Short-Term Hydro-Thermal-Solar Scheduling with CCGT Based on Self-Adaptive Genetic Algorithm
Abstract
:1. Introduction
2. Motivation, Literature Review, and Contributions
- A new self-adaptive penalty for constraints handling, which require no tuning.
- A new crossover technique, i.e., Laplace crossover, which has a self-adaptive tuning ability, which is important to maintain population diversity.
- A new constraint handling repair mechanism for simultaneous satisfaction of all constraints, especially power balance and hydraulic continuity equation, which are neglected in other papers. This allows for a significantly more physically realistic solution.
- Analysis of the influence of the orientation of the modules on the output power of the solar power plant and, thus, on the overall system parameters. This is especially important for system operators, as they receive future scenarios for operational planning. Therefore, they will be able to decide on the maximum installed power of solar power plants in the system.
- The paper is of particular importance to the academic community, as it presents a scenario in operational planning in a “green energy transition”, with a slow departure from coal, i.e., in a period of committing CCGTs, decommissioning TPP, and solar power plants taking an increasing penetration.
- An additional advantage of the proposed approach is that it can be used to create a graphical user interface (GUI) that can be developed and enhanced. Having a GUI is a very important tool for system operators in operational planning and real-time operational decision making.
3. Problem Formulation
3.1. Combined Cycle Gas Turbines
3.2. Objective Function
3.3. Constraints
3.3.1. Generator Constraint
3.3.2. Power Balance Constraint
3.3.3. Spinning Reserve Constraint
3.3.4. Ramp Rate Constraint
3.3.5. Transmission Line Constraint
3.3.6. Water Availability Constraint
3.3.7. Available Production Constraint
3.3.8. Dynamic Balance of the Reservoir Storage
3.3.9. Initial and Final Reservoir Storage Constraint
3.3.10. Water Discharge Constraint
3.3.11. Reservoir Volume Constraint
4. Genetic Algorithm
4.1. Initialization
4.2. Fitness Function Evaluation and Constraint Handling
4.3. Selection
4.4. Crossover
4.5. Mutation
4.6. Adaptive Crossover and Mutation Strategy
4.7. Elitism Strategy
Algorithm 1: New constraints handling for reservoir storage volume (initial and final reservoir storage) |
|
Algorithm 2: New constraints handling for constraints handling for water discharge |
|
Algorithm 3: New constraints handling for real power balance and ramp rate. |
|
4.8. Computational Procedure
5. Simulation Experiment and Result Analysis
5.1. Test System 1
5.2. Test System 2
5.3. IEEE 30 Bus System
5.3.1. Solar Power Plant Model
5.3.2. Case 1: Gaag, Netherlands
5.3.3. Case 2: Bitola, Macedonia
5.4. Analysis of the Obtained Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
Symbols | |
NT | number of TPPs |
NH | number of HPPs |
NS | number of SPPs |
F | total costs, EUR |
PGT,t | output power of TPP t, MW |
PGH,h | output power of HPP h, MW |
PGS,s | output power of SPP s, MW |
PP | system load, MW |
PL | transmission loses, MW |
Tj | duration of interval j, h |
J | duration of optimization period, h |
R | spinning reserve, MW |
PP,max | system’s peak load, MW |
PGmin | unit technical minimum, MW |
PGmax | unit technical maximum, MW |
Bij, Bi0, B00 | Crohn’s B coefficients for losses |
Qth | water discharge of hydro unit h, m3/h |
available spinning reserve of TPP t, MW | |
available spinning reserve of HPP h, MW | |
RT | total required spinning reserve of TPPs, MW |
RH | total required spinning reserve of HPPs, MW |
Tdis | discharge time, h |
URT, URH | up rate of TPP and HPP, MW |
DRT, DRH | down rate of TPP and HPP, MW |
PGR,g | active power of transmission line g, MW |
maximum transmission capacity of transmission line g, MW | |
G | number of transmission lines |
Vh,k | available water volume of HPP h, 103 m3 |
Wmax,i | total available energy of generator i, MWH |
Vh,j | storage volume of HPP h at interval j, 103 m3 |
Ih,j | inflow in reservoir h at interval j, 103 m3 |
Sh,j | water spillage of reservoir h at interval j, 103 m3 |
Vh0, Vh24 | initial and final volume of reservoir h, 103 m3 |
Vhmin, Vhmax | minimum and maximum volume of reservoir h, 103 m3 |
d(X), p(X) | distance value and penalty value |
