Hydraulic Performance of a Francis Turbine with a Variable Draft Tube Guide Vane System to Mitigate Pressure Pulsations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Turbine and Guide Vane System
2.2. Instrumentation and Calibration
2.3. Measurement Program
2.4. Data Analysis
3. Results and Discussion
3.1. Repeatability
3.2. Performance Comparison with the Prior Model Turbine
3.3. Guide Vane System Impact on RVR Mitigation
3.4. Guide Vane System Impact on Turbine Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbol | Parameter | Unit |
D | Runner diameter | m |
H | Turbine net head | m |
P | Pressure | kPa |
Q | Flow discharge | m3/s |
QBEP | Discharge at best efficiency point | m3/s |
QED | Discharge factor | - |
R | Runner radius | m |
TGEN | Generator torque | N⋅m |
η | Hydraulic efficiency | % |
f | Frequency | Hz |
f0 | Runner frequency | Hz |
n | Runner rotational speed | rpm |
nED | Speed factor | - |
ω | Angular frequency | rad/s |
BEP | Best efficiency point | |
CAD | Computer-aided design | |
DT | Draft tube | |
GV | Guide vanes | |
OP | Operating condition | |
PL | Part load | |
HL | High load |
Appendix A
Parameters | PL2 | BEP | HL |
---|---|---|---|
Distributor GV angle (°) | 6.72 | 9.81 | 12.44 |
H (m) | 11.87 | 11.94 | 11.88 |
Q (m3/s) | 0.1396 | 0.1996 | 0.2425 |
TGEN (N⋅m) | 416.39 | 616.13 | 740.54 |
RPM | 332.84 | 332.59 | 332.59 |
η (%) | 90.13 | 92.39 | 91.71 |
Pin (kPa) | 218.08 | 215.57 | 212.38 |
Pout (kPa) | 113.17 | 111.13 | 109.59 |
Appendix B
PL1 | PL2 | BEP | HL | |||||
---|---|---|---|---|---|---|---|---|
Q (m3/s) | ΔQ (%) | Q (m3/s) | ΔQ (%) | Q (m3/s) | ΔQ (%) | Q (m3/s) | ΔQ (%) | |
No GV | 0.1184 | - | 0.1436 | - | 0.202 | - | 0.245 | - |
−35 GV | 0.1162 | −1.86 | 0.1426 | −0.70 | 0.201 | −0.5 | 0.245 | - |
−20 GV | 0.1169 | −1.27 | 0.1424 | −0.84 | 0.201 | −0.5 | 0.244 | 0.4 |
−10 GV | 0.1160 | −2 | 0.1430 | −0.42 | 0.201 | −0.5 | 0.245 | - |
0 GV | 0.1168 | −1.35 | 0.1422 | −0.97 | 0.200 | −0.99 | 0.245 | - |
+15 GV | 0.1169 | −1.27 | 0.1430 | −0.42 | 0.201 | −0.5 | 0.245 | - |
+32 GV | 0.1179 | −0.42 | 0.1432 | −0.28 | 0.200 | −0.99 | 0.245 | - |
PL1 | PL2 | BEP | HL | |||||
---|---|---|---|---|---|---|---|---|
T (N⋅m) | ΔT (%) | T (N⋅m) | ΔT (%) | T (N⋅m) | ΔT (%) | T (N⋅m) | ΔT (%) | |
No GV | 351.76 | - | 439.40 | - | 621.23 | - | 751.18 | - |
−35 GV | 332.63 | −5.44 | 422.30 | −3.92 | 615.85 | −0.86 | 743.62 | −1 |
−20 GV | 340.37 | −3.24 | 426.72 | −2.89 | 617.53 | −0.6 | 745.11 | −0.81 |
−10 GV | 337.77 | −3.98 | 428.57 | −2.46 | 620.44 | −0.13 | 741.69 | −1.28 |
0 GV | 340.44 | −3.22 | 422.83 | −3.77 | 615.93 | −0.87 | 742.82 | −0.81 |
+15 GV | 342.59 | −2.61 | 427.65 | −2.67 | 612.91 | −1.23 | 739.66 | −1.55 |
+32 GV | 342.99 | 2.49 | 436.06 | −0.76 | 620.74 | −0.12 | 743.17 | −1.07 |
Appendix C
Parameters | −35 GV | −20 GV | −10 GV | 0 GV | +15 GV | +32 GV |
---|---|---|---|---|---|---|
Distributor GV angle (°) | 5.45 | 5.45 | 5.41 | 5.411 | 5.41 | 5.45 |
H (m) | 11.97 | 11.97 | 11.98 | 11.96 | 11.96 | 11.95 |
Q (m3/s) | 0.1162 | 0.1169 | 0.1160 | 0.1168 | 0.1169 | 0.1170 |
TGEN (N⋅m) | 332.63 | 340.37 | 337.77 | 340.44 | 342.60 | 342.99 |
RPM | 333.32 | 333.24 | 332.25 | 332.85 | 333.47 | 332.93 |
η (%) | 86.92 | 87.51 | 87.74 | 87.87 | 88 | 88.08 |
Pin (kPa) | 240.64 | 239.54 | 240.60 | 239.21 | 239.01 | 240.05 |
Pout (kPa) | 124.04 | 122.73 | 123.75 | 122.59 | 122.42 | 123.56 |
Appendix D
References
- Hydro Power Status Report; International Hydropower Association: Paris, France, 2019.
