Carbon Emission Trading and Corporate Financing: Evidence from China
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
3. Methods
3.1. Model and Variable
3.2. Data Sources
4. Empirical Results
4.1. Descriptive Statistics
4.2. Baseline Results
4.3. Robustness Test
4.3.1. Parallel Trend Test
4.3.2. PSM-DID
4.3.3. Control the Impact of Other Policy
4.3.4. Alternative Estimation Methods
4.4. Heterogeneity Analysis
5. Conclusions and Discussion
5.1. Conclusions
5.2. Discussion
5.3. Policy Implications
5.4. Limitations and Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018; Available online: https://www.ipcc.ch/sr15/ (accessed on 10 April 2022).
- Bersani, A.M.; Falbo, P.; Mastroeni, L. Is the ETS an Effective Environmental Policy? Undesired Interaction between Energy-Mix, Fuel-Switch and Electricity Prices. Energy Econ. 2022, 110, 105981. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X.; Chen, F. Do Carbon Emission Trading Schemes Stimulate Green Innovation in Enterprises? Evidence from China. Technol. Forecast. Soc. Chang. 2021, 168, 120744. [Google Scholar] [CrossRef]
- Weng, Q.; Xu, H. A Review of China’s Carbon Trading Market. Renew. Sustain. Energy Rev. 2018, 91, 613–619. [Google Scholar] [CrossRef]
- Narassimhan, E.; Gallagher, K.S.; Koester, S.; Alejo, J.R. Carbon pricing in practice: A review of existing emissions trading systems. Clim. Policy 2018, 18, 967–991. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Li, Y.; Liu, H. Did Carbon Trade Improve Green Production Performance? Evidence from China. Energy Econ. 2021, 96, 105185. [Google Scholar] [CrossRef]
- Brink, C.; Vollebergh, H.R.J.; van der Werf, E. Carbon Pricing in the EU: Evaluation of Different EU ETS Reform Options. Energy Policy 2016, 97, 603–617. [Google Scholar] [CrossRef] [Green Version]
- Clò, S.; Battles, S.; Zoppoli, P. Policy Options to Improve the Effectiveness of the EU Emissions Trading System: A Multi-Criteria Analysis. Energy Policy 2013, 57, 477–490. [Google Scholar] [CrossRef]
- Zhao, X.; Jiang, G.; Nie, D.; Chen, H. How to Improve the Market Efficiency of Carbon Trading: A Perspective of China. Renew. Sustain. Energy Rev. 2016, 59, 1229–1245. [Google Scholar] [CrossRef]
- Ellerman, A.D.; Buchner, B.K. Over-Allocation or Abatement? A Preliminary Analysis of the EU ETS Based on the 2005–06 Emissions Data. Environ. Resour. Econ. 2008, 41, 267–287. [Google Scholar] [CrossRef] [Green Version]
- Dong, F.; Dai, Y.; Zhang, S.; Zhang, X.; Long, R. Can a Carbon Emission Trading Scheme Generate the Porter Effect? Evidence from Pilot Areas in China. Sci. Total Environ. 2019, 653, 565–577. [Google Scholar] [CrossRef]
- Dong, Z.-Q.; Wang, H.; Wang, S.-X.; Wang, L.-H. The Validity of Carbon Emission Trading Policies: Evidence from a Quasi-Natural Experiment in China. Adv. Clim. Chang. Res. 2020, 11, 102–109. [Google Scholar] [CrossRef]
- Brouwers, R.; Schoubben, F.; Van Hulle, C.; Van Uytbergen, S. The Initial Impact of EU ETS Verification Events on Stock Prices. Energy Policy 2016, 94, 138–149. [Google Scholar] [CrossRef]
- Calel, R.; Dechezlepretre, A. Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market. Rev. Econ. Stat. 2016, 98, 173–191. [Google Scholar] [CrossRef] [Green Version]
