Reliability of Wide Band Gap Power Electronic Semiconductor and Packaging: A Review
Abstract
:1. Introduction
2. Failure Mechanism of WBG Power Electronic Semiconductor Chips
2.1. Failure Mechanisms of SiC MOSFET
2.2. Failure Mechanisms of GaN HEMT
3. Reliability of WBG Power Electronic Packaging
3.1. Solder
- Setting up the bond;
- Heating to the specified bonding temperature to produce a liquid in the bond region;
- Holding the assembly at the bonding temperature until the liquid has isothermally solidified due to diffusion;
- Homogenizing the bond at a suitable heat-treating temperature.
3.2. Bond Wire
3.3. Substrate
3.4. Encapsulation
3.5. Electric Discharge
4. Reliability Models
4.1. Time-Dependent Dielectric Breakdown Models
4.2. Stress–Strain Models
4.3. Thermal Cycling Models
4.4. Data-Driven Approach
5. Discussion
5.1. Major Threats to WBG Power Electronic Chips
5.2. Challenges to WBG Power Electronic Packaging
5.3. Developing Trends in Reliability Models
6. Conclusions
- (1)
- SiC MOSFET and GaN HEMT are the most mature and widely used WBG power electronic devices. The gate dielectric degradation and gate leakage are dominant factors that affect the reliability of SiC MOSFET and GaN HEMT, respectively. With the future development of WBG semiconductor manufacturing technology, the quality of WBG power chips will hopefully be improved, resulting in a considerable decrease in the production cost.
- (2)
- The main challenge for WBG power electronic device packaging is the high temperature and high voltage reliability. The thermo-mechanical fatigue and electric discharge are the common degradation mechanisms. The packaging materials should withstand high temperatures and wide-range temperature cycling. The coordination of mechanical, electrical, and thermal characteristics of packaging materials should be carefully considered and extensively investigated during the design process of WBG power electronic devices. Commercial WBG power electronic devices are limited to operate within 175 °C, which is far less than enough to exert the full potential of WBG power chips. The new development of materials and techniques for the bond wire, solder, substrate, and encapsulant makes it possible to produce reliable WBG power electronic packaging in the laboratory, but it is still a relatively long way to large-scale commercial use.
- (3)
- The classic reliability models based on the physics-of-failure concentrate on the condition of the gate dielectric, thermo-mechanical effect, and stress–strain relation, whereas the data-driven methods based on the analysis of monitored data have gained much popularity because they do not need the pre-knowledge of failure mechanisms. With the development of condition monitoring methods and AI technology, new diagnostic methods, such as principal component analysis, k-nearest neighbor algorithm, and artificial neural network, will receive more attention and become the future research trend for WBG power electronic device reliability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Trivedi, M.; Shenai, K. Performance evaluation of high-power wide band-gap semiconductor rectifiers. J. Appl. Phys. 1999, 85, 6889–6897. [Google Scholar] [CrossRef]
- Neudeck, P.; Okojie, R.; Chen, L. High-temperature electronics-a role for wide bandgap semiconductors? Proc. IEEE 2002, 90, 1065–1076. [Google Scholar] [CrossRef]
- Hudgins, J.; Simin, G.; Santi, E.; Khan, M. An assessment of wide bandgap semiconductors for power devices. IEEE Trans. Power Electron. 2003, 18, 907–914. [Google Scholar] [CrossRef]
- Millan, J. Wide band-gap power semiconductor devices. IEE Proc. Circuits Devices Syst. 2007, 1, 372–379. [Google Scholar] [CrossRef]
- Armstrong, K.; Das, S.; Cresko, J. Wide bandgap semiconductor opportunities in power electronics. In Proceedings of the IEEE 4th Workshop Wide Bandgap Power Devices and Applications, Fayetteville, NC, USA, 29 December 2016; pp. 259–264. [Google Scholar]
- Ozpineci, B.; Tolbert, L. Smaller, faster, tougher. IEEE Spectr. 2011, 48, 45–66. [Google Scholar] [CrossRef]
- Roussel, P. SiC Market and Industry Update. In Proceedings of the International SiC Power Electronics Application Workshop, Kista, Sweden, 3–4 May 2011. [Google Scholar]
- Millan, J.; Godignon, P.; Perpina, X.; Perez-Tomas, A.; Rebollo, J. A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 2014, 29, 2155–2163. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Ding, Y.; Yin, Y. Optimization Design of Packaging Insulation for Half-Bridge SiC MOSFET Power Module Based on Multi-Physics Simulation. Energies 2022, 15, 4884. [Google Scholar] [CrossRef]
- US Department of Defense. MIL-HDBK-217F. Military Handbook—Reliability Prediction of Electronic Equipment; US Department of Defense: Washington, DC, USA, 1991.