v(X) | total constraint violation |
fs | scaled fitness function |
fav | average fitness function of current population |
fmax, fmin | maximal and minimal fitness function of current population |
as, bs | scaling coefficients |
βL, aL, bL | LX parameters |
x1, x2 | parent chromosomes |
y1, y2 | children chromosomes |
, p, bm | MPTM parameters |
k1, k2, k3, k4 | constants of crossover strategy and mutation strategy |
Pc, Pm | crossover probability and mutation probability |
gi, hk | inequality and equality constraints |
Subscripts | |
j | hour number |
t | TPP index |
h | HPP index |
g | transmission line index |
m | gene index |
n | chromosome index |
i | inequality constraint index |
k | equality constraint index |
Abbreviations | |
SHTSS | short-term hydro-thermal-solar scheduling |
SAGA | self-adaptive genetic algorithm |
LX | Laplace crossover |
MPTM | Makinen, Periaux, and Toivanen mutation |
UC | Unit Commitment |
References
- Braun, S. Improving Flexibility of Fossil Fired Power Plants. Encycl. Energy Storage 2022, 2, 133–140. [Google Scholar]
- Zhao, X.; Yin, H.; Zhao, Y. Impact of environmental regulations on the efficiency and CO2 emissions of power plants in China. Appl. Energy 2015, 149, 238–247. [Google Scholar] [CrossRef]
- Schreiber, A.; Zapp, P.; Kuckshinrichs, W. Environmental assessment of German electricity generation from coal-fired power plants with amine-based carbon capture. Int. J. Life Cycle Assess. 2009, 14, 547–559. [Google Scholar] [CrossRef]
- Singh, R.; Banerjee, R. Impact of large-scale rooftop solar PV integration: An algorithm for hydrothermal-solar scheduling (HTSS). Sol. Energy 2017, 157, 988–1004. [Google Scholar] [CrossRef]
- Libal, J.; Kopecek, R. Bifacial Photovoltaics: Technology, Applications and Economics, 1st ed.; IET: London, UK, 2018; pp. 153–220. [Google Scholar]
- Tang, J.; Luh, P.B. Hydro thermal scheduling via extended differential dynamic programming and mixed coordination. IEEE Trans. Power Syst. 1995, 10, 2021–2028. [Google Scholar] [CrossRef]
- Jin-Shyr, Y.; Nanming, C. Short term hydro thermal coordination using multi pass dynamic programming. IEEE Trans. Power Syst. 1989, 4, 1050–1056. [Google Scholar] [CrossRef]
- Guan, X.; Ni, E.; Li, R.; Luh, P.B. An optimization-based algorithm for scheduling hydro thermal power systems with cascaded reservoirs and discrete hydro constraints. IEEE Trans. Power Syst. 1997, 12, 1775–1780. [Google Scholar] [CrossRef]
- Al-Agtash, S. Hydro thermal scheduling by augmented lagrangian: Consideration of transmission constraints and pumped storage units. IEEE Trans. Power Syst. 2001, 16, 750–756. [Google Scholar] [CrossRef]
- Nilsson, O.; Sjelvgren, D. Mixed integer programming applied to short term planning of a hydro thermal system. IEEE Trans. Power Syst. 1996, 11, 281–286. [Google Scholar] [CrossRef]
- Maturana, J.; Riff, M.C. Solving the short-term electrical generation scheduling problem by an adaptive evolutionary approach. Eur. J. Oper. Res. 2007, 179, 677–691. [Google Scholar] [CrossRef]
- Wong, D.P.; Wong, Y.W. Short term hydro thermal scheduling part. I. Simulated annealing approach. IEE Proc.-Gener. Transm. Distrib. 1994, 141, 497–501. [Google Scholar] [CrossRef]
- Jayabarathi, T.; Chalasani, S.; Shaik, Z.A. Hybrid differential evolution and particle swarm optimization-based solutions to short term hydro thermal scheduling. WSEAS Trans. Power Syst. 2007, 2, 245–254. [Google Scholar]
- Diew, V.N.; Ongsakul, W. Enhanced merit order and augmented Lagrange Hopfield network for hydro thermal scheduling. Int. J. Electr. Power Energy Syst. 2008, 30, 93–101. [Google Scholar]
- Gil, E.; Bustos, J.; Rudnick, H. Short term hydrothermal generation scheduling model using genetic algorithm. IEEE Trans. Power Syst. 2003, 18, 1256–1264. [Google Scholar] [CrossRef]
- Titus, S.; Jeyakumar, A.E. Hydrothermal scheduling using an improved particle swarm optimization technique considering prohibited operating zones. Int. J. Soft Comput. 2007, 2, 313–319. [Google Scholar]
- Liu, C.; Shahidehpour, M.; Li, Z.; Fotuhi-Firuzabad, M. Component and Mode Models for the Short-Term Scheduling of Combined-Cycle Units. IEEE Trans. Power Syst. 2009, 24, 976–990. [Google Scholar]
- General Electri GE Power. Combined Cycle Power Plant. Available online: www.ge.com/power/resources/knowledge-base/combined-cycle-power-plant-how-it-works (accessed on 14 July 2022).
