Power-Hardware-in-the-Loop for Stator Windings Asymmetry Fault Analysis in Direct-Drive PMSG-Based Wind Turbines †
Abstract
:1. Introduction
2. Modeling of a Direct-Drive PMSG-Based WT
2.1. Turbine Blades
2.2. Wind Generator
2.3. Three-Phase Diode Rectifier
2.4. MPPT Technique
3. Experimental Results
3.1. Healthy Condition
3.2. Stator Windings Asymmetry Fault Condition
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FPGA | Field-Programmable Gate Arrays |
DRTS | Digital Real-Time Simulation |
DoS | Digital offline Simulation |
RTDS | Real-Time Digital Simulator |
PMSG | Permanent Magnet Synchronous Generator |
WT | Wind Turbine |
TSR | Tip–Speed Ratio |
MPPT | Maximum Power Point Tracking |
P-H-i-L | Power-Hardware-in-the-Loop |
H-i-L | Hardware-in-the-Loop |
P-i-L | Processor-in-the-Loop |
S-i-L | Software-in-the-Loop |
WECS | Wind Energy Conversion System |
Air density (kg/m) | |
Blade radius (m) | |
Wind speed (m/s) | |
TSR | |
Turbine rotor speed (rad/s) | |
, , | PMSG phase abc stator voltages (V) |
, , | PMSG abc stator currents (A) |
, , | PMSG abc stator flux linkages (Wb) |
, , | Stator electromotive forces (V) |
, , | Stator windings resistances () |
Amplitude of negative sequence currents (A) | |
Current at the input of one-level boost converter (A) | |
Reference current at the input of one-level boost converter (A) | |
Phase of negative sequence currents (rad) | |
Flux linkage peak value of permanent magnets (Wb) | |
Turbine rotor position angle (rad) | |
Number of pole pairs in PMSG | |
Magnetization inductance (H) | |
Leakage inductance (H) | |
Total moment of inertia (Kg.m) | |
Viscous friction (N.m.s) |
References
- Qiao, W.; Lu, D. A Survey on Wind Turbine Condition Monitoring and Fault Diagnosis—Part I: Components and Subsystems. IEEE Trans. Ind. Electron. 2015, 62, 6536–6545. [Google Scholar] [CrossRef]
- Yaramasu, V.; Wu, B. Basics of Wind Energy Conversion Systems (WECS). In Model Predictive Control of Wind Energy Conversion Systems; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 1–60. [Google Scholar] [CrossRef]
- Gao, Z.; Sheng, S. Real-time Monitoring, Prognosis, and Resilient Control for Wind Turbine Systems. Renew. Energy 2018, 116, 1–4. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, X. An Overview on Fault Diagnosis, Prognosis and Resilient Control for Wind Turbine Systems. Processes 2021, 9, 300. [Google Scholar] [CrossRef]
- Kia, S.H.; Henao, H.; Capolino, G.A.; Marzebali, M.H. A Reduced-Scale Test Bench Dedicated to Electrical and Mechanical Faults Studies in Wind Turbine Generators. In Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon, France, 20–22 February 2018; pp. 2021–2027. [Google Scholar] [CrossRef]
- Lentijo, S.; D’Arco, S.; Monti, A. Comparing the Dynamic Performances of Power Hardware-in-the-Loop Interfaces. IEEE Trans. Ind. Electron. 2010, 57, 1195–1207. [Google Scholar] [CrossRef]
- Yousefzadeh, M.; Kia, S.H.; Arab Khaburi, D. Emulation of Direct-Drive Wind Energy Conversion Systems Based on Permanent Magnet Synchronous Generators. In Proceedings of the 2021 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), Tabriz, Iran, 2–4 February 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Kuffel, R.; Giesbrecht, J.; Maguire, T.; Wierckx, R.; McLaren, P. RTDS-a Fully Digital Power System Simulator Operating in Real Time. In Proceedings of the IEEE WESCANEX 95. Communications, Power, and Computing. Conference Proceedings, Winnipeg, MB, Canada, 15–16 May 1995; Volume 2, pp. 300–305. [Google Scholar] [CrossRef]
