Numerical and Experimental Study of a PVT Water System under Daily Weather Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Problem Description
2.2. Boundary Conditions
2.3. Solution Method
2.3.1. Governing Equations
2.3.2. System Efficiency Correlations
3. Results and Discussion
4. Conclusions
- Electrical and thermal efficiencies of PV and PV/T modules laminated with PMC materials were investigated by considering only temperature measurements. Additional sensors to measure currents and voltages will improve the estimation of effective power generation.
- Water flow was fixed to a constant value. The flow value must be optimized with respect to the specific application.
- Extension of one cell module to multiple cells should be considered to optimize cell combination and cooling architecture.
- The numerical model developed in the current study should be tested for other liquid-based and air-based PV/T systems.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PV | Photovoltaic |
PV/T | Photovoltaic thermal |
PMC | Polymer matrix composite |
CFD | Computational fluid dynamics |
ARC | Anti reflecting coating |
EVA | Ethylene vinyl acetate film |
PR | Performance ratio |
Specific heat capacity (J/kgK) | |
Density (kg/m) | |
k | Thermal conductivity coefficient (W/mK) |
Solar irradiation (W/m) | |
Convective heat transfer (W/m) | |
Radiative heat transfer (W/m) | |
Stefan–Boltzmann constant | |
Surface temperature (°C) | |
Sky temperature (°C) | |
Ambient temperature (°C) | |
Heat transfer coefficient (W/m °C) | |
Natural heat transfer coefficient (W/m °C) | |
Forced heat transfer coefficient (W/m °C) | |
Wind speed (m/s) | |
Turbulent viscosity (kg/ms) | |
Electrical power output (W) | |
Mass flow rate (kg/s) | |
Electrical efficiency of the PV panel | |
Reference electrical efficiency of the PV panel | |
Thermal efficiency of the PV/T module | |
Total efficiency of the PV/T module | |
Reference PV temperature | |
Temperature coefficient | |
Absorptivity constant | |
Transmissivity constant | |
Thickness of PV cell | |
Thermal power (W) | |
Surface area (m) | |
Inlet coolant temperature (°C) | |
Outlet coolant temperature (°C) |
References
- Ünal, F.; Temir, G.; Köten, H. Energy, exergy and exergoeconomic analysis of solar-assisted vertical ground source heat pump system for heating season. J. Mech. Sci. Technol. 2018, 32, 3929–3942. [Google Scholar] [CrossRef]
- Iodice, P.; d’Accadia, M.D.; Abagnale, C.; Cardone, M. Energy, economic and environmental performance appraisal of a trigeneration power plant for a new district: Advantages of using a renewable fuel. Appl. Therm. Eng. 2016, 95, 330–338. [Google Scholar] [CrossRef]
- Prasad, A.A.; Taylor, R.A.; Kay, M. Assessment of solar and wind resource synergy in Australia. Appl. Energy 2017, 190, 354–367. [Google Scholar] [CrossRef]
- Daabo, A.M.; Mahmoud, S.; Al-Dadah, R.K. The optical efficiency of three different geometries of a small scale cavity receiver for concentrated solar applications. Appl. Energy 2016, 179, 1081–1096. [Google Scholar] [CrossRef]
- Price, L.; du Can, S.D.L.R.; Sinton, S.; Worrell, E.; Nan, Z.; Sathaye, J.; Levine, M. Sectoral Trends in Global Energy Use GHG Emission; LBNL Report; Energy Analysis Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2006; LBNL-56144; 56p. [Google Scholar]
- Zondag, H. Flat-plate PV-Thermal collectors and systems: A review. Renew. Sustain. Energy Rev. 2008, 12, 891–959. [Google Scholar] [CrossRef]
- Das, D.; Kalita, P.; Roy, O. Flat plate hybrid photovoltaic-thermal (PV/T) system: A review on design and development. Renew. Sustain. Energy Rev. 2018, 84, 111–130. [Google Scholar] [CrossRef]
- FraunhoferISE. Fraunhofer Institute for Solar Energy Systems Photovoltaics Report. 2021. Available online: https://www.ise.fraunhofer.de/ (accessed on 20 July 2022).
