Hydrothermal Carbonization of the Wet Fraction from Mixed Municipal Solid Waste: A Fuel and Structural Analysis of Hydrochars
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Thermogravimetric Analysis
3.2. Fourier-Transform Infrared Spectroscopy
3.3. Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilk, M.; Śliz, M.; Gajek, M. The Effects of Hydrothermal Carbonization Operating Parameters on High-Value Hydrochar Derived from Beet Pulp. Renew. Energy 2021, 177, 216–228. [Google Scholar] [CrossRef]
- Saqib, N.U.; Sharma, H.B.; Baroutian, S.; Dubey, B.; Sarmah, A.K. Valorisation of Food Waste via Hydrothermal Carbonisation and Techno-Economic Feasibility Assessment. Sci. Total Environ. 2019, 690, 261–276. [Google Scholar] [CrossRef]
- Gupta, D.; Mahajani, S.M.; Garg, A. Effect of Hydrothermal Carbonization as Pretreatment on Energy Recovery from Food and Paper Wastes. Bioresour. Technol. 2019, 285, 121329. [Google Scholar] [CrossRef]
- Wilk, M.; Śliz, M.; Lubieniecki, B. Hydrothermal Co-Carbonization of Sewage Sludge and Fuel Additives: Combustion Performance of Hydrochar. Renew. Energy 2021, 178, 1046–1056. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, X.; Peng, X.; Yu, Z. Hydrothermal Carbonization of Typical Components of Municipal Solid Waste for Deriving Hydrochars and Their Combustion Behavior. Bioresour. Technol. 2017, 243, 539–547. [Google Scholar] [CrossRef]
- Triyono, B.; Prawisudha, P.; Aziz, M.; Mardiyati; Pasek, A.D.; Yoshikawa, K. Utilization of Mixed Organic-Plastic Municipal Solid Waste as Renewable Solid Fuel Employing Wet Torrefaction. Waste Manag. 2019, 95, 1–9. [Google Scholar] [CrossRef]
- Czerwińska, K.; Śliz, M.; Wilk, M. Hydrothermal Carbonization Process: Fundamentals, Main Parameter Characteristics and Possible Applications Including an Effective Method of SARS-CoV-2 Mitigation in Sewage Sludge. A Review. Renew. Sustain. Energy Rev. 2022, 154, 111873. [Google Scholar] [CrossRef]
- Merzari, F.; Goldfarb, J.; Andreottola, G.; Mimmo, T.; Volpe, M.; Fiori, L. Hydrothermal Carbonization as a Strategy for Sewage Sludge Management: Influence of Process Withdrawal Point on Hydrochar Properties. Energies 2020, 13, 2890. [Google Scholar] [CrossRef]
- Wilk, M. A Novel Method of Sewage Sludge Pre-Treatment—HTC. E3S Web Conf. 2016, 10, 00103. [Google Scholar] [CrossRef]
- Jakubus, M.; Stejskal, B. Municipal Solid Waste Management Systems in Poland and the Czech Republic. A Comparative Study. Environ. Prot. Eng. 2020, 46, 61–78. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, X.; Peng, X.; Yu, Z.; Fang, S.; Lin, Y.; Fan, Y. Combustion, Pyrolysis and Char CO2-Gasification Characteristics of Hydrothermal Carbonization Solid Fuel from Municipal Solid Wastes. Fuel 2016, 181, 905–915. [Google Scholar] [CrossRef]
- Magdziarz, A.; Mlonka-Mędrala, A.; Sieradzka, M.; Aragon-Briceño, C.; Pożarlik, A.; Bramer, E.A.; Brem, G.; Niedzwiecki, Ł.; Pawlak-Kruczek, H. Multiphase Analysis of Hydrochars Obtained by Anaerobic Digestion of Municipal Solid Waste Organic Fraction. Renew. Energy 2021, 175, 108–118. [Google Scholar] [CrossRef]
- Heidari, M.; Dutta, A.; Acharya, B.; Mahmud, S. A Review of the Current Knowledge and Challenges of Hydrothermal Carbonization for Biomass Conversion. J. Energy Inst. 2019, 92, 1779–1799. [Google Scholar] [CrossRef]
