Virtual Inertia Adaptive Control Strategy of ESU in DC Microgrid
Abstract
:1. Introduction
2. System Structure and Mathematical Modeling
3. Adaptive Control Strategy of Virtual Inertia of Energy Storage Unit
3.1. Basic Control Strategy of ESU
3.2. Virtual Inertia Control Strategy of ESU
3.3. Stability Calculation and Parameter Design
4. Simulation Results
4.1. Comparison of Time-Domain Simulations of Reduced-Order Models
4.2. Stability and Inertia Sensitivity Analysis
4.3. Time-Domain Simulation Analysis of ESU Inertia Output Distribution
4.4. Experimental Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ESU | Energy storage unit |
DC | Direct current |
SOC | State of charge |
VSC | Voltage source converter |
MPPT | Maximum power point tracking |
DG | Distributed generator |
PV | Photovoltaic |
SC | Source converter |
LC | Load converter |
CPL | Constant power load |
VCC | Voltage and current closed-loop control |
MPF | Mixed potential function |
LEF | Lyapunov-type energy function |
EDA | Estimated domain of attraction |
References
- Li, Q.; Zhang, J. Solutions of voltage beyond limits in distribution network with distributed photovoltaic generators. Autom. Electr. Power Syst. 2015, 39, 117–123. [Google Scholar]
- Walling, R.; Saint, R.; Dugan, R.C.; Burke, J.; Kojovic, L.A. Summary of distributed resources impact on power delivery systems. IEEE Trans. Power Deliv. 2008, 23, 1636–1644. [Google Scholar] [CrossRef]
- Yuan, K.; Song, Y.; Li, J.; Sun, C.; Wu, Z.; Yuan, B.; Xue, Z.; Jin, X. Harmonic Characteristics of Distributed Generation and Electric Vehicle Supplying Access to the Grid. Proc. CSEE 2018, 38, 54. [Google Scholar]
- Liu, H.; Xiong, X.; Ji, Y.; Wu, M.; Rui, L.; Sun, L. Cluster Control Research of DC-type Distributed Generators Based on Multi-microgrids Technology under DC Distribution System. Proc. CSEE 2019, 39, 9. [Google Scholar]
- Li, X.; Guo, L.; Wang, C.; Li, Y. Key technologies of DC microgrids: An overview. Proc. CSEE 2016, 36, 2–17. [Google Scholar]
- Li, Z.; Kong, L.; Pei, W. Analyses of Stability Criterion and Key Factors of DC Microgrid Under Large Disturbance. High Volt. Eng. 2019, 45, 3993–4002. [Google Scholar]
- Bellache, K.; Camara, M.B.; Dakyo, B. Transient power control for diesel-generator assistance in electric boat applications using supercapacitors and batteries. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 6, 416–428. [Google Scholar] [CrossRef]
- Jin, Z.; Meng, L.; Guerrero, J.M.; Han, R. Hierarchical control design for a shipboard power system with DC distribution and energy storage aboard future more-electric ships. IEEE Trans. Ind. Inform. 2017, 14, 703–714. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhou, J.; Shi, M.; Yan, L.; Zuo, W.; Wen, J. A novel virtual resistor and capacitor droop control for HESS in medium-voltage DC system. IEEE Trans. Power Syst. 2019, 34, 2518–2527. [Google Scholar] [CrossRef]
- He, L.; Li, Y.; Guerrero, J.M.; Cao, Y. A comprehensive inertial control strategy for hybrid AC/DC microgrid with distributed generations. IEEE Trans. Smart Grid 2019, 11, 1737–1747. [Google Scholar] [CrossRef]
- Xu, Q.; Hu, X.; Wang, P.; Xiao, J.; Tu, P.; Wen, C.; Lee, M.Y. A decentralized dynamic power sharing strategy for hybrid energy storage system in autonomous DC microgrid. IEEE Trans. Ind. Electron. 2016, 64, 5930–5941. [Google Scholar] [CrossRef]
- Lin, P.; Wang, P.; Xiao, J.; Wang, J.; Jin, C.; Tang, Y. An integral droop for transient power allocation and output impedance shaping of hybrid energy storage system in DC microgrid. IEEE Trans. Power Electron. 2017, 33, 6262–6277. [Google Scholar] [CrossRef]