- Obobisa, E.S.; Chen, H.; Mensah, I.A. The Impact of Green Technological Innovation and Institutional Quality on CO2 Emissions in African Countries. Technol. Forecast. Soc. Chang. 2022, 180, 121670. [Google Scholar] [CrossRef]
- Ma, Q.; Murshed, M.; Khan, Z. The Nexuses between Energy Investments, Technological Innovations, Emission Taxes, and Carbon Emissions in China. Energy Policy 2021, 155, 112345. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, S. Bank Equity Connections, Intellectual Property Protection and Enterprise Innovation—A Bank Ownership Perspective. China J. Account. Res. 2016, 9, 207–233. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Storesletten, K.; Zilibotti, F. Growing Like China. Am. Econ. Rev. 2011, 101, 196–233. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.V.; Duflo, E. Giving Credit Where It Is Due. J. Econ. Perspect. 2010, 24, 61–79. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, B.; Yan, Z.; Cao, L. How Do Financing Constraints Enhance Pollutant Emissions Intensity at Enterprises? Evidence from Microscopic Data at the Enterprise Level in China. Environ. Impact Assess. Rev. 2022, 96, 106811. [Google Scholar] [CrossRef]
- Raimo, N.; Caragnano, A.; Zito, M.; Vitolla, F.; Mariani, M. Extending the Benefits of ESG Disclosure: The Effect on the Cost of Debt Financing. Corp. Soc. Responsib. Environ. Manag. 2021, 28, 1412–1421. [Google Scholar] [CrossRef]
- Chen, X.; Lin, B. Towards Carbon Neutrality by Implementing Carbon Emissions Trading Scheme: Policy Evaluation in China. Energy Policy 2021, 157, 112510. [Google Scholar] [CrossRef]
- Hintermayer, M. A Carbon Price Floor in the Reformed EU ETS: Design Matters! Energy Policy 2020, 147, 111905. [Google Scholar] [CrossRef] [PubMed]
- Wu, L. How Can Carbon Trading Price Distortion Be Corrected? An Empirical Study from China’s Carbon Trading Pilot Markets. Environ. Sci. Pollut. Res. 2021, 28, 66253–66271. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Jia, Z. Impacts of Carbon Price Level in Carbon Emission Trading Market. Appl. Energy 2019, 239, 157–170. [Google Scholar] [CrossRef]
- Liu, L.; Chen, C.; Zhao, Y.; Zhao, E. China’s Carbon-Emissions Trading: Overview, Challenges and Future. Renew. Sustain. Energy Rev. 2015, 49, 254–266. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, M.; Huang, L.; Wang, P.; Su, B.; Wei, Y.-M. Exploring the Effect of Carbon Trading Mechanism on China’s Green Development Efficiency: A Novel Integrated Approach. Energy Econ. 2020, 85, 104601. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Hao, Y.; Liu, Z. Shooting Two Hawks with One Arrow: Could China’s Emission Trading Scheme Promote Green Development Efficiency and Regional Carbon Equality? Energy Econ. 2021, 101, 105412. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, P.; Pan, Y. Does China’s Carbon Emission Trading Policy Have an Employment Double Dividend and a Porter Effect? Energy Policy 2020, 142, 111492. [Google Scholar] [CrossRef]
- Oestreich, A.M.; Tsiakas, I. Carbon Emissions and Stock Returns: Evidence from the EU Emissions Trading Scheme. J. Bank. Financ. 2015, 58, 294–308. [Google Scholar] [CrossRef]
- Lv, M.; Bai, M. Evaluation of China’s Carbon Emission Trading Policy from Corporate Innovation. Financ. Res. Lett. 2021, 39, 101565. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Wang, W. How Does China’s Carbon Emissions Trading (CET) Policy Affect the Investment of CET-Covered Enterprises? Energy Econ. 2021, 98, 105224. [Google Scholar] [CrossRef]
