020, 191, 107158. [Google Scholar] [CrossRef]
- ISO 10427-2:2004; Petroleum and Natural Gas Industries—Equipment for Well Cementing—Part 2: Centralizer Placement and Stop-Collar Testing. American National Standards Institute: Washington, DC, USA, 2007.
- Casing Accessories: Cement Integrity Starts Here; Weatherford: Sandnes, Norway, 2016; p. 56.
- Liu, G.; Weber, L.D. Centralizer Selection and Placement Optimization. In Proceedings of the SPE Deepwater Drilling and Completions Conference, Galveston, TX, USA, 20 June 2012. SPE-150345-MS. [Google Scholar] [CrossRef]
- Kotskulych, Y.S.; Seniushkovych, M.V.; Martsynkiv, O.B.; Vytvytskyi, I.I. Casing string centeringin directional wells. Nauk. Visnyk Natsionalnoho Hirnychoho Univ. 2016, 2, 23–30. [Google Scholar]
- Vytvytskyi, I.I.; Seniushkovych, M.V.; Shatskyi, I.P. Calculation of distance between elastic-rigid centralizers of casing. Nauk. Visnyk Natsionalnoho Hirnychoho Univ. 2017, 5, 28–35. [Google Scholar]
- Shatskyi, I.; Vytvytskyi, I.; Senyushkovych, M.; Velychkovych, A. Modelling and improvement of the design of hinged centralizer for casing. IOP Conf. Ser. Mater. Sci. Eng. 2019, 564, 12073. [Google Scholar] [CrossRef]
- Shatskyi, I.; Velychkovych, A.; Vytvytskyi, I.; Senyushkovych, M. Modeling of nonlinear properties of casing centralizers equipped with axial thrust. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1018, 012003. [Google Scholar] [CrossRef]
- Vlasiy, O.; Mazurenko, V.; Ropyak, L.; Rogal, O. Improving the aluminum drill pipes stability byoptimizing the shape of protector thickening. East.-Eur. J. Enterp. Technol. 2017, 1, 25–31. [Google Scholar] [CrossRef]
- Balalayeva, E.; Kukhar, V.; Artiukh, V.; Filatov, V.V.; Simonova, O. Computer Aided Simulation of Behavior of Extrusion Press Ram Jointly with Rotary Elastic Compensator. Adv. Intell. Syst. Comput. 2019, 983, 475–488. [Google Scholar] [CrossRef]
- Velychkovych, A.S.; Andrusyak, A.V.; Pryhorovska, T.O.; Ropyak, L.Y. Analytical model of oil pipeline overground transitions, laid in mountain areas. Oil Gas Sci. Technol. 2019, 74, 65. [Google Scholar] [CrossRef] [Green Version]
- Kryzhanivs’kyi, E.I.; Rudko, V.P.; Shats’kyi, I.P. Estimation of admissible loads upon a pipeline in the zone of sliding ground. Mater. Sci. 2004, 40, 547–551. [Google Scholar] [CrossRef]
- Orynyak, I.V.; Bogdan, A.V. Problem of large displacements of buried pipelines. Part 1. Working out a numerical procedure. Strength Mater. 2007, 39, 257–274. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, Z.; Han, C.J. Finite element analysis of wrinkling of buried pressure pipeline under strike-slip fault. Mechanika 2015, 21, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Zapuklyak, V.; Melnichenko, Y.; Poberezhnyi, L.; Kyzymyshyn, Y.; Grytsuliak, H.; Komada, P.; Amirgaliyev, Y.; Kozbakova, A. Development of main gas pipeline deepening method for prevention of external effects. In Mechatronic Systems 1: Applications in Transport, Logistics, Diagnostics, and Control; Routledge: London, UK, 2021; pp. 75–87. [Google Scholar] [CrossRef]
- Shats’kyi, I.P.; Struk, A.B. Stressed state of pipeline in zones of soil local fracture. Strength Mater. 2009, 41, 548–553. [Google Scholar] [CrossRef]
- Shatskyi, I.; Perepichka, V.; Vaskovskyi, M. Longitudinal waves in an elastic rod caused by sudden damage to the foundation. Theor. Appl. Mech. 2021, 48, 29–37. [Google Scholar] [CrossRef]
- Velichkovich, A.S. Design features of shell springs for drilling dampers. Chem. Petrol. Eng. 2007, 43, 458–461. [Google Scholar] [CrossRef]
- Moisyshyn, V.; Levchuk, K. The impact of vibration mechanism’installation place on the process of retrieving stuck drill pipe. Min. Miner. Depos. 2016, 10, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Ropyak, L.Y.; Pryhorovska, T.O.; Levchuk, K.H. Analysis of materials and modern technologies for PDC drill bit manufacturing. Prog. Phys. Met. 2020, 21, 274–301. [Google Scholar] [CrossRef]