- HydroFlex: European Union Horizon 2020 Research and Innovation Program; Norwegian University of Science and Technology: Trondheim, Norway, 2018–2022; Available online: https://www.h2020hydroflex.eu/ (accessed on 1 July 2022).
- Nishi, M.; Matsunaga, S.; Kubota, T.; Senoo, Y. Study on swirl flow and surge in an elbow type draft tube. In Proceedings of the 10th IAHR Symposium, Tokyo, Japan, October 1980; Volume 1, pp. 557–568. [Google Scholar]
- Nishi, M.; Liu, S.-H. An Outlook on the Draft-Tube-Surge Study. Int. J. Fluid Mach. Syst. 2013, 6, 33–48. [Google Scholar] [CrossRef]
- Kumar, S.; Cervantes, M.J.; Gandhi, B.K. Rotating vortex rope formation and mitigation in draft tube of hydro turbines—A review from experimental perspective. Renew. Sustain. Energy Rev. 2021, 136, 110354. [Google Scholar] [CrossRef]
- Trivedi, C.; Cervantes, M.J.; Dahlhang, O.G. Experimental and numerical studies of a high-head Francis turbine: A review of the Francis-99 test case. Energies 2016, 9, 74. [Google Scholar] [CrossRef]
- Trivedi, C.; Cervantes, M.J.; Gandhi, B.K.; Dahlhaung, O.G. Pressure measurements on a high head Francis turbine during load acceptance and rejection. J. Hydraul. Res. 2014, 52, 283–297. [Google Scholar]
- Goyal, R.; Gandhi, B.K. Review of hydrodynamics instabilities in Francis turbine during off—Design and transient operations. Renew. Energy 2018, 116, 697–709. [Google Scholar]
- Goyal, R.; Trivedi, C.; Gandhi, B.K.; Cervantes, M.J.; Dahlhaug, O.G. Transient pressure measurements at part load operating condition of a high head model Francis turbine. Sadhana 2016, 41, 1311–1320. [Google Scholar] [CrossRef]
- Goyal, R.; Bergan, C.; Cervantes, M.J.; Gandhi, B.K.; Dahlhaug, O.G. Experimental investigation on a high head model Francis turbine during load rejection. IOP Conf. Ser. Earth Environ. Sci. 2016, 49, 082004. [Google Scholar] [CrossRef]
- Goyal, R.; Cervantes, M.J.; Gandhi, B.K. Vortex rope formation in a high head model Francis turbine. ASME J. Fluids Eng. 2017, 139, 041102. [Google Scholar] [CrossRef]
- Susan-Resiga, R.; Ciocan, G.D.; Anton, I.; Avellan, F. Analysis of the swirling flow downstream a Francis turbine runner. J. Fluids Eng. 2006, 128, 177–189. [Google Scholar] [CrossRef]
- Susan-Resiga, R.F.; Muntean, S.; Stein, P.; Avellan, F. Axisymmetric swirling flow simulation of the draft tube vortex in Francis turbines at partial discharge. Int. J. Fluid Mach. Syst. 2009, 2, 295–302. [Google Scholar] [CrossRef]
- Bosioc, A.I.; Tanasa, C.; Susan-Resiga, R.; Muntean, S. Experimental analysis of unsteady velocity in decelerated swirling flows. In Proceedings of the 4th International Meeting on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Belgrade, Serbia, 26–28 October 2011. [Google Scholar]
- Ciocan, G.D.; Iliescu, M.S.; Vu, T.C.; Nennemann, B.; Avellan, F. Experimental Study and Numerical Simulation of the FLINDT Draft Tube Rotating Vortex. J. Fluids Eng. 2007, 129, 146–158. [Google Scholar] [CrossRef]