- Chen, Z.; Yin, M.; Zhou, M. Does Environmental Regulatory Pressure Affect Corporate Debt Financing? Resour. Conserv. Recycl. 2022, 184, 106405. [Google Scholar] [CrossRef]
- Fard, A.; Javadi, S.; Kim, I. Environmental Regulation and the Cost of Bank Loans: International Evidence. J. Financ. Stab. 2020, 51, 100797. [Google Scholar] [CrossRef]
- Shi, J.; Yu, C.; Li, Y.; Wang, T. Does Green Financial Policy Affect Debt-Financing Cost of Heavy-Polluting Enterprises? An Empirical Evidence Based on Chinese Pilot Zones for Green Finance Reform and Innovations. Technol. Forecast. Soc. Chang. 2022, 179, 121678. [Google Scholar] [CrossRef]
- Xu, X.; Li, J. Asymmetric Impacts of the Policy and Development of Green Credit on the Debt Financing Cost and Maturity of Different Types of Enterprises in China. J. Clean. Prod. 2020, 264, 121574. [Google Scholar] [CrossRef]
- Xu, Y.; Li, S.; Zhou, X.; Shahzad, U.; Zhao, X. How Environmental Regulations Affect the Development of Green Finance: Recent Evidence from Polluting Firms in China. Renew. Energy 2022, 189, 917–926. [Google Scholar] [CrossRef]
- Bertrand, M.; Duflo, E.; Mullainathan, S. How Much Should We Trust Differences-in-Differences Estimates? Q. J. Econ. 2004, 119, 249–275. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, L.S.; Lalonde, R.J.; Sullivan, D.G. Earnings Losses of Displaced Workers. Am. Econ. Rev. 1993, 83, 685–709. [Google Scholar]
- Kaplan, S.N.; Zingales, L. Do Investment-Cash Flow Sensitivities Provide Useful Measures of Financing Constraints? Q. J. Econ. 1997, 112, 169–215. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.Y.; Qi, J.; Xian, Q.; Chen, J.D. The Carbon Emission Reduction Effect of China’s Carbon Market-From the Perspective of the Coordination between Market Mechanism and Administrative Intervention. CHINA Ind. Econ. 2021, 8, 114–132. (In Chinese) [Google Scholar] [CrossRef]
Variable | Definition |
---|---|
Debt | (long-term debt + short-term debt)/total assets |
L_Debt | Long-term debt divided by total assets |
S_Debt | Short-term divided by total assets |
Credit | (accounts payable + notes payable + deposit received)/total assets |
Treatpost | Treat × Post |
Lev | Total liabilities divided by total assets |
Intensity | Total assets divided by operating income |
Age | The logarithm of the number of years of firm establishment |
ROA | Net income divided by total assets |
Size | The logarithm of total assets |
Growth | Growth rate of total assets |
Equity | A dummy variable equal to 1 for state-owned enterprises and 0 otherwise |
Independent | Number of independent directors divided by number of directors |
Concentration | Percentage of shareholding of the largest shareholder |
Board | Number of board meetings |
Variables | N | Mean | SD | Min | P25 | Median | P75 | Max |
---|---|---|---|---|---|---|---|---|
Debt | 5171 | 0.148 | 0.147 | 0 | 0.015 | 0.109 | 0.239 | 0.617 |
L_Debt | 5171 | 0.035 | 0.066 | 0 | 0 | 0 | 0.043 | 0.351 |
S_Debt | 5171 | 0.112 | 0.118 | 0 | 0.008 | 0.078 | 0.176 | 0.514 |
Credit | 5171 | 0.189 | 0.144 | 0.007 | 0.082 | 0.149 | 0.259 | 0.698 |
Treatpost | 5171 | 0.108 | 0.310 | 0 | 0 | 0 | 1 | 1 |