- Bazaluk, O.; Slabyi, O.; Vekeryk, V.; Velychkovych, A.; Ropyak, L.; Lozynskyi, V. A technology of hydrocarbon fluid production intensification by productive stratum drainage zone reaming. Energies 2021, 14, 3514. [Google Scholar] [CrossRef]
- Bazaluk, O.; Velychkovych, A.; Ropyak, L.; Pashechko, M.; Pryhorovska, T.; Lozynskyi, V. Influence of Heavy Weight Drill Pipe Material and Drill Bit Manufacturing Errors on Stress State of Steel Blades. Energies 2021, 14, 4198. [Google Scholar] [CrossRef]
- Shatskii, I.P.; Perepichka, V.V. Shock-wave propagation in an elastic rod with a viscoplastic external resistance. J. Appl. Mech. Tech. Phys. 2013, 54, 1016–1020. [Google Scholar] [CrossRef]
- Shatskyi, I.; Perepichka, V. Problem of dynamics of an elastic rod with decreasing function of elastic-plastic external resistance. In Dynamical Systems in Applications, Proceedings of the DSTA 2017, Lodz, Poland, 11–14 December 2017; Awrejcewicz, J., Ed.; Springer: Cham, Switzerland, 2018; Volume 249, pp. 335–342. [Google Scholar] [CrossRef]
- Pelekhan, B.; Dutkiewicz, M.; Shatskyi, I.; Velychkovych, A.; Rozhko, M.; Pelekhan, L. Analytical Modeling of the Interaction of a Four Implant-Supported Overdenture with Bone Tissue. Materials 2022, 15, 2398. [Google Scholar] [CrossRef]
- Shats’kyi, I.P.; Makoviichuk, M.V. Contact interaction of the crack edges in the case of bending of a plate with elastic support. Mater. Sci. 2003, 39, 371–376. [Google Scholar] [CrossRef]
- Nobili, A.; Radi, E.; Lanzoni, L. A cracked infinite Kirchhoff plate supported by a two-parameter elastic foundation. J. Eur. Ceram. Soc. 2014, 34, 2737–2744. [Google Scholar] [CrossRef]
- Aydin, E.; Dutkiewicz, M.; Ozturk, B.; Sonmez, M. Optimization of elastic spring supports for cantilever beams. Struct. Multidiscip. Optim. 2020, 62, 55–81. [Google Scholar] [CrossRef]
- Shats’kyi, I.; Lyskanych, O.; Kornuta, V. Combined deformation conditions for fatigue damage indicator and well–drilling tool joint. Strength Mater. 2016, 48, 469–472. [Google Scholar] [CrossRef]
- Pryhorovska, T.; Ropyak, L. Machining Error Influnce on Stress State of Conical Thread Joint Details. In Proceedings of the IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL), Sozopol, Bulgaria, 6–8 September 2019; Volume 9019544, pp. 493–497. [Google Scholar] [CrossRef]
- Tutko, T.; Dubei, O.; Ropyak, L.; Vytvytskyi, V. Determination of Radial Displacement Coefficient for Designing of Thread Joint of Thin-Walled Shells. In Advances in Design, Simulation and Manufacturing IV; Lecture Notes in Mechanical Engineering Book Series; Springer: Cham, Switzerland, 2021; pp. 153–162. [Google Scholar] [CrossRef]
- Kopei, V.; Onysko, O.; Panchuk, V.; Pituley, L.; Schuliar, I. Influence of Working Height of a Thread Profile on Quality Indicators of the Drill-String Tool-Joint. In Proceedings of the Grabchenko’s International Conference on Advanced Manufacturing Processes, Odessa, Ukraine, 7–10 September 2021; Springer: Cham, Switzerland, 2021; pp. 395–404. [Google Scholar] [CrossRef]
- Ropyak, O.Y.; Vytvytskyi, V.S.; Velychkovych, A.S.; Pryhorovska, T.O.; Shovkoplias, M.V. Study on grinding mode effect on external conical thread quality. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1018, 012014. [Google Scholar] [CrossRef]
- Rong, L.; Tie, Z.; Wu, X.J.; Wang, C.H. Crack closure effect on stress intensity factors of an axially and a circumferentially cracked cylindrical shell. Int. J. Fract. 2004, 125, 227–248. [Google Scholar] [CrossRef]
- Shats’kyi, I.P. Closure of a longitudinal crack in a shallow cylindrical shell in bending. Mater. Sci. 2005, 41, 186–191. [Google Scholar] [CrossRef]