- Todinov, M. Reliability and Risk Models. Setting Reliability Requirements; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Pecht, M.; Dasgupta, A. Physics-of-failure: An approach to reliable product development. In Proceedings of the IEEE International Workshop Integrated Reliability, Lake Tahoe, CA, USA, 22–25 October 1995; pp. 1–4. [Google Scholar]
- Kacprzynski, G.; Sarlashkar, A.; Roemer, M.; Hess, A.; Hardman, B. Predicting remaining life by fusing the physics of failure modeling with diagnostics. J. Miner. Met. Mater. Soc. 2004, 56, 29–35. [Google Scholar] [CrossRef]
- Wang, X.; Qi, J.; Yang, M.; Zhang, G. Analysis of 600 V/650 V SiC schottky diodes at extremely high temperatures. CPSS Trans. Power Electron. Appl. 2020, 5, 11–17. [Google Scholar] [CrossRef]
- Shenoy, J.; Cooper, J.; Melloch, M. High-voltage double-implanted power MOSFETs in 6H-SiC. IEEE Electron Device Lett. 1997, 18, 93–95. [Google Scholar] [CrossRef]
- Blicher, A. Field_Effect and Bipolar Power Transistor Physics; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Cooper, J.; Melloch, M.; Singh, R.; Agarwal, A.; Palmour, J.W. Status and prospects for SiC power MOSFETs. IEEE Trans. Electron. Devices 2002, 49, 658–664. [Google Scholar] [CrossRef]
- Lu, C.; Cooper, J.; Tsuji, T.; Agarwal, A.; Palmour, J. Effect of process variations and ambient temperature on electron mobility at SiO2/4H-SiC interface. IEEE Trans. Electron. Devices 2003, 50, 1582–1588. [Google Scholar]
- Jamet, P.; Dimitrijev, S. Physical properties of NO and NO-nitrided gate oxides grown on 4H SiC. Appl. Phys. Lett. 2001, 79, 323–325. [Google Scholar] [CrossRef]
- Chung, G.; Tin, C.; Williams, J.; McDonald, K.; Chanana, R.K.; Weller, R.A.; Pantelides, S.T.; Feldman, L.C.; Holland, O.W.; Das, M.K.; et al. Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide. IEEE Electron. Device Lett. 2001, 22, 176–178. [Google Scholar] [CrossRef]
- Chung, G.; Tin, C.; Williams, J.; McDonald, K.; Di Ventra, M.; Pantelides, S.T.; Feldman, L.C.; Weller, R.A. Effect of nitric oxide annealing on the interface trap densities near the band edges in the 4H polytype of silicon carbide. Appl. Phys. Lett. 2000, 76, 1713–1715. [Google Scholar] [CrossRef]
- Santini, T.; Morand, S.; Fouladirad, M.; Phung, L.; Miller, F.; Foucher, B.; Grall, A.; Allard, B. Accelerated degradation data of SiC MOSFETs for lifetime and remaining useful life assessment. Microelectron. Reliab. 2014, 54, 1718–1723. [Google Scholar] [CrossRef]
- Lelis, A.; Green, R.; Habersat, D.; El, M. Basic mechanisms of Threshold-Voltage instability and implications for reliability testing of SiC MOSFETs. IEEE Trans. Electron. Devices 2015, 62, 316–323. [Google Scholar] [CrossRef]
- Rashid, M. Power Electronics Handbook; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Singh, R. Reliability and performance limitations in SiC power devices. Microelectron. Reliab. 2006, 46, 713–730. [Google Scholar] [CrossRef]
- Santini, T.; Sebastien, M.; Florent, M.; Phung, L.-V.; Allard, B. Gate oxide reliability assessment of a SiC MOSFET for high temperature aeronautic applications. In Proceedings of the 2013 IEEE ECCE Asia Downunder, Melbourne, Australia, 3–6 June 2013; pp. 385–391. [Google Scholar]
- Ouaida, R.; Berthou, M.; León, J.; Perpina, X.; Oge, S.; Brosselard, P.; Joubert, C. Gate oxide degradation of SiC MOSFET in switching conditions. IEEE Electron. Device Lett. 2014, 35, 1284–1286. [Google Scholar] [CrossRef]
- Krishnaswami, S.; Das, M.; Hull, B.; Ryu, S.H.; Scofield, J.; Agarwal, A.; Palmour, J. Gate oxide reliability of 4H-SiC MOS devices. In Proceedings of the 2005 IEEE International Reliability Physics Symposium, San Jose, CA, USA, 17–21 April 2005; pp. 592–593. [Google Scholar]