Lev | 5171 | 0.406 | 0.212 | 0.039 | 0.236 | 0.401 | 0.555 | 0.959 |
Intensity | 5171 | 2.126 | 1.474 | 0.383 | 1.220 | 1.724 | 2.573 | 9.565 |
Age | 5171 | 2.680 | 0.469 | 1.099 | 2.398 | 2.773 | 2.996 | 3.497 |
ROA | 5171 | 0.038 | 0.068 | −0.295 | 0.014 | 0.039 | 0.068 | 0.217 |
Size | 5171 | 21.956 | 1.291 | 19.103 | 21.055 | 21.794 | 22.630 | 25.985 |
Growth | 5171 | 0.221 | 0.494 | −0.362 | 0.009 | 0.094 | 0.234 | 3.137 |
Equity | 5171 | 0.366 | 0.482 | 0 | 0 | 0 | 1 | 1 |
Independent | 5171 | 0.378 | 0.056 | 0.333 | 0.333 | 0.364 | 0.429 | 0.571 |
Concentration | 5171 | 0.346 | 0.149 | 0.081 | 0.232 | 0.319 | 0.449 | 0.740 |
Board | 5171 | 9.750 | 3.669 | 4 | 7 | 9 | 12 | 23 |
Variables | Debt | L_Debt | S_Debt | Credit |
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Treatpost | −0.024 ** (0.011) | −0.017 ** (0.007) | −0.007 (0.009) | 0.001 (0.007) |
Lev | 0.504 *** (0.029) | 0.098 *** (0.015) | 0.392 *** (0.025) | 0.266 *** (0.023) |
Intensity | 0.000 (0.004) | 0.005 ** (0.002) | −0.006 ** (0.003) | −0.021 *** (0.003) |
Age | 0.000 (0.020) | 0.005 (0.010) | −0.006 (0.017) | −0.013 (0.017) |
ROA | 0.041 (0.041) | 0.023 (0.018) | 0.014 (0.034) | 0.113 *** (0.035) |
Size | 0.022 ** (0.010) | 0.019 *** (0.005) | 0.003 (0.007) | 0.010 (0.006) |
Growth | 0.048 *** (0.005) | 0.009 *** (0.002) | 0.037 *** (0.004) | 0.093 *** (0.005) |
Equity | −0.033 (0.023) | 0.005 (0.011) | −0.037 ** (0.017) | 0.012 (0.016) |
Independent | 0.072 (0.050) | 0.017 (0.028) | 0.064 (0.044) | 0.024 (0.050) |
Concentration | 0.003 (0.049) | 0.050 (0.034) | −0.060 * (0.036) | −0.027 (0.037) |
Board | 0.001 * (0.001) | −0.000 (0.000) | 0.002 *** (0.001) | −0.001 ** (0.001) |
Firm fixed effects | Yes | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes | Yes |
Observations | 5171 | 5171 | 5171 | 5171 |
R2 | 0.737 | 0.578 | 0.692 | 0.790 |
Constant | −0.576 *** (0.193) | −0.417 *** (0.096) | −0.142 (0.141) | −0.051 (0.123) |
Variables | Debt | L_Debt | S_Debt | Credit |
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Treatpost | −0.023 ** (0.011) | −0.016 ** (0.007) | −0.006 (0.009) | 0.002 (0.007) |
Controls | Yes | Yes | Yes | Yes |
Firm fixed effects | Yes | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes | Yes |
Observations | 4861 | 4861 | 4861 | 4861 |
R2 | 0.761 | 0.596 | 0.719 | 0.808 |
Constant | −0.409 ** (0.173) | −0.393 *** (0.096) | −0.011 (0.138) | 0.129 (0.115) |
Variables | Debt | L_Debt | S_Debt | Credit |
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Treatpost | −0.033 *** (0.012) | −0.020 ** (0.008) | −0.012 (0.010) | 0.005 (0.007) |
Treat × LCC | 0.025 * (0.013) | 0.011 (0.008) | 0.013 (0.012) | −0.012 (0.010) |
Controls | Yes | Yes | Yes | Yes |
Firm fixed effects | Yes | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes | Yes |
Observations | 5171 | 5171 | 5171 | 5171 |
R2 | 0.737 | 0.578 | 0.692 | 0.790 |
Constant | −0.575 *** (0.193) | −0.416 *** (0.095) | −0.142 (0.141) | −0.051 (0.123) |
Variables | Debt | L_Debt | S_Debt | Credit |
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Treatpost | −0.027 ** (0.012) | −0.022 ** (0.010) | −0.010 (0.010) | 0.001 (0.007) |
Controls | Yes | Yes | Yes | Yes |
Firm fixed effects | Yes | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes | Yes |
Observations | 5171 | 5171 | 5171 | 5171 |