- Shats’kyi, I.P.; Makoviichuk, M.V. Contact interaction of crack lips in shallow shells in bending with tension. Mater. Sci. 2005, 41, 486–494. [Google Scholar] [CrossRef]
- Shats’kyi, I.P.; Makoviichuk, M.V. Analysis of the limiting state of cylindrical shells with cracks with regard for the contact of crack lips. Strength Mater. 2009, 41, 560–565. [Google Scholar] [CrossRef]
- Shatskii, I.P.; Makoviichuk, N.V. Effect of closure of collinear cracks on the stress-strain state and the limiting equilibrium of bent shallow shells. J. Appl. Mech. Tech. Phys. 2011, 52, 464–470. [Google Scholar] [CrossRef]
- Dovbnya, K.; Shevtsova, N. Studies on the stress state of an orthotropic shell of arbitrary curvature with the through crack under bending loading. Strength Mater. 2014, 46, 345–349. [Google Scholar] [CrossRef]
- Shatsky, I.P. Bending of the plate weakened by the crack with contacting edges. Dopovidi Akademii Nauk Ukrainskoi Rsr Seriya A-Fiziko-Matematichni Ta Technichni Nauki 1988, 7, 49–51. [Google Scholar] [CrossRef]
- Shatskii, I.P. Contact of the edges of the slit in the plate in combined tension and bending. Mater. Sci. 1989, 25, 160–165. [Google Scholar] [CrossRef]
- Young, M.J.; Sun, C.T. Influence of crack closure on the stress intensity factor in bending plates—A classical plate solution. Int. J. Fract. 1992, 55, 81–93. [Google Scholar] [CrossRef]
- Shatskii, I.P. Model for contact of crack boundaries in a bending plate. J. Math. Sci. 2001, 103, 357–362. [Google Scholar] [CrossRef]
- Kuzmenko, E.D.; Maksumchuk, V.Y.; Bagriy, S.M.; Sapuzhak, O.Y.; Chepurnyi, I.V.; Dzoba, U.O. On the relevance of using a complex combination of NIEMFE and EM methods in forecasting rock deformation. In Proceedings of the 17th International Conference on Geoinformatics—Theoretical and Applied Aspects, Kyiv, Ukraine, 14–17 May 2018; Volume 2018, pp. 1–6. [Google Scholar] [CrossRef]
- Kuzmenko, E.D.; Bezsmertyi, A.F.; Vdovyna, O.P. Study of Landslide Processes by Geophysical Methods; IFNTUOG: Ivano-Frankivsk, Ukraine, 2009. (In Ukrainian) [Google Scholar]
- Barber, J.R.; Ciavarella, M. Contact mechanics. Int. J. Solids Struct. 2000, 37, 29–43. [Google Scholar] [CrossRef]
- Popov, V.L. Contact Mechanics and Friction: Physical Principles and Applications, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Beer, F.; Johnston, E.; DeWolf, J.; Mazurek, D. Mechanics of Materials; McGraw-Hill Education: New York, NY, USA, 2015. [Google Scholar]
- Shatskyi, I.; Velychkovych, A.; Vytvytskyi, I.; Seniushkovych, M. Analytical models of contact interaction of casing centralizers with well wall. Eng. Solid Mech. 2019, 7, 355–366. [Google Scholar] [CrossRef]
Coefficient of Subgrade Reaction , Pa/m | Maximum Stresses , MPa | Angle of Inclination , rad | Lateral Displacement on the Surface , m | |
---|---|---|---|---|
2 | 150 | 0.1 | 1.82 | |
1 | 293 | 0.1 | 1.20 | |
0.5 | 540 | 0.1 | 0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dutkiewicz, M.; Shatskyi, I.; Martsynkiv, O.; Kuzmenko, E. Mechanism of Casing String Curvature Due to Displacement of Surface Strata. Energies 2022, 15, 5031. https://doi.org/10.3390/en15145031
Dutkiewicz M, Shatskyi I, Martsynkiv O, Kuzmenko E. Mechanism of Casing String Curvature Due to Displacement of Surface Strata. Energies. 2022; 15(14):5031. https://doi.org/10.3390/en15145031
Chicago/Turabian StyleDutkiewicz, Maciej, Ivan Shatskyi, Oleh Martsynkiv, and Eduard Kuzmenko. 2022. "Mechanism of Casing String Curvature Due to Displacement of Surface Strata" Energies 15, no. 14: 5031. https://doi.org/10.3390/en15145031
APA StyleDutkiewicz, M., Shatskyi, I., Martsynkiv, O., & Kuzmenko, E. (2022). Mechanism of Casing String Curvature Due to Displacement of Surface Strata. Energies, 15(14), 5031. https://doi.org/10.3390/en15145031