- Le-Huu, M.; Schmitt, H.; Noll, S.; Grieb, M.; Schrey, F.F.; Bauer, A.J.; Frey, L.; Ryssel, H. Investigation of the reliability of 4H–SiC MOS devices for high temperature applications. Microelectron. Reliab. 2011, 51, 1346–1350. [Google Scholar] [CrossRef]
- Lelis, A.; Green, R.; Habersat, D. High-temperature reliability of SiC power MOSFETs. Mater. Sci. Forum 2011, 679–680, 599–602. [Google Scholar] [CrossRef]
- Sameshima, J.; Ishiyama, O.; Shimozato, A.; Tamura, K.; Oshima, H.; Yamashita, T.; Tanaka, T.; Sugiyama, N.; Sako, H.; Senazaki, J.; et al. Relation between defects on 4H-SiC epitaxial surface and gate oxide reliability. Mater. Sci. Forum 2013, 745–748, 745–748. [Google Scholar] [CrossRef]
- Yu, L.; Dunne, G.; Matocha, K.; Cheung, K.P.; Suehle, J.S.; Sheng, K. Reliability issues of SiC MOSFETs: A technology for high temperature environments. IEEE Trans. Device Mater. Rel. 2010, 10, 418–426. [Google Scholar] [CrossRef]
- Tanimoto, S.; Ohashi, H. Reliability issues of SiC power MOSFETs toward high junction temperature operation. Phys. Status Solidi A 2009, 206, 2417–2430. [Google Scholar] [CrossRef]
- Singh, R.; Hefner, A. Reliability of SiC MOS devices. Solid-State Electron. 2004, 48, 1717–1720. [Google Scholar] [CrossRef]
- Ueda, T. Reliability issues in GaN and SiC power devices. In Proceedings of the 2014 IEEE International Reliability Physics Symposium, Waikoloa, HI, USA, 1–5 June 2014. [Google Scholar]
- Dasgupta, S.; Kaplar, R.; Marinella, M. Analysis and prediction of stability in commercial 1200 V 33 A 4 H–SiC MOSFETs. In Proceedings of the 2012 IEEE International Reliability Physics Symposium (IRPS), Anaheim, CA, USA, 15–19 April 2012; pp. 3D.3.1–3D.3.5. [Google Scholar]
- Schrock, J.; Ray, W.; Lawson, K.; Bilbao, A.; Bayne, S.B.; Holt, S.L.; Cheng, L.; Palmour, J.W.; Scozzie, C. High-mobility stable 1200-V 150-A 4H-SiC DMOSFET long-term reliability analysis under high current density transient conditions. IEEE Trans. Power Electron. 2015, 30, 2891–2895. [Google Scholar] [CrossRef]
- Nel, B.; Perinpanayagam, S. A brief overview of SiC MOSFET failure modes and design reliability. Procedia CIRP 2007, 59, 280–285. [Google Scholar] [CrossRef]
- Cannata, G.; DeCaro, S.; Panarello, S.; Scimone, T.; Testa, A.; Russo, S. Reliability Assessment of Avalanche Mode Operating Power MOSFETs through Coffin Manson Law based Mathematical Models. In Proceedings of the 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy, 18–20 June 2014; pp. 139–145. [Google Scholar]
- Kazior, T.; Chelakara, R.; Hoke, W.; Bettencourt, J.; Palacios, T.; Lee, T.S. High performance mixed signal and rf circuits enabled by thedirect monolithic heterogeneous integration of GaN HEMTs and SiCMOS on a silicon substrate. In Proceedings of the 2011 IEEE Compound Semiconductor Integrated Circuit Symposium, Waikoloa, HI, USA, 16–19 October 2011; pp. 139–145. [Google Scholar]
- Saito, W.; Nitta, T.; Kakiuchi, Y.; Saito, Y.; Tsuda, K.; Omura, I.; Yamaguchi, M. On-resistance modulation of high voltage GaN HEMT on sapphire substrate under high applied voltage. IEEE Electron. Device Lett. 2007, 28, 676–678. [Google Scholar] [CrossRef]
- Sheppard, S.; Doverspike, K.; Pribble, W.; Allen, S.; Palmour, J.; Kehias, L.; Jenkins, T. High-power microwave GaN/AlGaN HEMTs on semi-insulating. IEEE Electron. Device Lett. 1999, 20, 161–163. [Google Scholar] [CrossRef]
- Chu, K.; Chao, P.; Pizzella, M.; Actis, R.; Meharry, D.E.; Nichols, K.B.; Vaudo, R.P.; Xu, X.; Flynn, J.S.; Dion, J.; et al. 9.4 W/mm power density AlGaN-GaN HEMTs on free-standing GaN substrates. IEEE Electron Device Lett. 2004, 25, 596–598. [Google Scholar] [CrossRef]