- Favrel, A.; Pereira, J.G., Jr.; Landry, C.; Müller, A.; Nicolet, C.; Avellan, F. New insight in Francis turbine cavitation vortex rope: Role of the runner outlet flow swirl number. J. Hydraul. Res. 2018, 56, 367–379. [Google Scholar] [CrossRef]
- Favrel, A.; Pereira, J.G., Jr.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F. Swirl number based transposition of flow-induced mechanical stresses from reduced scale to full-size Francis turbine runners. J. Fluids Struct. 2020, 94, 102956. [Google Scholar] [CrossRef]
- March, P. Hydraulic and environmental performance of aerating turbine technologies. In EPRI Conference on Environmentally Enhanced Hydropower Turbines; Electric Power Research Institute: Palo Alto, CA, USA, 2011; pp. 19–21. [Google Scholar]
- Muntean, S.; Resiga, R.S.; Campian, V.C.; Dumbrav, C.; Cuzmos, A. In situ unsteady pressure measurements on the draft tube cone of the Francis turbine with air injection over an extended operating range. UPB Sci. Bull. Ser. D Mech. Eng. 2013, 76, 173–180. [Google Scholar]
- Nakanishi, K.; Ueda, T. Air Supply into Draft Tube of Francis Turbine. Fuji Electr. Rev. 1964, 10, 81–91. [Google Scholar]
- Zolotov, L.A.; Klabukov, V.M.; Vladimirskii, V.M. Reduction of pressure fluctuations in penstocks at pumped-storage plants by injecting air under the runner. Hydrotech. Constr. 1976, 10, 763–766. [Google Scholar] [CrossRef]
- Tănasă, S.M.C.; Bosioc, A.I.; Susan-Resiga, R.; Ciocan, T. Influence of the air admission on the unsteady pressure field in a decelerated swirling flow. UPB Sci. Bull. Ser. D Mech. Eng. 2016, 78, 161–170. [Google Scholar]
- Papillon, M.S.B.; Couston, M.; Deschenes, C. Methods for air admission in hydro turbines. In Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems, Lausanne, Switzerland, 9–12 September 2002. [Google Scholar]
- Bucur, D.M.; Dunca, G.; Bunea, F.; Ciocan, G.D. Experimental analysis of the operation of a small Francis turbine equipped with an innovative aeration device. IOP Conf. Ser. Earth Environ. Sci. 2019, 240, 042010. [Google Scholar] [CrossRef]
- Francke, H.H. Increasing Hydro Turbine Operation Range and Efficiencies Using Water Injection in Draft Tubes. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2010. [Google Scholar]
- Susan-Resiga, R.; Vu, T.C.; Muntean, S.; Ciocan, G.D.; Nennemann, B. Jet control of the draft tube vortex rope in Francis turbines at partial discharge. In Proceedings of the 23rd IAHR Symposium Conference, Ann Arbor, MI, USA, 31 May–3 June 2006; pp. 17–21. [Google Scholar]
- Rudolf, P.; Litera, J.; Bolanos, J.A.I.; Stefan, D. Manipulation of the swirling flow instability in hydraulic turbine diffuser by different methods of water injection. Exp. Fluid Mech. 2018, 180, 02090. [Google Scholar] [CrossRef]