- Abourida, S.; Dufour, C.; Belanger, J.; Murere, G.; Lechevin, N.; Yu, B. Real-Time PC-based Simulator of Electric Systems and Drives. In Proceedings of the Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.02CH37335), Dallas, TX, USA, 10–14 March 2002; Volume 1, pp. 433–438. [Google Scholar] [CrossRef]
- Mirz, M.; Dinkelbach, J.; Monti, A. DPsim—Advancements in Power Electronics Modelling Using Shifted Frequency Analysis and in Real-Time Simulation Capability by Parallelization. Energies 2020, 13, 3879. [Google Scholar] [CrossRef]
- Estrada, L.; Vazquez, N.; Vaquero, J.; de Castro, A.; Arau, J. Real-Time Hardware in the Loop Simulation Methodology for Power Converters Using LabVIEW FPGA. Energies 2020, 13, 373. [Google Scholar] [CrossRef]
- Omar Faruque, M.D.; Strasser, T.; Lauss, G.; Jalili-Marandi, V.; Forsyth, P.; Dufour, C.; Dinavahi, V.; Monti, A.; Kotsampopoulos, P.; Martinez, J.A.; et al. Real-Time Simulation Technologies for Power Systems Design, Testing, and Analysis. IEEE Power Energy Technol. Syst. J. 2015, 2, 63–73. [Google Scholar] [CrossRef]
- Bai, H.; Liu, C.; Breaz, E.; Al-Haddad, K.; Gao, F. A Review on the Device-Level Real-Time Simulation of Power Electronic Converters: Motivations for Improving Performance. IEEE Ind. Electron. Mag. 2021, 15, 12–27. [Google Scholar] [CrossRef]
- Nzale, W.; Mahseredjian, J.; Fu, X.; Kocar, I.; Dufour, C. Improving Numerical Accuracy in Time-Domain Simulation for Power Electronics Circuits. IEEE Open Access J. Power Energy 2021, 8, 157–165. [Google Scholar] [CrossRef]
- Bouscayrol, A. Different Types of Hardware-In-the-Loop Simulation for Electric Drives. In Proceedings of the 2008 IEEE International Symposium on Industrial Electronics, Cambridge, UK, 30 June–2 July 2008; pp. 2146–2151. [Google Scholar] [CrossRef]
- Guo, B.; Mohamed, A.; Bacha, S.; Alamir, M.; Boudinet, C.; Pouget, J. Reduced-Scale Models of Variable Speed Hydro-Electric Plants for Power Hardware-in-the-Loop Real-Time Simulations. Energies 2020, 13, 5764. [Google Scholar] [CrossRef]
- Song, J.; Hur, K.; Lee, J.; Lee, H.; Lee, J.; Jung, S.; Shin, J.; Kim, H. Hardware-in-the-Loop Simulation Using Real-Time Hybrid-Simulator for Dynamic Performance Test of Power Electronics Equipment in Large Power System. Energies 2020, 13, 3955. [Google Scholar] [CrossRef]
- Barragán-Villarejo, M.; García-López, F.d.P.; Marano-Marcolini, A.; Maza-Ortega, J.M. Power System Hardware in the Loop (PSHIL): A Holistic Testing Approach for Smart Grid Technologies. Energies 2020, 13, 3858. [Google Scholar] [CrossRef]
- Vogel, S.; Nguyen, H.T.; Stevic, M.; Jensen, T.V.; Heussen, K.; Rajkumar, V.S.; Monti, A. Distributed Power Hardware-in-the-Loop Testing Using a Grid-Forming Converter as Power Interface. Energies 2020, 13, 3770. [Google Scholar] [CrossRef]
- Helmedag, A.; Isermann, T.; Monti, A. Fault Ride Through Certification of Wind Turbines Based on a Power Hardware in the Loop Setup. In Proceedings of the 2013 IEEE International Workshop on Applied Measurements for Power Systems (AMPS), Aachen, Germany, 25–27 September 2013; pp. 150–155. [Google Scholar] [CrossRef]