- Ul Abdin, Z.; Rachid, A. A survey on applications of hybrid PV/T panels. Energies 2021, 14, 1205. [Google Scholar] [CrossRef]
- Hasan, A. Thermal energy storage system with stearic acid as phase change material. Energy Convers. Manag. 1994, 35, 843–856. [Google Scholar] [CrossRef]
- Abbas, Z.; Shahzad, K.; Jamal, S.; Ahmad, M. Paraffin Wax As A Phase Change Material For Thermal Energy Storage: Tubes In Shell Type Heat Exchanger. N. Am. Acad. Res 2018, 1, 39–52. [Google Scholar]
- Zhou, Y.; Zheng, S.; Liu, Z.; Wen, T.; Ding, Z.; Yan, J.; Zhang, G. Passive and active phase change materials integrated building energy systems with advanced machine-learning based climate-adaptive designs, intelligent operations, uncertainty-based analysis and optimisations: A state-of-the-art review. Renew. Sustain. Energy Rev. 2020, 130, 109889. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, S.; Zhang, G. Artificial neural network based multivariable optimization of a hybrid system integrated with phase change materials, active cooling and hybrid ventilations. Energy Convers. Manag. 2019, 197, 111859. [Google Scholar] [CrossRef]
- Murshed, S.S.; De Castro, C.N. Superior thermal features of carbon nanotubes-based nanofluids—A review. Renew. Sustain. Energy Rev. 2014, 37, 155–167. [Google Scholar] [CrossRef]
- Sachit, F.; Rosli, M.; Tamaldin, N.; Misha, S.; Abdullah, A. Nanofluids used in photovoltaic thermal (pv/t) systems. Int. J. Eng. Technol. 2018, 7, 599–611. [Google Scholar]
- Dubey, S.; Tay, A.A. Testing of two different types of photovoltaic–thermal (PVT) modules with heat flow pattern under tropical climatic conditions. Energy Sustain. Dev. 2013, 17, 1–12. [Google Scholar] [CrossRef]
- Hussain, F.; Othman, M.; Yatim, B.; Ruslan, H.; Sopian, K.; Anuar, Z.; Khairuddin, S. An improved design of photovoltaic/thermal solar collector. Sol. Energy 2015, 122, 885–891. [Google Scholar] [CrossRef]
- Atmaca, M.; Pektemir, I.Z. An investigation on the effect of the total efficiency of water and air used together as a working fluid in the photovoltaic thermal systems. Processes 2019, 7, 516. [Google Scholar] [CrossRef]
- Kingry, N.; Towers, L.; Liu, Y.C.; Zu, Y.; Wang, Y.; Staheli, B.; Katagiri, Y.; Cook, S.; Dai, R. Design, modeling and control of a solar-powered quadcopter. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 1251–1258. [Google Scholar]
- SunPower. C60 Solar Cell Mono Crystalline Silicon. 2022. Available online: https://us.sunpower.com/ (accessed on 17 July 2022).
- Lee, B.; Liu, J.; Sun, B.; Shen, C.; Dai, G. Thermally conductive and electrically insulating EVA composite encapsulants for solar photovoltaic (PV) cell. Express Polym. Lett. 2008, 2, 357–363. [Google Scholar] [CrossRef]
- Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; DeWitt, D.P. Introduction to Heat Transfer; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Aksoy, D.; Türkay, E.K.; Kara, A.K.; Yildirim, H.; Gören, A. Mono Silikon Fotovoltaik Hücrelerin Polimer Kompozit Malzeme ile Laminasyonu. Available online: https://www.researchgate.net/publication/334899635_Mono_Silikon_Fotovoltaik_Hucrelerin_Polimer_Kompozit_Malzeme_ile_Laminasyonu (accessed on 10 July 2022).
- Goren, A.; Atas, C. Manufacturing of polymer matrix composites using vacuum assisted resin infusion molding. Arch. Mater. Sci. Eng. 2008, 34, 117–120. [Google Scholar]
- Aseer, J.R.; Karakoti, A.; Biswas, S.; Sankaranarayanasamy, K. Experimental investigation on thermal conductivity analysis of Bahunia racemosa/glass fiber reinforced polymer composites. J. Basic Appl. Eng. Res. 2015, 2, 1858–1861. [Google Scholar]
- Cengel, Y.A.; Boles, M.A.; Kanoğlu, M. Thermodynamics: An Engineering Approach; McGraw-Hill: New York, NY, USA, 2011; Volume 5. [Google Scholar]
- Das, D.; Kalita, P.; Dewan, A.; Tanweer, S. Development of a novel thermal model for a PV/T collector and its experimental analysis. Sol. Energy 2019, 188, 631–643. [Google Scholar] [CrossRef]
- Baloch, A.A.; Bahaidarah, H.M.; Gandhidasan, P.; Al-Sulaiman, F.A. Experimental and numerical performance analysis of a converging channel heat exchanger for PV cooling. Energy Convers. Manag. 2015, 103, 14–27. [Google Scholar] [CrossRef]
- Khanjari, Y.; Pourfayaz, F.; Kasaeian, A. Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system. Energy Convers. Manag. 2016, 122, 263–278. [Google Scholar] [CrossRef]
- Cengel, Y.A.; Ghajar, A. Heat and Mass Transfer (a Practical Approach, SI Version); McGraw-Hill Education: New York, NY, USA, 2011; Volume 671, p. 52. [Google Scholar]
- U.S. Department Of Energy. DOE Fundamentals Handbook—Thermodynamics, Heat Transfer, and Fluid Flow; U.S. Department of Energy: Washington, DC, USA, 2016.