- Kjeldsen, M.O.K.M.; Nielsen, T.; Dahlhaug, O.G. Water injection for the mitigation of draft-tube pressure pulsations. In Proceedings of the IAHR International Meeting of Working Group on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems; 2006. [Google Scholar]
- Bosioc, A.I.; Susan-Resiga, R.; Muntean, S.; Tanasa, C. Unsteady pressure analysis of a swirling flow with vortex rope and axial water injection in a discharge cone. ASME. J. Fluids Eng. 2012, 134, 081104. [Google Scholar] [CrossRef]
- Thicke, R.H. Practical solutions for draft tube instability. Water Power Dam. Constr. 1981, 33, 31–37. [Google Scholar]
- Nishi, M.; Wang, X.M.; Yoshida, K.; Takahashi, T.; Tsukamoto, T. An experimental study on fins, their role control of the draft tube surging. In Hydraulic Machinery and Cavitation; Springer: Berlin/Heidelberg, Germany, 1996; pp. 905–914. [Google Scholar]
- Kurokawa, S.L.S.J.; Matsui, J.; Kitahora, T. A New Passive Device to Suppress Several Instabilities in Turbomachines by Use of J-Grooves; Osaka, Japan, 1998. [Google Scholar]
- Wei, Q.S.; Choi, Y.D. The optimization of j-groove shape in the draft tube of a Francis turbine to suppress the draft surge. IOP Conf. Ser. Mater. Sci. Eng. 2013, 52, 052030. [Google Scholar] [CrossRef]
- Wei, Q.S.; Choi, Y.D.; Zhu, B.S. Application of J-Groove to the suppression of swirl flow in the draft tube of a Francis hydro turbine. IOP Conf. Ser. Earth Environ. Sci. 2012, 15, 022017. [Google Scholar] [CrossRef]
- Chen, Z.; Singh, P.M.; Choi, Y.D. Suppression of unsteady swirl flow in the draft tube of a Francis hydro turbine model using J-Groove. J. Mech. Sci. Technol. 2017, 31, 5813–5820. [Google Scholar] [CrossRef]
- Fraser, R.; Deschênes, C.; Gokhman, A.; Huang, J. Development of an exit stay apparatus for Francis turbine. In Hydrovision 2008; HCI Publication: Sacramento, CA, USA, 2008. [Google Scholar]
- Lancaster, O.E. Jet Propulsion Engines; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Wilson, D.G.; Korakianitis, T. The Design of High Efficiency Turbomachinery and Gas Turbines; The MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Joy, J.; Raisee, M.; Cervantes, M.J. A Novel Guide Vane system Design to Mitigate Rotating Vortex Rope in High Head Francis Model Turbine. Int. J. Fluid Mach. Syst. 2022, 15, 188–209. [Google Scholar] [CrossRef]
- IEC 60041; Field Acceptance Tests to Determine the Hydraulic Performance of Hydraulic Turbines, Storage Pumps and Pump-Turbines. 3rd ed. SAI Global: Geneva, Switzerland, 1991; p. 11.
- IEC 60193; Hydraulic Turbines, Storage Pumps and Pump-Turbines—Model Acceptance Tests. IEC: Geneva, Switzerland, 1999; p. 11.
- ASME PTC 18-2011; Hydraulic Turbines and Pump Turbines: Performance Test Codes. ASME: New York, NY, USA, 2001.
- NVKS Francis-99 Second Workshop; Norwegian University of Science and Technology: Trondheim, Norway, 2016.