- De Jaeger, B.; Hove, M.; Wellekens, D.; Kang, X.; Liang, H.; Mannaert, G.; Geens, K.; Decoutere, S. Au-free CMOS-compatible AlGaN/GaN HMET processing on 200 mm Si substrates. In Proceedings of the 2012 24th International Symposium on Power Semiconductor Devices and ICs, Bruges, Belgium, 3–7 June 2012; pp. 49–52. [Google Scholar]
- Trew, R.; Liu, Y.; Kuang, W.; Bilbro, G. The physics of reliability for high voltage AlGaN/GaN HFET’s. In Proceedings of the 2006 IEEE Compound Semiconductor Integrated Circuit Symposium, San Antonio, TX, USA, 12–15 November 2006; pp. 103–106. [Google Scholar]
- Marcon, D.; Meneghesso, G.; Wu, T.; Stoffels, S.; Meneghini, M.; Zanoni, E.; Decoutere, S. Reliability analysis of permanent degradations on AlGaN/GaN HEMTs. IEEE Trans. Electron. Devices 2013, 60, 3132–3141. [Google Scholar] [CrossRef]
- Dammann, M.; Pletschen, W.; Waltereit, P.; Bronner, W.; Quay, R.; Muller, S.; Mikulla, M.; Ambacher, O.; van der Wel, P.; Murad, S.; et al. Reliability and degradation mechanism of AlGaN/GaN HEMTs for next generation mobile communication systems. In Proceedings of the 2008 ROCS Workshop [Reliability of Compound Semiconductors Workshop], Monterey, CA, USA, 12 October 2008; pp. 25–44. [Google Scholar]
- Marcon, D.; Viaene, J.; Favia, P.; Bender, H.; Kang, X.; Lenci, S.; Stoffels, S.; Decoutere, S. Reliability of AlGaN/GaN HEMTs: Permanent leakage current increase and output current drop. Microelectron. Reliab. 2012, 52, 2188–2193. [Google Scholar] [CrossRef]
- Ohki, T.; Kikkawa, T.; Inoue, Y.; Kanamura, M.; Okamoto, N.; Makiyama, K.; Imanishi, K.; Shigematsu, H.; Joshin, K.; Hara, N. Reliability of GaN HEMTs: Current status and future technology. In Proceedings of the 2009 IEEE International Reliability Physics Symposium, Montreal, QC, Canada, 26–30 April 2009; pp. 61–70. [Google Scholar]
- Meneghesso, G.; Verzellesi, G.; Pierobon, R.; Rampazzo, F.; Chini, A.; Mishra, U.K.; Canali, C.; Zanoni, E. Surface-related drain current dispersion effects in AlGaN-GaN HEMTs. IEEE Trans. Electron. Devices 2004, 51, 1554–1561. [Google Scholar] [CrossRef]
- Trew, R.; Green, D.; Shealy, J. AlGaN/GaN HFET reliability. IEEE Microw. Mag. 2009, 10, 116–127. [Google Scholar] [CrossRef]
- Pavlidis, D.; Valizadeh, P.; Hsu, S. AlGaN/GaN high electron mobility transistor (HEMT) reliability. In Proceedings of the European Gallium Arsenide and Other Semiconductor Application Symposium (GAAS 2005), Paris, France, 3–4 October 2005; pp. 265–268. [Google Scholar]
- Zanoni, E.; Meneghini, M.; Chini, A.; Marcon, D.; Meneghesso, G. AlGaN/GaN-based HEMTs failure physics and reliability: Mechanisms affecting gate edge and Schottky junction. IEEE Trans. Electron. Devices 2013, 60, 3119–3131. [Google Scholar] [CrossRef]
- Piner, E.; Singhal, S.; Rajagopal, P.; Therrien, R.; Roberts, J.; Li, T.; Hanson, A.; Johnson, J.; Kizilyalli, I.; Linthicum, K. Device degradation phenomena in GaN HFET technology: Status mechanisms and opportunities. In Proceedings of the 2006 International Electron Devices Meeting, San Francisco, CA, USA, 11–13 December 2006; pp. 411–414. [Google Scholar]
- Khalil, S.; Hardikar, S.; Sack, S.; Persson, E.; Imam, M.; McDonald, T. HV GaN reliability and status. In Proceedings of the 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Blacksburg, VA, USA, 2–4 November 2015; pp. 21–23. [Google Scholar]
- Kikkawa, T.; Nagahara, M.; Okamoto, N.; Tateno, Y.; Yamaguchi, Y.; Hara, N.; Joshin, K.; Asbeck, P.M. Surface-charge-controlled AlGaN/GaN-power HFET without current collapse and Gmdispersion. In Proceedings of the International Electron Devices Meeting, Technical Digest (Cat. No.01CH37224), Washington, DC, USA, 2–5 December 2001; pp. 585–588. [Google Scholar]