- Lühmann, T.; Wirth, B. Sewage Sludge Valorization via Hydrothermal Carbonization: Optimizing Dewaterability and Phosphorus Release. Energies 2020, 13, 4417. [Google Scholar] [CrossRef]
- Santos, M.M.; Diez, M.A.; Suárez, M.; Centeno, T.A. Innovative Particleboard Material from the Organic Fraction of Municipal Solid Waste. J. Build. Eng. 2021, 44, 103375. [Google Scholar] [CrossRef]
- Ischia, G.; Fiori, L.; Gao, L.; Goldfarb, J.L. Valorizing Municipal Solid Waste via Integrating Hydrothermal Carbonization and Downstream Extraction for Biofuel Production. J. Clean. Prod. 2021, 289, 125781. [Google Scholar] [CrossRef]
- Aragon-Briceño, C.; Pożarlik, A.; Bramer, E.; Brem, G.; Wang, S.; Wen, Y.; Yang, W.; Pawlak-Kruczek, H.; Niedźwiecki, Ł.; Urbanowska, A.; et al. Integration of Hydrothermal Carbonization Treatment for Water and Energy Recovery from Organic Fraction of Municipal Solid Waste Digestate. Renew. Energy 2022, 184, 577–591. [Google Scholar] [CrossRef]
- Espro, C.; Satira, A.; Mauriello, F.; Anajafi, Z.; Moulaee, K.; Iannazzo, D.; Neri, G. Orange Peels-Derived Hydrochar for Chemical Sensing Applications. Sens. Actuators B Chem. 2021, 341, 130016. [Google Scholar] [CrossRef]
- Roman, F.F.; Diaz De Tuesta, J.L.; Praça, P.; Silva, A.M.T.; Faria, J.L.; Gomes, H.T. Hydrochars from Compost Derived from Municipal Solid Waste: Production Process Optimization and Catalytic Applications. J. Environ. Chem. Eng. 2021, 9, 104888. [Google Scholar] [CrossRef]
- Lin, Y.; Ge, Y.; Xiao, H.; He, Q.; Wang, W.; Chen, B. Investigation of Hydrothermal Co-Carbonization of Waste Textile with Waste Wood, Waste Paper and Waste Food from Typical Municipal Solid Wastes. Energy 2020, 210, 118606. [Google Scholar] [CrossRef]
- Venna, S.; Sharma, H.B.; Reddy, P.H.P.; Chowdhury, S.; Dubey, B.K. Landfill Leachate as an Alternative Moisture Source for Hydrothermal Carbonization of Municipal Solid Wastes to Solid Biofuels. Bioresour. Technol. 2021, 320, 124410. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhai, Y.; Zhu, Y.; Gan, X.; Zheng, L.; Peng, C.; Wang, B.; Li, C.; Zeng, G. Evaluation of the Clean Characteristics and Combustion Behavior of Hydrochar Derived from Food Waste towards Solid Biofuel Production. Bioresour. Technol. 2018, 266, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Akarsu, K.; Duman, G.; Yilmazer, A.; Keskin, T.; Azbar, N.; Yanik, J. Sustainable Valorization of Food Wastes into Solid Fuel by Hydrothermal Carbonization. Bioresour. Technol. 2019, 292, 121959. [Google Scholar] [CrossRef] [PubMed]
- Saqib, N.U.; Baroutian, S.; Sarmah, A.K. Physicochemical, Structural and Combustion Characterization of Food Waste Hydrochar Obtained by Hydrothermal Carbonization. Bioresour. Technol. 2018, 266, 357–363. [Google Scholar] [CrossRef]
- Nguyen, D.; Zhao, W.; Mäkelä, M.; Alwahabi, Z.T.; Kwong, C.W. Effect of Hydrothermal Carbonisation Temperature on the Ignition Properties of Grape Marc Hydrochar Fuels. Fuel 2022, 313, 122668. [Google Scholar] [CrossRef]