- Kehlhofer, R.; Rukes, B.; Hannemann, F.; Stirnimann, F. Combined-Cycle Gas & Steam Turbine Power Plants, 3rd ed.; PennWell: Tulsa, OK, USA, 2009; pp. 35–68. [Google Scholar]
- Postolov, B.; Iliev, A. New metaheuristic methodology for solving Security Constrained Hydrothermal Unit Commitment based on Adaptive Genetic Algorithm. Int. J. Electr. Power Energy Syst. 2022, 134, 107163. [Google Scholar] [CrossRef]
- Zhu, J. Optimization of Power System Operation, 2nd ed.; Wiley-IEEE Press: Hoboken, NJ, USA, 2015; pp. 297–346. [Google Scholar]
- Soliman, A.; Mantawy, A.H. Modern Optimization Techniques with Applications in Electric Power Systems, 1st ed.; Springer: New York, NY, USA, 2012; pp. 83–280. [Google Scholar]
- Ongsakul, W.; Vo, D.N. Artificial Intelligence in Power System Optimization, 1st ed.; CRC Press: New York, NY, USA, 2013; pp. 118–314. [Google Scholar]
- Postolov, B.; Iliev, A. Adaptive Genetic Algorithm for Hydro-thermal Unit Commitment Considering the Security Constraints. Int. J. Electr. Eng. Comput. 2020, 4, 61–69. [Google Scholar] [CrossRef]
- Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs, 3rd ed.; Springer: New York, NY, USA, 1996; pp. 283–314. [Google Scholar]
- Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Meth. Appl. Mech. Eng. 2000, 186, 311–338. [Google Scholar] [CrossRef]
- Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 2009, 13, 398–417. [Google Scholar] [CrossRef]
- Mallipeddi, R.; Suganthan, P.N. Ensemble of constraint handling techniques. IEEE Trans. Evol. Comput. 2010, 14, 561–579. [Google Scholar] [CrossRef]
- Farmani, R.; Wright, J.A. Self-adaptive fitness formulation for constrained optimization. IEEE Trans. Evol. Comput. 2003, 7, 445–455. [Google Scholar] [CrossRef]
- Tessema, B.G.; Yen, G.G. A Self Adaptive Penalty Function Based Algorithm for Constrained Optimization. In Proceedings of the IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada, 16–21 July 2006. [Google Scholar]
- Sivanandam, S.N.; Deepa, N. Introduction to Genetic Algorithms, 1st ed.; Springer: Berlin, Germany, 2008; pp. 83–122. [Google Scholar]
- Kramer, O. Genetic Algorithm Essentials, 1st ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 11–28. [Google Scholar]
- Bansal, J.C.; Singh, P.K.; Pal, N.R. Evolutionary and Swarm Intelligence Algorithms, 1st ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 61–85. [Google Scholar]