- Joh, J.; Xia, L.; Alamo, J. Gate current degradation mechanisms of GaN high electron mobility transistors. In Proceedings of the 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 585–588. [Google Scholar]
- Ivoa, P.; Glowacki, A.; Bahat-Treidel, E.; Lossy, R.; Würfl, J.; Boit, C.; Tränkle, G. Comparative study of AlGaN/GaN HEMTs robustness versus buffer design variations by applying electroluminescence and electrical measurements. Microelectron. Reliab. 2011, 51, 217–223. [Google Scholar] [CrossRef]
- Joh, J.; Alamo, J. Mechanisms for electrical degradation of GaN high-electron mobility transistors. In Proceedings of the 2006 International Electron Devices Meeting, San Francisco, CA, USA, 11–13 December 2006; pp. 1–4. [Google Scholar]
- Kim, H.; Tilak, V.; Green, B.; Smart, J.A.; Schaff, W.J.; Schealy, J.R.; Eastman, L.F. Reliability evaluation of high power AlGaN/GaN HEMTs on SiC substrate. Phys. Status Solidi A 2001, 188, 203–206. [Google Scholar] [CrossRef]
- Meneghesso, G.; Meneghini, M.; Stocco, A.; Bisi, D.; de Santi, C.; Rossetto, I.; Zanandrea, A.; Rampazzo, F.; Zanoni, E. Degradation of AlGaN/GaN HEMT devices: Role of reverse-bias and hot electron stress. Microelectron. Eng. 2013, 109, 257–261. [Google Scholar] [CrossRef]
- Rodriguez, M.; Shammas, N.; Plumpton, A.; Newcombe, D.; Crees, D. Static and dynamic finite element modelling of thermal fatigue effects in insulated gate bipolar transistor modules. Microelectron. Reliabil. 2000, 40, 455–463. [Google Scholar] [CrossRef]
- Ciappa, M. Selected failure mechanisms of modern power modules. Microelectron. Reliab. 2002, 42, 653–667. [Google Scholar] [CrossRef]
- Chung, H.; Wang, H.; Blaabjerg, F.; Pecht, M. Reliability of Power Electronic Converter Systems; The Institution of Engineering and Technology: London, UK, 2015. [Google Scholar]
- Bai, J.; Zhang, Z.; Calata, J.; Lu, G.-Q. Low-temperature sintered nanoscale silver as a novel semiconductor devicemetallized substrate interconnect material. IEEE Trans. Compon. Packag. Technol. 2006, 29, 589–593. [Google Scholar] [CrossRef]
- Navarro, L.; Perpiñà, X.; Vellvehi, M.; Jorda, X. Silver nano-particles sintering process for the die-attach of power devices for high temperature applications. Ing. Mec. Technol. Desarollo 2012, 4, 97–102. [Google Scholar]
- Knoerr, M.; Schletz, A. Power semiconductor joining through sintering of silver nanoparticles: Evaluation of influence of parameters time, temperature and pressure on density, strength and reliability. In Proceedings of the 2010 6th International Conference on Integrated Power Electronics Systems, Nuremberg, Germany, 16–18 March 2010; pp. 1–6. [Google Scholar]
- Lu, G.; Calata, J.; Lei, G. Low-temperature and pressureless sintering technology for high-performance and high-temperature interconnection of semiconductor devices. In Proceedings of the 2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems, London, UK, 16–18 April 2007; pp. 609–613. [Google Scholar]
- Ning, P. Design and Development of High Density High Temperature Power Module with Cooling System. Ph.D. Thesis, Virginia Polytechnic University, Blacksburg, VA, USA, 2010. [Google Scholar]
- Palmer, M.; Johnson, W.; Autry, T.; Aguirre, R.; Lee, V.; Scofield, J.D. Silicon carbide power modules for high-temperature applications. IEEE Trans. Compon., Packag. Manuf. Technol. 2012, 2, 208–216. [Google Scholar] [CrossRef]
- Held, M.; Jacob, P.; Nicoletti, G.; Scacco, P.; Poech, M.-H. Fast power cycling test of IGBT modules in traction application. In Proceedings of the Second International Conference on Power Electronics and Drive Systems, Singapore, 26–29 May 1997; pp. 425–430. [Google Scholar]