- Helmedag, A.; Isermann, T.; Monti, A.; Averous, N.R.; Stieneker, M.; De Doncker, R.W. Multi-Physics Power Hardware in the Loop Test Bench for On-shore Wind Turbine Nacelles. In Proceedings of the 2013 IEEE ECCE Asia Downunder, Melbourne, Australia, 3–6 June 2013; pp. 221–226. [Google Scholar] [CrossRef]
- Neshati, M.; Zuga, A.; Jersch, T.; Wenske, J. Hardware-in-the-loop Drive Train Control for Realistic Emulation of Rotor Torque in a Full-scale Wind Turbine Nacelle Test rig. In Proceedings of the European Control Conference (ECC’2016), Aalborg, Denmark, 29 June–1 July 2016; pp. 1481–1486. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, F.; Acikgoz, M.; Cai, X.; Kennel, R. FPGA HiL simulation of Back-to-Back Converter PMSG Wind Turbine Systems. In Proceedings of the 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, Korea, 1–5 June 2015; pp. 99–106. [Google Scholar] [CrossRef]
- Dufour, C.; Belanger, J. A Real-Time Simulator for Doubly fed Induction Generator Based Wind Turbine Applications. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), Aachen, Germany, 20–25 June 2004; Volume 5, pp. 3597–3603. [Google Scholar] [CrossRef]
- Terron-Santiago, C.; Martinez-Roman, J.; Puche-Panadero, R.; Sapena-Bano, A. Low-Computational-Cost Hybrid FEM-Analytical Induction Machine Model for the Diagnosis of Rotor Eccentricity, Based on Sparse Identification Techniques and Trigonometric Interpolation. Sensors 2021, 21, 6963. [Google Scholar] [CrossRef] [PubMed]
- Sapena-Bano, A.; Riera-Guasp, M.; Martinez-Roman, J.; Pineda-Sanchez, M.; Puche-Panadero, R.; Perez-Cruz, J. FEM-Analytical Hybrid Model for Real Time Simulation of IMs Under Static Eccentricity Fault. In Proceedings of the 2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Toulouse, France, 27–30 August 2019; pp. 108–114. [Google Scholar] [CrossRef]
- Kia, S.H. Detection of Stator and Rotor Asymmetries Faults in Wound Rotor Induction Machines: Modeling, Test and Real-Time Implementation. In Emerging Electric Machines; Zobaa, A.F., Aleem, S.H.A., Eds.; IntechOpen: Rijeka, Croatia, 2021; Chapter 3. [Google Scholar] [CrossRef]
- Xu, S.; Tao, S.; Zheng, W.; Chai, Y.; Ma, M.; Ding, L. Multiple Open-Circuit Fault Diagnosis for Back-to-Back Converter of PMSG Wind Generation System Based on Instantaneous Amplitude Estimation. IEEE Trans. Instrum. Meas. 2021, 70, 1–13. [Google Scholar] [CrossRef]
- Freire, N.M.A.; Estima, J.O.; Marques Cardoso, A.J. Open-Circuit Fault Diagnosis in PMSG Drives for Wind Turbine Applications. IEEE Trans. Ind. Electron. 2013, 60, 3957–3967. [Google Scholar] [CrossRef]
- Kia, S.H.; Henao, H.; Capolino, G.A.; Marzebali, M.H. Contribution to Wind Turbine Emulation Based on Wound Rotor Induction Machine Configuration. In Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon, France, 19–22 February 2018; pp. 2028–2034. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Gong, C. On Optimizing the Aerodynamic Load Acting on the Turbine Shaft of PMSG-Based Direct-Drive Wind Energy Conversion System. IEEE Trans. Ind. Electron. 2014, 61, 4022–4031. [Google Scholar] [CrossRef]