- Deep, K.; Thakur, M. A new crossover operator for real coded genetic algorithms. Appl. Math. Comput. 2007, 188, 895–911. [Google Scholar] [CrossRef]
- Makinen, R.A.E.; Periaux, J.; Toivanen, J. Multidisciplinary shape optimization in aerodynamics and electromagnetic using genetic algorithms. Int. J. Numer. Methods Fluids 1999, 30, 149–159. [Google Scholar] [CrossRef]
- Basu, M. Artificial immune system for fixed head hydrothermal power system. Energy 2011, 36, 606–612. [Google Scholar] [CrossRef]
- Postolov, B.; Iliev, A.; Dimitrov, D.; Dimishkoska, N. N–1 Security Constrained Short-Term Hydrothermal Scheduling by Self Adaptive Genetic Algorithm with PTDF. In Proceedings of the 2021 International Conference on Information Technologies (InfoTech), Varna, Bulgaria, 16–17 September 2021; pp. 1–7. [Google Scholar]
- Khunkitti, S.; Watson, N.R.; Chatthaworn, R.; Premrudeepreechacharn, S.; Siritaratiwat, A. An Improved DA-PSO Optimization Approach for Unit Commitment Problem. Energies 2019, 12, 2335. [Google Scholar] [CrossRef]
- Kamboj, V.K. A novel hybrid PSO–GWO approach for unit commitment problem. Neural Comput. Appl. 2016, 27, 1643–1655. [Google Scholar] [CrossRef]
- Bouchekara, H.R.E.H.; Chaib, A.E.; Abido, M.A.; El-Sehiemy, R.A. Optimal Power Flow Using an Improved Colliding Bodies Optimization Algorithm. Appl. Soft Comput. 2016, 42, 119–131. [Google Scholar] [CrossRef]
- Aghdam, F.H.; Hagh, M.T. Security Constrained Unit Commitment (SCUC) formulation and its solving with Modified Imperialist Competitive Algorithm (MICA). J. King Saud Univ.-Eng. Sci. 2019, 31, 253–261. [Google Scholar] [CrossRef]
- Surekha, P. Investigation of Efficient Bio Inspired Intelligent Paradigms for Solving Unique Constraint Based Optimization Problems. Ph.D. Thesis, Anna University, Chennai, India, 1 August 2014. [Google Scholar]
- Nguyen, T.T.; Vo, D.N.; Truong, A.V.; Ho, L.D. Meta-Heuristic Algorithms for Solving Hydrothermal System Scheduling Problem Considering Constraints in Transmission Lines. Glob. J. Technol. Optim. 2016, 7, 1000192. [Google Scholar]
- Lu, B. Short-Term Scheduling of Combined Cycle Units. IEEE Trans. Power Syst. 2004, 19, 1616–1625. [Google Scholar] [CrossRef]
- Trinasolar. PV Modules Vertex 500W TSM-DEG18MC.20(II) Bifacial, 1/3-Cut, MBB, 485-505W. Available online: https://www.trinasolar.com/en-glb/product/VERTEX-DEG18MC20II (accessed on 14 July 2022).
- HUPX. Historical Data. Available online: https://hupx.hu/en/market-data/dam/historical-data (accessed on 14 July 2022).