- Ciappa, M.; Fichtner, W. Lifetime prediction of IGBT modules for traction applications. In Proceedings of the 2000 IEEE International Reliability Physics Symposium Proceedings, 38th Annual (Cat. No.00CH37059), San Jose, CA, USA, 10–13 April 2000; pp. 210–216. [Google Scholar]
- Johnson, R.; Palmer, M.; Wang, C.; Liu, Y. Packaging Materials and Approaches for High Temperature SiC Power Devices. Adv. Microelectron. 2004, 31, 8–11. [Google Scholar]
- Schueller, R. Copper wire bond failure mechanisms. In Proceedings of the SMTA International Conference 2012, Orlando, FL, USA, 14–18 October 2012. [Google Scholar]
- Muralidharan, G.; Tiegs, T. Composite Die-Attach Materials for High-Temperature Packaging Applications. In Proceedings of the International Conference on High Temperature Electronics 2006, Santa Fe, NM, USA, 15–18 May 2006; pp. 593–601. [Google Scholar]
- Knoll, H.; Weidenauer, W.; Ingram, P. Ceramic substrates with aluminum metallization for power application. In Proceedings of the 3rd Electronics System Integration Technology Conference (ESTC), Berlin, Germany, 13–16 September 2010; pp. 1–5. [Google Scholar]
- Savrun, E.; Wu, D. High-Temperature Dielectric Properties of Aluminum Nitride. In Proceedings of the 2006 IMAPS International Conference and Exhibition on High Temperature Electronics, Santa Fe, NM, USA, 15–18 May 2006. [Google Scholar]
- Dupont, L.; Lefebvre, S.; Khatir, Z.; Bontemps, S. Evaluation of substrate technologies under high temperature cycling. In Proceedings of the 4th International Conference on Integrated Power Systems, Naples, Italy, 7–9 June 2006; pp. 1–6. [Google Scholar]
- Lutz, J.; Herrmann, T.; Feller, M.; Bayerer, R.; Licht, T.; Amro, R. Power cycling induced failure mechanisms in the viewpoint of rough temperature environment. In Proceedings of the 5th International Conference on Integrated Power Electronics Systems, Nuremberg, Germany, 11–13 March 2008; pp. 1–4. [Google Scholar]
- Khazaka, R.; Mendizabal, L.; Henry, D.; Hanna, R. Survey of high-temperature reliability of power electronics packaging components. IEEE Trans. Power Electron. 2015, 30, 2456–2464. [Google Scholar] [CrossRef]
- Locatelli, M.; Khazaka, R.; Diaham, S.; Pham, C.-D.; Bechara, M.; Dinculescu, S.; Bidan, P. Evaluation of encapsulation materials for high temperature power device packaging. IEEE Trans. Power Electron. 2014, 29, 2281–2288. [Google Scholar] [CrossRef]
- Kumar, R.; Molin, D.; Young, L.; Ke, F. New high temperature polymer thin coating for power electronics. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 22–26 February 2004; pp. 1247–1249. [Google Scholar]
- Khazaka, R.; Diaham, S.; Locatelli, M.; Diaham, S.; Bidan, S. Thin insulation polyimide films endurance for high temperature power module applications. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 811–817. [Google Scholar] [CrossRef]
- Scofield, J.; Merrett, N.; Richmond, J.; Agarwal, A.K.; Leslie, S. Electrical and thermal performance of 1200 V 100 A 200 °C 4H-SiC MOSFET-based power switch modules. Mater. Sci. Forum 2010, 645–648, 1119–1122. [Google Scholar] [CrossRef]
- Xu, Y.; Burgos, R.; Boroyevich, D. Insulation design and evaluation via partial discharge (PD) test for power electronics application. In Proceedings of the Electric Ship Technologies Symposium, Arlington, VA, USA, 14–17 August 2017; pp. 394–400. [Google Scholar]