- Abdullah, M.; Yatim, A.; Tan, C.; Saidur, R. A Review of Maximum Power Point Tracking Algorithms for Wind Energy Systems. Renew. Sustain. Energy Rev. 2012, 16, 3220–3227. [Google Scholar] [CrossRef]
- Pillay, P.; Krishnan, R. Modeling of Permanent Mmagnet Motor Drives. IEEE Trans. Ind. Electron. 1988, 35, 537–541. [Google Scholar] [CrossRef]
- Batard, C.; Poitiers, F.; Machmoum, M. An Original Method to Simulate Diodes Rectifiers Behaviour with Matlab-Simulink Taking into Account Overlap Phenomenon. In Proceedings of the 2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, 4–7 June 2007; pp. 971–976. [Google Scholar] [CrossRef]
- Gao, R.; Gao, Z. Pitch Control for Wind Turbine Systems Using Optimization, Estimation and Compensation. Renew. Energy 2016, 91, 501–515. [Google Scholar] [CrossRef]
- Yousefzadeh, M.; Kia, S.H.; Arab Khaburi, D.; El Hajjaji, A. Boost-in-the-Loop for Real-Time Evaluation of Wind Turbines Based on PMSG. In Proceedings of the 2021 23rd European Conference on Power Electronics and Applications (EPE’21 ECCE Europe), Ghent, Belgium, 6–10 September 2021; pp. 1–8. [Google Scholar]
- Ametani, A. Numerical Analysis of Power System Transients and Dynamics; Energy Engineering, Institution of Engineering and Technology: Stevenage, UK, 2015. [Google Scholar]
- Kim, Y.S.; Chung, I.Y.; Moon, S.I. Tuning of the PI Controller Parameters of a PMSG Wind Turbine to Improve Control Performance under Various Wind Speeds. Energies 2015, 8, 1406–1425. [Google Scholar] [CrossRef]
- Hasanien, H.M.; Muyeen, S.M. Design Optimization of Controller Parameters Used in Variable Speed Wind Energy Conversion System by Genetic Algorithms. IEEE Trans. Sustain. Energy 2012, 3, 200–208. [Google Scholar] [CrossRef]
- Haque, M.E.; Negnevitsky, M.; Muttaqi, K.M. A Novel Control Strategy for a Variable-Speed Wind Turbine With a Permanent-Magnet Synchronous Generator. IEEE Trans. Ind. Appl. 2010, 46, 331–339. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
1.2 | |
225 H | |
2.25 mH | |
38.32 Kg.m | |
1.28 Wb | |
8 | |
3.7 m | |
7.2 | |
0.048 | |
0.002254 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousefzadeh, M.; Hedayati Kia, S.; Hoseintabar Marzebali, M.; Arab Khaburi, D.; Razik, H. Power-Hardware-in-the-Loop for Stator Windings Asymmetry Fault Analysis in Direct-Drive PMSG-Based Wind Turbines. Energies 2022, 15, 6896. https://doi.org/10.3390/en15196896
Yousefzadeh M, Hedayati Kia S, Hoseintabar Marzebali M, Arab Khaburi D, Razik H. Power-Hardware-in-the-Loop for Stator Windings Asymmetry Fault Analysis in Direct-Drive PMSG-Based Wind Turbines. Energies. 2022; 15(19):6896. https://doi.org/10.3390/en15196896
Chicago/Turabian StyleYousefzadeh, Meysam, Shahin Hedayati Kia, Mohammad Hoseintabar Marzebali, Davood Arab Khaburi, and Hubert Razik. 2022. "Power-Hardware-in-the-Loop for Stator Windings Asymmetry Fault Analysis in Direct-Drive PMSG-Based Wind Turbines" Energies 15, no. 19: 6896. https://doi.org/10.3390/en15196896
APA StyleYousefzadeh, M., Hedayati Kia, S., Hoseintabar Marzebali, M., Arab Khaburi, D., & Razik, H. (2022). Power-Hardware-in-the-Loop for Stator Windings Asymmetry Fault Analysis in Direct-Drive PMSG-Based Wind Turbines. Energies, 15(19), 6896. https://doi.org/10.3390/en15196896