- Sharma, H.B.; Sarmah, A.K.; Dubey, B. Hydrothermal Carbonization of Renewable Waste Biomass for Solid Biofuel Production: A Discussion on Process Mechanism, the Influence of Process Parameters, Environmental Performance and Fuel Properties of Hydrochar. Renew. Sustain. Energy Rev. 2020, 123, 109761. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Chong, K.; Bridgwater, A.V. A Techno-Economic Analysis of Energy Recovery from Organic Fraction of Municipal Solid Waste (MSW) by an Integrated Intermediate Pyrolysis and Combined Heat and Power (CHP) Plant. Energy Convers. Manag. 2018, 174, 406–416. [Google Scholar] [CrossRef]
- Zhou, H.; Long, Y.; Meng, A.; Li, Q.; Zhang, Y. Classification of Municipal Solid Waste Components for Thermal Conversion in Waste-to-Energy Research. Fuel 2015, 145, 151–157. [Google Scholar] [CrossRef]
- Wang, T.; Zhai, Y.; Zhu, Y.; Li, C.; Zeng, G. A Review of the Hydrothermal Carbonization of Biomass Waste for Hydrochar Formation: Process Conditions, Fundamentals, and Physicochemical Properties. Renew. Sustain. Energy Rev. 2018, 90, 223–247. [Google Scholar] [CrossRef]
- Basso, D.; Patuzzi, F.; Castello, D.; Baratieri, M.; Rada, E.C.; Weiss-Hortala, E.; Fiori, L. Agro-Industrial Waste to Solid Biofuel through Hydrothermal Carbonization. Waste Manag. 2016, 47, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Berge, N.D.; Ro, K.S.; Mao, J.; Flora, J.R.V.; Chappell, M.A.; Bae, S. Hydrothermal Carbonization of Municipal Waste Streams. Environ. Sci. Technol. 2011, 45, 5696–5703. [Google Scholar] [CrossRef] [PubMed]
- Śliz, M.; Tuci, F.; Czerwińska, K.; Fabrizi, S.; Lombardi, L.; Wilk, M. Hydrothermal Carbonization of the Wet Fraction from Mixed Municipal Solid Waste: Hydrochar Characteristics and Energy Balance. Waste Manag. 2022, 151, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Parshetti, G.K.; Kent Hoekman, S.; Balasubramanian, R. Chemical, Structural and Combustion Characteristics of Carbonaceous Products Obtained by Hydrothermal Carbonization of Palm Empty Fruit Bunches. Bioresour. Technol. 2013, 135, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.J.; Chen, W.H. Investigation on the Ignition and Burnout Temperatures of Bamboo and Sugarcane Bagasse by Thermogravimetric Analysis. Appl. Energy 2015, 160, 49–57. [Google Scholar] [CrossRef]
- Sieradzka, M.; Gao, N.; Quan, C.; Mlonka-Mędrala, A.; Magdziarz, A. Biomass Thermochemical Conversion via Pyrolysis with Integrated CO2 Capture. Energies 2020, 13, 1050. [Google Scholar] [CrossRef]
- Mureddu, M.; Dessì, F.; Orsini, A.; Ferrara, F.; Pettinau, A. Air- and Oxygen-Blown Characterization of Coal and Biomass by Thermogravimetric Analysis. Fuel 2018, 212, 626–637. [Google Scholar] [CrossRef]
- Wang, L.; Chang, Y.; Zhang, X.; Yang, F.; Li, Y.; Yang, X.; Dong, S. Hydrothermal Co-Carbonization of Sewage Sludge and High Concentration Phenolic Wastewater for Production of Solid Biofuel with Increased Calorific Value. J. Clean. Prod. 2020, 255, 120317. [Google Scholar] [CrossRef]
- Dolgen, D.; Sarptas, H.; Alpaslan, N.; Kucukgul, O. Energy Potential of Municipal Solid Wastes. Energy Sources 2005, 27, 1483–1492. [Google Scholar] [CrossRef]
- Komilis, D.; Kissas, K.; Symeonidis, A. Effect of Organic Matter and Moisture on the Calorific Value of Solid Wastes: An Update of the Tanner Diagram. Waste Manag. 2014, 34, 249–255. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Baloch, H.A.; Griffin, G.J.; Mubarak, N.M.; Bhutto, A.W.; Abro, R.; Mazari, S.A.; Ali, B.S. An Overview of Effect of Process Parameters on Hydrothermal Carbonization of Biomass. Renew. Sustain. Energy Rev. 2017, 73, 1289–1299. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Deng, H.; Jin, M.; Xiao, H.; Yao, H. Deep Dewatering of Sewage Sludge and Simultaneous Preparation of Derived Fuel via Carbonaceous Skeleton-Aided Thermal Hydrolysis. Chem. Eng. J. 2020, 402, 126255. [Google Scholar] [CrossRef]