- Wang, Y.; Ding, Y.; Yuan, Z.; Peng, H.; Wu, J.; Yin, Y.; Han, T.; Luo, F. Space-Charge Accumulation and Its Impact on High-Voltage Power Module Partial Discharge Under DC and PWM Waves: Testing and Modeling. IEEE Trans. Power Electron. 2021, 36, 11097–11108. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Yin, Y. Space Charge and Trap in High Voltage Power Module Packaging Insulation: Simultaneous Measurement and Two-Dimensional Simulation. IEEE Trans. Dielectr. Elect. Insul. 2022. early access. [Google Scholar] [CrossRef]
- Do, T.; Lesaint, O.; Aug, J. Streamers and partial discharge mechanisms in silicone gel under impulse and AC voltages. IEEE Trans. Dielectr. Elect. Insul. 2008, 15, 1526–1534. [Google Scholar] [CrossRef]
- Wang, N.; Cotton, I.; Robertson, J.; Follmann, S.; Evans, K.; Newcombe, D. Partial Discharge Control in a Power Electronic Module Using High Permittivity Non-linear Dielectrics. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1319–1326. [Google Scholar] [CrossRef]
- McPherson, J. Time dependent dielectric breakdown physics—Models revisited. Microelectron. Reliab. 2012, 52, 1753–1760. [Google Scholar] [CrossRef]
- Lee, W.; Nguyen, L.; Selvaduray, G. Solder joint fatigue models: Review and applicability to chip scale packages. Microelectron. Reliab. 2000, 40, 231–244. [Google Scholar] [CrossRef]
- McPherson, J.; Mogul, H. Underlying physics of the thermochemical E model in describing low-field time-dependent breakdown in SiO2 thin films. J. Appl. Phys. 1998, 84, 1513–1523. [Google Scholar] [CrossRef]
- Chen, I.; Holland, S.; Hu, C. A quantitative physical model for time-dependent breakdown in SiO2. In Proceedings of the 23rd International Reliability Physics Symposium, Orlando, FL, USA, 25–29 March 1985; pp. 24–28. [Google Scholar]
- Schuegraf, K.; Hu, C. Hole injection oxide breakdown model for very low voltage lifetime extrapolation. In Proceedings of the 31st Annual Proceedings Reliability Physics 1993, Atlanta, GA, USA, 23–25 March 1993; pp. 7–11. [Google Scholar]
- Allers, K. Prediction of dielectric reliability from I–V characteristics: Poole–Frenkel conduction mechanism leading to √E model for silicon nitride MIM capacitor. Microelectron. Reliab. 2004, 44, 411–423. [Google Scholar] [CrossRef]
- Pang, J.; Tan, T.; Sitaraman, S. Thermo-mechanical analysis of solder joint fatigue and creep in a flip chip on board package subjected to temperature cycling loading. In Proceedings of the Electronic Components and Technology Conference, Seattle, WA, USA, 25–28 May 1998; pp. 878–883. [Google Scholar]
- Akay, H.; Zhang, H.; Paydar, N. Experimental correlations of an energy-based fatigue life prediction method for solder joint. Adv. Electron. Packag. 1997, 19, 1567–1574. [Google Scholar]
- Liang, J.; Gollhardt, N.; Lee, P.S.; Heinrich, S.; Schroeder, S. An integrated fatigue life prediction methodology for optimum design and reliability assessment of solder interconnections. In Proceedings of the Pacific Rim/ASME International Intersociety Electronic and Photonic Packaging Conference, Kohala Coast, HI, USA, 15–19 June 1997; pp. 1583–1592. [Google Scholar]
- Wu, S.; Chin, J.; Grigorich, T. Reliability analysis for fine pitch BGA package. In Proceedings of the 48th IEEE Electronic components and technology conference, Seattle, WA, USA, 25–28 May 1998; pp. 737–741. [Google Scholar]
- Cui, H. Accelerated temperature cycle test and Coffin–Manson model for electronic packaging. In Proceedings of the Annual Reliability and Maintainability Symposium, Alexandria, VA, USA, 24–25 January 2005; pp. 556–560. [Google Scholar]
- Oh, H.; Han, B.; McCluskey, P.; Han, C.; Youn, B.D. Physics-of-failure condition monitoring and prognostics of insulated gate bipolar transistor modules: A review. IEEE Trans. Power Electron. 2015, 30, 2413–2426. [Google Scholar] [CrossRef]
- Rencher, A. Methods of Multivariate Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency max-relevance and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef]