Interval | PGT1 (MW) | PGT2 (MW) | PGH1 (MW) | PGH2 (MW) |
---|---|---|---|---|
1 | 181.14 | 264.66 | 400.00 | 85.11 |
2 | 300.00 | 340.23 | 400.00 | 217.02 |
3 | 140.76 | 309.24 | 400.00 | 300.00 |
SAGA | GA 1 | AIS [30] | DE [30] | EP [30] | AIS [30] | |
---|---|---|---|---|---|---|
FT (EUR) | 47,184 | 66,341 | 66,117 | 66,121 | 66,198 | −40.12 (%) |
CPU time (s) | 6.03 | 28.53 | 53.43 | 60.76 | 75.48 | −47.4 (s) |
STD (EUR) | 26,861 | - | - | - | - | - |
Best (EUR) | Average (EUR) | Worst (EUR) | Change (%) | |
---|---|---|---|---|
DA-PSO [38] | 13,292.28 | - | - | - |
PSO-GWO [39] | 13,600.00 | - | - | - |
GA | 13,221.55 | 13,288.19 | 13,321.57 | - |
SAGA | 13,126.31 | 13,171.69 | 13,193.28 | −1.264 |
Newton’s method | - | 13,170.68 | - | - |
Difference SAGA—Newton | - | - | - | 0.0077 |
Mode | Composition | GT | ST | (MW) | (MW) | URt (MW) | DRt (MW) |
---|---|---|---|---|---|---|---|
0 | 0 + 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 + 0 | 1 | 0 | 20 | 80 | 60 | 60 |
2 | 2 + 0 | 2 | 0 | 40 | 160 | 120 | 120 |
3 | 1 + 1 | 1 | 1 | 30 | 135 | 105 | 105 |
4 | 2 + 1 | 2 | 1 | 50 | 215 | 165 | 165 |
Mode | Composition | at | bt | ct | dt | et |
---|---|---|---|---|---|---|
0 | 0 + 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 + 0 | 169.92700 | 2.36929 | 0.00051 | 18 | 0.037 |
2 | 2 + 0 | 339.85400 | 2.36929 | 0.00025 | 18 | 0.037 |
3 | 1 + 1 | 149.39630 | 1.40033 | 0.00063 | 18 | 0.037 |
4 | 2 + 1 | 247.06916 | 1.53006 | 0.00036 | 18 | 0.037 |
Sub-Case | Tilt Angle (°) | Azimuth (°) | Height (m) | Sheds Spacing (m) | Albedo | EGRID (MWh) |
---|---|---|---|---|---|---|
1 | 25 | 0 | 1.5 | 9 | 0.7 | 20,457 |
2 | 20 | 90 | 1.5 | 12 | 0.7 | 18,883 |
3 | 20 | −90 | 1.5 | 12 | 0.7 | 18,734 |
Sub-Case | Tilt Angle (°) | Azimuth (°) | Height (m) | Sheds Spacing (m) | Albedo | EGRID (MWh) |
---|---|---|---|---|---|---|
1 | 25 | 0 | 1.5 | 9 | 0.7 | 28,620 |
2 | 20 | 90 | 1.5 | 12 | 0.7 | 26,448 |
3 | 20 | −90 | 1.5 | 12 | 0.7 | 26,481 |
CCGT- Mode1 | CCGT-Mode2 | CCGT-Mode3 | CCGT-Mode4 | PGT,2 | PGT,3 | PGT,4 | |
---|---|---|---|---|---|---|---|
HR | 4.71 | 4.64 | 2.68 | 2.77 | 3.27 | 4.24 | 3.83 |
Sub-Case 1 | Sub-Case 2 | Sub-Case 3 | |
---|---|---|---|
FT (EUR) | 10,316.19 | 10,255.34 | 10,320.99 |
Relative change compared to sub-case 2 (%) | 0.59 | - | 0.63 |
Interval | CCGT (MW) | PGT2 (MW) | PGT3 (MW) | PGT4 (MW) | PGH1 (MW) | PGH2 (MW) | PGS (MW) | PL (MW) | Q1 (m3/h) | Q2 (m3/h) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 71.05 m4 | 31.20 | 18.24 | 12.97 | 22.94 | 11.60 | 0.00 | 2.0 | 258.02 | 228.89 |
2 | 78.92 m4 | 38.20 | 21.17 | 17.02 | 26.51 | 16.86 | 0.00 | 2.7 | 290.02 | 321.49 |