R2 | — | — | — | — |
Constant | −0.854 *** (0.208) | −0.890 *** (0.149) | −0.424 *** (0.155) | −0.051 (0.117) |
Panel A: Heterogeneity of Financing Constraints | ||||||||
Variables | Strong Financing Constraints | Weak Financing Constraints | ||||||
Debt | L_Debt | S_Debt | Credit | Debt | L_Debt | S_Debt | Credit | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
Treatpost | −0.017 (0.015) | −0.017 * (0.010) | −0.012 (0.014) | 0.148 (0.009) | −0.026 * (0.014) | −0.010 (0.007) | −0.015 (0.013) | −0.019 * (0.011) |
Controls | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Firm fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 2675 | 2675 | 2675 | 2675 | 2434 | 2434 | 2434 | 2434 |
R2 | 0.716 | 0.589 | 0.675 | 0.803 | 0.712 | 0.503 | 0.670 | 0.792 |
Constant | −0.602 ** (0.251) | −0.508 *** (0.128) | −0.083 (0.187) | 0.066 (0.147) | −0.292 (0.305) | −0.180 (0.122) | −0.095 (0.249) | −0.178 (0.224) |
Panel B: Heterogeneity of City Hierarchies | ||||||||
Variables | First-Tier Cities | Other Cities | ||||||
Debt | L_Debt | S_Debt | Credit | Debt | L_Debt | S_Debt | Credit | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
Treatpost | −0.010 (0.011) | −0.005 (0.005) | −0.006 (0.010) | −0.009 (0.008) | −0.108 *** (0.031) | −0.091 *** (0.024) | −0.012 (0.028) | 0.038 ** (0.017) |
Controls | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Firm fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 3256 | 3256 | 3256 | 3256 | 1915 | 1915 | 1915 | 1915 |
R2 | 0.732 | 0.608 | 0.690 | 0.791 | 0.750 | 0.571 | 0.691 | 0.794 |
Constant | −0.700 ** (0.270) | −0.376 *** (0.114) | −0.272 (0.186) | −0.020 (0.166) | −0.397 (0.314) | −0.372 ** (0.170) | −0.030 (0.269) | −0.173 (0.246) |
Panel C: Heterogeneity of Energy-Consuming Industries | ||||||||
Variables | High Energy-Consuming Industries | Non-High Energy-Consuming Industries | ||||||
Debt | L_Debt | S_Debt | Credit | Debt | L_Debt | S_Debt | Credit | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
Treatpost | −0.043 (0.026) | −0.046 *** (0.017) | 0.004 (0.020) | 0.028 * (0.014) | −0.011 (0.011) | −0.002 (0.005) | −0.009 (0.011) | −0.009 (0.009) |
Controls | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Firm fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 1056 | 1056 | 1056 | 1056 | 4115 | 4115 | 4115 | 4115 |
R2 | 0.094 | 0.606 | 0.691 | 0.722 | 0.743 | 0.581 | 0.688 | 0.806 |
Constant | −0.383 (0.601) | −0.422 (0.362) | 0.103 (0.301) | −0.028 (−0.028) | −0.646 *** (0.162) | −0.424 *** (0.075) | −0.216 (0.157) | −0.129 (0.136) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, L.; Wang, K.; Su, T.; He, H. Carbon Emission Trading and Corporate Financing: Evidence from China. Energies 2022, 15, 5036. https://doi.org/10.3390/en15145036
Meng L, Wang K, Su T, He H. Carbon Emission Trading and Corporate Financing: Evidence from China. Energies. 2022; 15(14):5036. https://doi.org/10.3390/en15145036
Chicago/Turabian StyleMeng, Li, Ke Wang, Taoyong Su, and He He. 2022. "Carbon Emission Trading and Corporate Financing: Evidence from China" Energies 15, no. 14: 5036. https://doi.org/10.3390/en15145036
APA StyleMeng, L., Wang, K., Su, T., & He, H. (2022). Carbon Emission Trading and Corporate Financing: Evidence from China. Energies, 15(14), 5036. https://doi.org/10.3390/en15145036