- Zheng, C.; Ma, X.; Yao, Z.; Chen, X. The Properties and Combustion Behaviors of Hydrochars Derived from Co-Hydrothermal Carbonization of Sewage Sludge and Food Waste. Bioresour. Technol. 2019, 285, 121347. [Google Scholar] [CrossRef] [PubMed]
- Pawlak-Kruczek, H.; Niedzwiecki, L.; Sieradzka, M.; Mlonka-Mędrala, A.; Baranowski, M.; Serafin-Tkaczuk, M.; Magdziarz, A. Hydrothermal Carbonization of Agricultural and Municipal Solid Waste Digestates—Structure and Energetic Properties of the Solid Products. Fuel 2020, 275, 117837. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, X.; Ning, X.; Yu, Z. TGA-FTIR Analysis of Co-Combustion Characteristics of Paper Sludge and Oil-Palm Solid Wastes. Energy Convers. Manag. 2015, 89, 727–734. [Google Scholar] [CrossRef]
- Arellano, O.; Flores, M.; Guerra, J.; Hidalgo, A.; Rojas, D.; Strubinger, A. Hydrothermal Carbonization of Corncob and Characterization of the Obtained Hydrochar. Chem. Eng. Trans. 2016, 50, 235–240. [Google Scholar] [CrossRef]
- He, C.; Zhao, J.; Yang, Y.; Wang, J.Y. Multiscale Characteristics Dynamics of Hydrochar from Hydrothermal Conversion of Sewage Sludge under Sub- and near-Critical Water. Bioresour. Technol. 2016, 211, 486–493. [Google Scholar] [CrossRef]
- Lang, Q.; Guo, Y.; Zheng, Q.; Liu, Z.; Gai, C. Co-Hydrothermal Carbonization of Lignocellulosic Biomass and Swine Manure: Hydrochar Properties and Heavy Metal Transformation Behavior. Bioresour. Technol. 2018, 266, 242–248. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Jaya Kumar, N.S.; Sahu, J.N.; Ganesan, P.; Mubarak, N.M.; Mazari, S.A. Synthesis and Characterization of Hydrochars Produced by Hydrothermal Carbonization of Oil Palm Shell. Can. J. Chem. Eng. 2015, 93, 1916–1921. [Google Scholar] [CrossRef]
- PetroviĿ, J.; PerišiĿ, N.; MaksimoviĿ, J.D.; MaksimoviĿ, V.; KragoviĿ, M.; StojanoviĿ, M.; LauševiĿ, M.; MihajloviĿ, M. Hydrothermal Conversion of Grape Pomace: Detailed Characterization of Obtained Hydrochar and Liquid Phase. J. Anal. Appl. Pyrolysis 2016, 118, 267–277. [Google Scholar] [CrossRef]
- Ghosh, D.; Mitra, S.K. High Temperature Corrosion Problem of Boiler Components in Presence of Sulfur and Alkali Based Fuels. High Temp. Mater. Processes 2011, 30, 81–85. [Google Scholar] [CrossRef]
- Kou, X.; Jin, J.; Wang, Y.; Li, Y.; Hou, F. Understanding the Effect of Calcium Containing Compounds on Ash Deposition during Boiler Operation: Experiment Study and Dynamics Calculation. Environ. Sci. Pollut. Res. 2022, 1, 1–14. [Google Scholar] [CrossRef] [PubMed]
C,% | H,% | N,% | S,% | O,% | A,% | VM,% | FC,% | HHV, MJ/kg | |
---|---|---|---|---|---|---|---|---|---|
USF | 36.0 | 5.2 | 1.3 | 0.2 | 18.1 | 39.2 | 51.7 | 9.2 | 14.6 |
200_1 h | 32.6 | 4.2 | 0.8 | 0.5 | 13.9 | 48.0 | 45.9 | 6.1 | 13.5 |
200_4 h | 33.7 | 4.2 | 0.9 | 0.5 | 12.6 | 48.1 | 45.0 | 6.9 | 14.2 |
200_8 h | 32.3 | 4.0 | 1.0 | 0.5 | 10.2 | 52.0 | 42.7 | 5.3 | 14.4 |
220_1 h | 38.3 | 4.7 | 0.9 | 0.1 | 15.3 | 40.7 | 48.4 | 11.0 | 16.4 |