3 | 10.62 m4 | 39.93 | 15.00 | 18.42 | 23.17 | 33.17 | 0.00 | 4.3 | 260.10 | 612.33 |
4 | 132.28 m4 | 52.60 | 0.00 | 26.74 | 28.81 | 33.61 | 0.00 | 7.0 | 310.80 | 620.28 |
5 | 130.26 m4 | 54.49 | 15.00 | 28.80 | 28.21 | 32.42 | 1.00 | 6.8 | 305.38 | 598.82 |
6 | 119.02 m4 | 49.29 | 23.30 | 26.54 | 28.85 | 28.62 | 1.98 | 5.6 | 311.17 | 530.74 |
7 | 110.97 m4 | 41.30 | 25.67 | 19.43 | 27.50 | 22.25 | 3.44 | 4.6 | 298.97 | 417.10 |
8 | 102.65 m4 | 34.11 | 21.33 | 13.91 | 23.80 | 14.60 | 6.20 | 3.6 | 265.75 | 281.69 |
9 | 93.38 m4 | 28.38 | 17.03 | 12.28 | 23.46 | 11.40 | 8.94 | 2.9 | 262.75 | 225.42 |
10 | 78.59 m3 | 20.00 | 15.00 | 10.00 | 18.34 | 10.00 | 11.01 | 1.9 | 217.03 | 200.81 |
11 | 65.18 m3 | 20.00 | 15.00 | 10.00 | 15.48 | 10.00 | 12.78 | 1.4 | 191.71 | 200.81 |
12 | 74.21 m3 | 20.00 | 15.00 | 10.00 | 18.64 | 10.00 | 13.93 | 1.8 | 219.67 | 200.81 |
13 | 78.66 m3 | 20.00 | 15.00 | 10.90 | 22.51 | 10.20 | 14.71 | 2.0 | 254.22 | 204.35 |
14 | 89.29 m4 | 24.49 | 15.00 | 11.08 | 22.59 | 10.00 | 15.09 | 2.5 | 254.96 | 200.81 |
15 | 94.16 m4 | 31.66 | 19.68 | 13.55 | 24.39 | 13.27 | 14.36 | 3.1 | 271.06 | 258.16 |
16 | 100.44 m4 | 38.05 | 24.47 | 14.46 | 27.15 | 17.65 | 13.51 | 3.7 | 295.79 | 335.43 |
17 | 107.23 m4 | 40.88 | 24.18 | 17.79 | 27.87 | 20.85 | 11.48 | 4.3 | 302.31 | 392.12 |
18 | 109.53 m4 | 40.22 | 24.58 | 17.00 | 26.56 | 19.04 | 8.41 | 4.3 | 290.49 | 360.05 |
19 | 103.00 m4 | 39.78 | 26.91 | 19.52 | 28.28 | 18.79 | 3.72 | 4.0 | 305.97 | 355.70 |
20 | 111.21 m4 | 37.09 | 23.23 | 14.35 | 25.94 | 17.32 | 0.13 | 4.3 | 284.99 | 329.58 |
21 | 97.33 m4 | 34.05 | 22.10 | 14.18 | 24.65 | 15.04 | 0.00 | 3.3 | 273.35 | 289.44 |
22 | 97.02 m4 | 27.54 | 16.10 | 10.71 | 22.99 | 10.64 | 0.00 | 3.0 | 258.53 | 212.02 |
23 | 88.13 m3 | 20.00 | 15.00 | 10.00 | 20.22 | 10.00 | 0.00 | 2.3 | 233.75 | 200.81 |
24 | 96.03 m3 | 0.00 | 0.00 | 0.00 | 23.15 | 14.12 | 0.00 | 2.3 | 259.97 | 273.16 |
Sub-Case 1 | Sub-Case 2 | Sub-Case 3 | |
---|---|---|---|
FT (EUR) | 10,397.02 | 10,345.02 | 10,184.02 |
Relative change compared to sub-case 3 (%) | 2.05 | 1.55 | - |
Interval | CCGT (MW) | PGT2 (MW) | PGT3 (MW) | PGT4 (MW) | PGH1 (MW) | PGH2 (MW) | PGS (MW) | PL (MW) | Q1 (m3/h) | Q2 (m3/h) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 71.68 m4 | 30.87 | 17.51 | 13.99 | 22.70 | 11.27 | 0.00 | 2.0 | 255.94 | 223.06 |
2 | 71.09 m4 | 38.49 | 24.79 | 15.85 | 27.21 | 21.01 | 0.00 | 2.4 | 296.33 | 395.08 |
3 | 93.38 m4 | 39.98 | 29.62 | 20.81 | 28.60 | 20.16 | 0.00 | 3.6 | 308.92 | 379.87 |
4 | 121.68 m4 | 45.73 | 27.05 | 23.00 | 28.85 | 26.04 | 0.17 | 5.5 | 311.17 | 484.57 |