- Chen, J.; Song, Q. A decentralized dynamic load power allocation strategy for fuel cell/supercapacitor-based APU of large more electric vehicles. IEEE Trans. Ind. Electron. 2018, 66, 865–875. [Google Scholar] [CrossRef]
- Wang, X.; Li, X. Small-signal stability analysis of islanded DC microgrid with wind power. Electr. Power Autom. Equip. 2017, 37, 92–99. [Google Scholar]
- Li, P.; Li, X.; Wang, C.; Guo, L.; Peng, K.; Zhang, Y.; Wang, Z. Review of stability analysis model and mechanism research of medium- and low-voltage flexible DC distribution system. Electr. Power Autom. Equip. 2021, 41, 3–21. [Google Scholar]
- Vasquez, J.C.; Guerrero, J.M.; Miret, J.; Castilla, M.; De Vicuna, L.G. Hierarchical control of intelligent microgrids. IEEE Ind. Electron. Mag. 2010, 4, 23–29. [Google Scholar] [CrossRef]
- Zhi, N.; Zhang, H.; Xiao, X.; Yang, J. System-level stability analysis of DC microgrid with distributed control strategy. Proc. CSEE 2016, 36, 368–378. [Google Scholar]
- Herrera, L.; Yao, X. Computation of stability metrics in DC power systems using sum of squares programming. In Proceedings of the 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), Stanford, CA, USA, 9–12 July 2017; pp. 1–5. [Google Scholar]
- Loop, B.P.; Sudhoff, S.D.; Żak, S.H.; Zivi, E.L. Estimating regions of asymptotic stability of power electronics systems using genetic algorithms. IEEE Trans. Control Syst. Technol. 2009, 18, 1011–1022. [Google Scholar] [CrossRef]
- Li, X.; Liu, N.; Song, X. Large-signal stability criteria of AC/DC hybrid microgrid based on AC constant power loads. High Volt. Eng. 2021, 47, 11. [Google Scholar]
- Zhang, Y.; Wang, C.; Zhang, H. Chaos control of parameter magnet synchronous motor based on finite time LaSalle invariant set. J. Syst. Simul. 2020, 32, 8. [Google Scholar]
- Li, X.; Wang, Z.; Guo, L. Transient stability analysis of PLL synchronization in Weak-Grid-Connected VSCs based on the largest estimated domain of attraction. Proc. CSEE 2022, 42, 29–38. [Google Scholar] [CrossRef]
Operating Mode | Unit | Control Mode | Unit Attribute |
---|---|---|---|
Grid-connected mode | Grid-connected VSC | Droop | Balance unit |
ESU | Constant power | Power unit | |
Photovoltaic | MPPT | Power unit | |
Load | Constant power | Power unit | |
Off-grid mode | Grid-connected VSC | / | / |
ESU | Droop | Balance unit | |
Photovoltaic | MPPT | Power unit | |
Load | Constant power | Power unit |
Name | Value |
---|---|
Power level of balanced unit and power unit | 150 kW |
// | F/8 F/8 F |
Output voltage | 400 V |
Resistance /Reactance | / mH |
Parallel resistance R | 90 |
SC reference voltage | 210 V |
SC inductance /capacitance /Resistance | mH/ mF/22 m |
SC voltage loop proportional/integral coefficient | 1/10 |
SC current loop proportional/integral coefficient | 1/10 |
LC reference voltage | 40 V |
LC inductance /capacitance /Resistance | mH/ mF/15 m |
LC voltage loop proportional/integral coefficient | 1/1 |
LC current loop proportional/integral coefficient | 1/100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Li, H.; Wang, T.; Liu, M.; Zhu, T.; Liu, H. Virtual Inertia Adaptive Control Strategy of ESU in DC Microgrid. Energies 2022, 15, 6112. https://doi.org/10.3390/en15176112
Wang T, Li H, Wang T, Liu M, Zhu T, Liu H. Virtual Inertia Adaptive Control Strategy of ESU in DC Microgrid. Energies. 2022; 15(17):6112. https://doi.org/10.3390/en15176112
Chicago/Turabian StyleWang, Tao, Hongshan Li, Taiyu Wang, Meng Liu, Tong Zhu, and Hongchen Liu. 2022. "Virtual Inertia Adaptive Control Strategy of ESU in DC Microgrid" Energies 15, no. 17: 6112. https://doi.org/10.3390/en15176112
APA StyleWang, T., Li, H., Wang, T., Liu, M., Zhu, T., & Liu, H. (2022). Virtual Inertia Adaptive Control Strategy of ESU in DC Microgrid. Energies, 15(17), 6112. https://doi.org/10.3390/en15176112