- Mahalanobis, P. On the Generalized Distance in Statistics; National Institute of Science of India: Odisha, India, 1936. [Google Scholar]
- Maesschalck, R.; Jouan-Rimbaud, D.; Massart, D. The mahalanobis distance. Chemom. Intell. Lab. Syst. 2000, 50, 1–18. [Google Scholar] [CrossRef]
- Kumar, S.; Chow, T.; Pecht, M. Approach to fault identification for electronic products using Mahalanobis distance. IEEE Trans. Instrum. Meas. 2010, 59, 2055–2064. [Google Scholar] [CrossRef]
- Nie, L.; Azarian, M.; Keimasi, M.; Pecht, M. Prognostics of ceramic capacitor temperature-humidity-bias reliability using Mahalanobis distance analysis. Circuit World 2007, 33, 21–28. [Google Scholar] [CrossRef]
- Keller, J.; Gray, M.; Givens, J. A fuzzy K-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 1985, SMC-15, 580–585. [Google Scholar] [CrossRef]
- Hejazi, M.; Gharehpetian, G.; Moradi, G.; Alehosseini, H.; Mohammadi, M. Online monitoring of transformer winding axial displacement and its extent using scattering parameters and k-nearest neighbour method. IET Gener. Transm. Distrib. 2011, 5, 824–832. [Google Scholar] [CrossRef]
- Bose, B. Neural network applications in power electronics and motor drives: An introduction and perspective. IEEE Trans. Ind. Electron. 2007, 54, 14–33. [Google Scholar] [CrossRef]
- Bose, B. Experts system fuzzy logic and neural network applications in power electronics and motion control. Proc. IEEE 1994, 82, 1303–1323. [Google Scholar] [CrossRef]
- Bertolami, R.; Bunke, H.; Fernandez, S.; Bertolami, R.; Bunke, H.; Schmidhuber, J. A Novel Connectionist System for Improved Unconstrained Handwriting Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 1–14. [Google Scholar]
- Sak, H.; Senior, A.; Beaufays, F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In Proceedings of the Fifteenth Annual Conference of the International Speech Communication Association, Singapore, 14–18 September 2014; pp. 338–342. [Google Scholar]
- Li, X.; Wu, X. Constructing long short-term memory based deep recurrent neural networks for large vocabulary speech recognition. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, 19–24 April 2015; pp. 4520–4524. [Google Scholar]
- You, G.; Park, S.; Oh, D. Diagnosis of electric vehicle batteries using recurrent neural networks. IEEE Trans. Ind. Electron. 2017, 64, 4885–4893. [Google Scholar] [CrossRef]
- Ma, H.; Lee, Y. Fault diagnosis of power electronic circuits based on neural network and waveform analysis. In Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems, Hong Kong, China, 27–29 July 1999; pp. 234–237. [Google Scholar]
- Wang, Y.; Wu, J.; Han, T.; Haran, K.; Yin, Y. Insulation condition forewarning of form-wound winding for electric aircraft propulsion based on partial discharge and deep learning neural network. High Volt. 2020, 6, 302–313. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ding, Y.; Yin, Y. Reliability of Wide Band Gap Power Electronic Semiconductor and Packaging: A Review. Energies 2022, 15, 6670. https://doi.org/10.3390/en15186670
Wang Y, Ding Y, Yin Y. Reliability of Wide Band Gap Power Electronic Semiconductor and Packaging: A Review. Energies. 2022; 15(18):6670. https://doi.org/10.3390/en15186670
Chicago/Turabian StyleWang, Yalin, Yi Ding, and Yi Yin. 2022. "Reliability of Wide Band Gap Power Electronic Semiconductor and Packaging: A Review" Energies 15, no. 18: 6670. https://doi.org/10.3390/en15186670
APA StyleWang, Y., Ding, Y., & Yin, Y. (2022). Reliability of Wide Band Gap Power Electronic Semiconductor and Packaging: A Review. Energies, 15(18), 6670. https://doi.org/10.3390/en15186670