5 | 127.31 m4 | 46.65 | 32.06 | 23.50 | 28.85 | 26.46 | 4.54 | 6.0 | 311.17 | 492.11 |
6 | 117.57 m4 | 46.27 | 25.19 | 24.05 | 28.63 | 25.40 | 10.17 | 5.3 | 309.13 | 473.13 |
7 | 111.55 m4 | 41.76 | 16.07 | 17.03 | 28.09 | 23.08 | 13.01 | 4.6 | 304.30 | 431.72 |
8 | 97.86 m4 | 37.23 | 0.0 | 19.33 | 28.45 | 19.44 | 14.46 | 3.8 | 307.51 | 367.21 |
9 | 103.39 m4 | 28.67 | 0.0 | 12.44 | 22.69 | 13.12 | 15.16 | 3.5 | 255.79 | 255.52 |
10 | 63.04 m3 | 20.24 | 15.00 | 12.52 | 23.49 | 12.67 | 15.51 | 1.5 | 262.97 | 247.72 |
11 | 59.45 m3 | 20.00 | 15.00 | 10.00 | 18.30 | 10.00 | 15.52 | 1.3 | 216.72 | 200.81 |
12 | 67.26 m3 | 20.00 | 16.58 | 11.22 | 21.34 | 10.94 | 14.24 | 1.6 | 243.72 | 217.30 |
13 | 83.41 m3 | 22.15 | 15.00 | 10.00 | 19.13 | 10.00 | 12.51 | 2.2 | 224.02 | 200.81 |
14 | 94.72 m4 | 25.17 | 0.00 | 10.00 | 17.61 | 30.48 | 10.27 | 3.2 | 210.51 | 564.10 |
15 | 103.06 m4 | 29.63 | 15.00 | 15.80 | 24.56 | 16.21 | 7.24 | 3.5 | 272.52 | 310.09 |
16 | 119.02 m4 | 20.98 | 24.35 | 16.26 | 27.47 | 24.54 | 3.69 | 4.3 | 298.69 | 457.81 |
17 | 124.51 m4 | 0.00 | 33.45 | 28.56 | 28.85 | 32.97 | 1.98 | 4.3 | 311.17 | 608.71 |
18 | 114.34 m4 | 20.51 | 35.20 | 19.50 | 28.85 | 26.44 | 0.32 | 4.2 | 311.17 | 491.76 |
19 | 102.08 m4 | 30.81 | 31.35 | 21.80 | 28.85 | 24.91 | 0.00 | 3.8 | 311.17 | 464.37 |
20 | 111.04 m4 | 31.91 | 24.55 | 16.01 | 26.72 | 18.87 | 0.00 | 4.1 | 291.92 | 357.16 |
21 | 98.91 m4 | 34.51 | 21.27 | 13.98 | 24.11 | 14.63 | 0.00 | 3.4 | 268.57 | 282.26 |
22 | 83.69 m3 | 28.58 | 20.36 | 13.13 | 24.92 | 13.83 | 0.00 | 2.5 | 275.81 | 268.05 |
23 | 88.07 m3 | 20.00 | 15.09 | 10.00 | 20.13 | 10.05 | 0.00 | 2.3 | 232.98 | 201.63 |
24 | 87.82 m3 | 0.00 | 15.00 | 0.00 | 20.05 | 10.00 | 0.00 | 1.9 | 232.23 | 200.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Postolov, B.; Hinov, N.; Iliev, A.; Dimitrov, D. Short-Term Hydro-Thermal-Solar Scheduling with CCGT Based on Self-Adaptive Genetic Algorithm. Energies 2022, 15, 5989. https://doi.org/10.3390/en15165989
Postolov B, Hinov N, Iliev A, Dimitrov D. Short-Term Hydro-Thermal-Solar Scheduling with CCGT Based on Self-Adaptive Genetic Algorithm. Energies. 2022; 15(16):5989. https://doi.org/10.3390/en15165989
Chicago/Turabian StylePostolov, Borche, Nikolay Hinov, Atanas Iliev, and Dimitar Dimitrov. 2022. "Short-Term Hydro-Thermal-Solar Scheduling with CCGT Based on Self-Adaptive Genetic Algorithm" Energies 15, no. 16: 5989. https://doi.org/10.3390/en15165989
APA StylePostolov, B., Hinov, N., Iliev, A., & Dimitrov, D. (2022). Short-Term Hydro-Thermal-Solar Scheduling with CCGT Based on Self-Adaptive Genetic Algorithm. Energies, 15(16), 5989. https://doi.org/10.3390/en15165989