- Hendricks, J.; Van Sark, W. Annual performance enhancement of building integrated photovoltaic modules by applying phase change materials. Prog. Photovolt. Res. Appl. 2013, 21, 620–630. [Google Scholar] [CrossRef]
- ANSYS Inc.; Manual, U. Ansys Fluent 12.0. Theory Guide. 2009. Available online: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/main_pre.htm (accessed on 25 July 2022).
- Khelifa, A.; Touafek, K.; Moussa, H.B.; Tabet, I.; Haloui, H. Analysis of a hybrid solar collector photovoltaic thermal (PVT). Energy Procedia 2015, 74, 835–843. [Google Scholar] [CrossRef] [Green Version]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Armstrong, S.; Hurley, W. A thermal model for photovoltaic panels under varying atmospheric conditions. Appl. Therm. Eng. 2010, 30, 1488–1495. [Google Scholar] [CrossRef]
- Joshi, S.S.; Dhoble, A.S. Photovoltaic-Thermal systems (PVT): Technology review and future trends. Renew. Sustain. Energy Rev. 2018, 92, 848–882. [Google Scholar] [CrossRef]
- Kalkan, C.; Ezan, M.A.; Duquette, J.; Yilmaz Balaman, Ş.; Yilanci, A. Numerical study on photovoltaic/thermal systems with extended surfaces. Int. J. Energy Res. 2019, 43, 5213–5229. [Google Scholar] [CrossRef]
Polipol 354 | Crystal Clear 200 | 1564 Epoxy | |
---|---|---|---|
Density (g/cm) | 1.137 | 1.036 | 1.15 |
Refractive Index | 1.53 | 1.4989 | 1.5 |
Curing Time (h) | 13 | 16 | 0.5 |
Bending Strength (MPa) | 150 | 73.43 | 110–125 |
Tensile Strength (MPa) | 75 | 17.24 | 70–75 |
Appearance | Light-colored, Transparent | Quite transparent | Light, dark yellow |
# | Component | Description |
---|---|---|
1 | Release film | For separating the laminate from the distribution medium |
2 | YCL J-M | Seamless glass fiber (one layer) |
3 | SunPower C60 Solar Cell | Monocrystal silicon PV cell |
4 | YCL J-M | Seamless glass fiber (three layers) |
5 | Peel Ply | Peel plies provide a clean, uncontaminated surface for subsequent bonding. |
6 | Resin distribution medium | Provides two-dimensional flow of resin |
7 | Sealant tape | Provides vacuum isolation |
8 | Vacuum connection | Provides vacuum |
9 | Vacuum bag | Provides sealing |
# | Section | Material | Dimensions (m) | Thickness (m) | Module |
---|---|---|---|---|---|
1 | Insulator | XPS foam | 0.20 × 0.26 | 0.055 | PV/T–PV |
2 | Metal sheet | Copper | 0.14 × 0.14 | 0.003 | PV/T |
3 | PV cell | Silicon | 0.125 × 0.125 | 0.001 | PV/T–PV |
4 | Cooling pipe | Copper | 0.875 | 0.001 | PV/T |
Material | (J/kgK) | (kg/m) | k (W/mK) |
---|---|---|---|
PV cell (silicon) | 677 | 2330 | 148 |
Copper | 381 | 8978 | 387 |
XPS foam | 1500 | 45 | 0.035 |
Equipment | Brand | Range | Accuracy | Error-Rate |
---|---|---|---|---|
Pyranometer | Solar Light | 0–10 mV | 0.9% | 0.86 W/m |
Infrared camera | IRISYS | −20–200 °C | - | 0.1 °C |
DAQ | HP 34970A | 0–10 V (DC) | 3 digits of res. | - |
Anemometer | Digitech | 0–180 km/h | +/−1 m/s | 3.6 km/h |
Wind direction | 0–360° | – | - | |
Humidity | 1–99% | +/−5% | 0.05% | |
Temperature | −40–65 °C | +/−1 °C | 1 °C | |
Thermocouple | MAX6675 | −65–150 °C | +/−1.0% | 0.01 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korkut, T.B.; Gören, A.; Rachid, A. Numerical and Experimental Study of a PVT Water System under Daily Weather Conditions. Energies 2022, 15, 6538. https://doi.org/10.3390/en15186538
Korkut TB, Gören A, Rachid A. Numerical and Experimental Study of a PVT Water System under Daily Weather Conditions. Energies. 2022; 15(18):6538. https://doi.org/10.3390/en15186538
Chicago/Turabian StyleKorkut, Talha Batuhan, Aytaç Gören, and Ahmed Rachid. 2022. "Numerical and Experimental Study of a PVT Water System under Daily Weather Conditions" Energies 15, no. 18: 6538. https://doi.org/10.3390/en15186538
APA StyleKorkut, T. B., Gören, A., & Rachid, A. (2022). Numerical and Experimental Study of a PVT Water System under Daily Weather Conditions. Energies, 15(18), 6538. https://doi.org/10.3390/en15186538