220_4 h | 38.2 | 4.5 | 1.1 | 0.2 | 10.3 | 45.7 | 42.0 | 12.3 | 16.7 |
220_8 h | 40.5 | 4.8 | 1.3 | 0.3 | 7.0 | 46.1 | 42.9 | 11.0 | 18.5 |
Ti °C | ti min | Tb °C | tb min | T1 °C | t1 min | DTG1 %/min | t0.5 min | DTGmean %/min | Di %·min−3 | Db %·min−4 | S %·min−2·°C−3 | Hf °C | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
USF | 247 | 21.77 | 489 | 45.47 | 289 | 25.85 | 5.973 | 23.08 | 1.097 | 0.0106 | 22.0 × 10−5 | 22.0 × 10−8 | 880.3 |
200_1 h | 288 | 26.32 | 443 | 41.80 | 327 | 30.10 | 5.934 | 27.80 | 1.007 | 0.0083 | 18.0 × 10−5 | 16.7 × 10−8 | 1069.4 |
200_4 h | 276 | 25.17 | 443 | 41.85 | 329 | 30.33 | 3.822 | 26.85 | 0.782 | 0.0053 | 10.9 × 10−5 | 8.7 × 10−8 | 1146.2 |
200_8 h | 273 | 24.85 | 442 | 41.72 | 330 | 30.45 | 2.697 | 26.32 | 0.945 | 0.0048 | 10.6 × 10−5 | 9.7 × 10−8 | 1057.0 |
220_1 h | 282 | 25.12 | 464 | 42.98 | 326 | 29.38 | 6.099 | 26.78 | 0.765 | 0.0075 | 17.0 × 10−5 | 12.4 × 10−8 | 1174.9 |
220_4 h | 265 | 23.45 | 463 | 42.87 | 325 | 29.28 | 3.624 | 26.58 | 0.684 | 0.0050 | 11.2 × 10−5 | 7.8 × 10−8 | 1207.3 |
220_8 h | 256 | 22.60 | 477 | 44.32 | 332 | 29.87 | 3.207 | 22.80 | 0.565 | 0.0036 | 8.1 × 10−5 | 4.6 × 10−8 | 1267.5 |
Wavenumber (cm−1) | Vibration | Functional Group or Component |
---|---|---|
3600–3100 | O-H stretch | hydroxyl or carboxyl group |
2930–2860 | C-H stretch | aliphatic methylene group |
1740 | C=O | alkali esters in hemicellulose |
~1515 | C=O | lignin |
~1455 | C-H | lignin |
1102 | C-O | cellulose |
1050 | C-O stretch | alcohol |
1030 | C-O stretch | aliphatic ether |
C K | N K | O K | F K | Cu L | Na K | Mg K | Al K | Si K | P K | S K | Cl K | K K | Ca K | Ti K | Fe K | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
USF | 66.31 | 1.24 | 28.87 | 0.15 | 0.19 | 0.33 | 0.17 | 0.33 | 0.74 | 0.00 | 0.17 | 0.20 | 0.09 | 0.86 | 0.08 | 0.27 |
220_1 h | 66.95 | 1.45 | 28.29 | 0.08 | 0.08 | 0.28 | 0.21 | 0.38 | 1.21 | 0.06 | 0.16 | 0.05 | 0.05 | 0.52 | 0.14 | 0.10 |
220_4 h | 75.21 | 0.99 | 20.94 | 0.08 | 0.13 | 0.19 | 0.16 | 0.32 | 1.09 | 0.02 | 0.17 | 0.03 | 0.00 | 0.39 | 0.08 | 0.20 |
220_8 h | 75.37 | 1.20 | 19.83 | 0.08 | 0.20 | 0.16 | 0.16 | 0.40 | 1.21 | 0.06 | 0.27 | 0.08 | 0.10 | 0.47 | 0.16 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śliz, M.; Czerwińska, K.; Magdziarz, A.; Lombardi, L.; Wilk, M. Hydrothermal Carbonization of the Wet Fraction from Mixed Municipal Solid Waste: A Fuel and Structural Analysis of Hydrochars. Energies 2022, 15, 6708. https://doi.org/10.3390/en15186708
Śliz M, Czerwińska K, Magdziarz A, Lombardi L, Wilk M. Hydrothermal Carbonization of the Wet Fraction from Mixed Municipal Solid Waste: A Fuel and Structural Analysis of Hydrochars. Energies. 2022; 15(18):6708. https://doi.org/10.3390/en15186708
Chicago/Turabian StyleŚliz, Maciej, Klaudia Czerwińska, Aneta Magdziarz, Lidia Lombardi, and Małgorzata Wilk. 2022. "Hydrothermal Carbonization of the Wet Fraction from Mixed Municipal Solid Waste: A Fuel and Structural Analysis of Hydrochars" Energies 15, no. 18: 6708. https://doi.org/10.3390/en15186708
APA StyleŚliz, M., Czerwińska, K., Magdziarz, A., Lombardi, L., & Wilk, M. (2022). Hydrothermal Carbonization of the Wet Fraction from Mixed Municipal Solid Waste: A Fuel and Structural Analysis of Hydrochars. Energies, 15(18), 6708. https://doi.org/10.3390/en15186708