- Lucca-Negro, O.; O’Doherty, T. Vortex breakdown: A review. Prog. Energy Combust. Sci. 2000, 27, 431–481. [Google Scholar] [CrossRef]
Instrument/Sensor | Purpose | Range | Uncertainty |
---|---|---|---|
Hydraulic dead-weight tester | Primary equipment for flowmeter calibration | 0–60,000 kg | ±0.008% |
KROHNE IFS 4000 series | Flowmeter | 0–300 m3/s | ±0.012% |
Load cell | Generator torque | 0–1600 N·m | ±0.05% |
Load cell | Friction torque | 0–21 N·m | ±0.026% |
Fuji Electronics FKCW36 | Inlet pressure | 0–400 kPa | ±0.019% |
Fuji Electronics FKCW36 | Differential pressure | 0–400 kPa | ±0.024% |
Draft tube sensors | |||
Kulite HKM 375 (DT1) | Pressure | 1.7 bar | ±0.08% |
Kulite HKM 375 (DT2) | Pressure | 1.7 bar | ±0.08% |
Kulite HKM 375 (DT3) | Pressure | 1.7 bar | ±0.097% |
Kulite HKM 375 (DT4) | Pressure | 1.7 bar | ±0.086% |
Kulite HKM 375 (DT5) | Pressure | 1.7 bar | ±0.088% |
Kulite HKM 375 (DT6) | Pressure | 7 bar | ±0.095% |
Parameters | PL1 | PL2 | BEP | HL | Uncertainty |
---|---|---|---|---|---|
Distributor GV angle (°) | 5.45 | 6.72 | 9.81 | 12.44 | ±0.04 |
H (m) | 11.93 | 11.93 | 11.95 | 11.96 | ±0.011 |
Q (m3/s) | 0.1184 | 0.1436 | 0.2020 | 0.2451 | ±0.1 |
TGEN (N⋅m) | 351.76 | 439.4 | 621.23 | 751.18 | ± 0.03 |
n (rpm) | 329 | 330 | 333 | 333 | ± 0.05 |
Pin (kPa) | 239.12 | 239.19 | 234.20 | 229.18 | ± 0.047 |
Pout (kPa) | 123.05 | 122.98 | 119.09 | 114.54 | ± 0.001 |
GVs in the Draft Tube | Operating Conditions (OP) | Test(s) Performed for Each OP |
---|---|---|
No GV | PL1, PL2, BEP, HL | 6 * |
−35 GV | 1 | |
−20 GV | 1 | |
−10 GV | 2 | |
0 GV | 1 | |
+15 GV | 1 |
Test(s) | Waiting Time (Minutes) | PL1 (%) | PL2 (%) | BEP (%) | HL (%) |
---|---|---|---|---|---|
1 | 0 | 88.36 | 90.47 | 92.02 | 91.32 |
2 | 2 | 88.39 | 90.50 | 92.07 | 91.28 |
3 | 4 | 88.44 | 90.53 | 92.03 | 91.36 |
4 | 6 | 88.41 | 90.43 | - | 91.36 |
5 | 8 | 88.47 | 90.45 | - | 91.32 |
6 | 10 | 88.47 | 90.45 | - | 91.37 |
Mean | - | 88.42 | 90.47 | 92.04 | 91.34 |
STD | - | 0.045 | 0.037 | 0.026 | 0.034 |
Test(s) | 1 | 2 | 3 | 4 | 5 | 6 | Mean | STD |
---|---|---|---|---|---|---|---|---|
DT1 at PL1 (×10−4) | 1.13 | 1.02 | 1.28 | 1.38 | 1.26 | 0.891 | 1.16 | 0.18 |
DT1 at PL2 (×10−4) | 0.29 | 0.13 | 0.19 | 0.14 | 0.11 | 0.12 | 0.16 | 0.06 |
Configurations | PL1 | PL2 |
---|---|---|
No GV | 0.297⋅f0 | 0.307⋅f0 |
−35 GV | 0.39⋅f0 | 0.43⋅f0 |
−20 GV | 0.39⋅f0 | 0.53⋅f0 |
−10 GV | 0.39⋅f0 | 0.55⋅f0 |
0 GV | Fully mitigated | 0.62⋅f0 |
+15 GV | 0.39⋅f0 | 0.43⋅f0 |
+32 GV | 0.34⋅f0 | 0.44⋅f0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joy, J.; Raisee, M.; Cervantes, M.J. Hydraulic Performance of a Francis Turbine with a Variable Draft Tube Guide Vane System to Mitigate Pressure Pulsations. Energies 2022, 15, 6542. https://doi.org/10.3390/en15186542
Joy J, Raisee M, Cervantes MJ. Hydraulic Performance of a Francis Turbine with a Variable Draft Tube Guide Vane System to Mitigate Pressure Pulsations. Energies. 2022; 15(18):6542. https://doi.org/10.3390/en15186542
Chicago/Turabian StyleJoy, Jesline, Mehrdad Raisee, and Michel J. Cervantes. 2022. "Hydraulic Performance of a Francis Turbine with a Variable Draft Tube Guide Vane System to Mitigate Pressure Pulsations" Energies 15, no. 18: 6542. https://doi.org/10.3390/en15186542
APA StyleJoy, J., Raisee, M., & Cervantes, M. J. (2022). Hydraulic Performance of a Francis Turbine with a Variable Draft Tube Guide Vane System to Mitigate Pressure Pulsations. Energies, 15(18), 6542. https://doi.org/10.3390/en15186542