PHM SURVEY: Implementation of Prognostic Methods for Monitoring Industrial Systems †
Abstract
:1. Introduction
- -
- Better availability and a consequent reduction in operating and maintenance costs, due to a strategy based on monitoring the state of the system;
- -
- Improved reliability and safety of operational units;
- -
- Faster detection of performance degradation or loss for increased operating efficiency.
- -
- Prognosis based on physical models, which relies on mathematical and/or physical models of degradation phenomena;
- -
- Data-based prognosis, which consists of analyzes of datasets for the search for health indicators of the state of health of the component;
- -
- Prognosis based on experience, which is based on the exploitation of knowledge acquired by the failure or degradation of the component in the past.
- −
- the prognosis based on a physical model;
- −
- data-driven prognosis;
- −
- the hybrid prognosis.
2. Prognostic Methods Categorization
2.1. Model-Based Prognostic
2.1.1. Physics of Failure
2.1.2. Bayesian Estimation with Kalman Filters
2.1.3. Bayesian Estimation with Particle Filters
2.2. Data-Driven Prognostic
2.2.1. Knowledge Based Models
2.2.2. Life Expectancy Models
Stochastic Models
- Aggregate reliability functions
- 2.
- Conditional probability model
Statistical Models
- 3.
- Trend evaluation
- 4.
- Autoregressive models
2.2.3. AI Approach
2.2.4. Deep Learning Approach
Convolutional Neural Network (CNN)
Deep Belief Neural Networks (DBN)
The Long Short-Term Memory Networks (LSTM)
2.2.5. Similarity-Based Learning
2.3. Hybrid Prognostics
2.3.1. Data-Driven Combinations
2.3.2. Data-Driven and Model-Based Combinations
2.3.3. Model-Based Combinations
3. Conclusions
4. Future Prospects
- −
- The criteria for the appearance of other failure modes;
- −
- The interrelationships between failure modes and their associated rates of deterioration;
- −
- The effect of maintenance on degradation;
- −
- The conditions considered and the assumptions made.
- −
- Is the component in a degraded state?
- −
- Which failure mode initiated the degradation?
- −
- What is the state of degradation?
- −
- How fast is the degradation progressing, and how much time remains before reaching failure?
- −
- What new events can modify the evolution of the degradation (for example slowing down or accelerating the process)?
- −
- What other factors can affect the RUL estimate and how (e.g., type of model, noise in the data, uncertainties)?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soualhi, A.; Razik, H.; Clerc, G. Data Driven Methods for the Prediction of Failures. In Proceedings of the 2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Toulouse, France, 27–30 August 2019; pp. 474–480. [Google Scholar] [CrossRef]
- Li, Y.; Liu, K.; Foley, A.M.; Zülke, A.; Berecibar, M.; Nanini-Maury, E.; Van Mierlo, J.; Hoster, H.E. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renew. Sustain. Energy Rev. 2019, 113, 109254. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, S.; Wang, B.; Habetler, T.G. Deep Learning Algorithms for Bearing Fault Diagnostics—A Comprehensive Review. IEEE Access 2020, 8, 29857–29881. [Google Scholar] [CrossRef]
- Srikanth, I.; Arockiasamy, M. Deterioration models for prediction of remaining useful life of timber and concrete bridges: A review. J. Traffic Transp. Eng. 2020, 7, 152–173. [Google Scholar] [CrossRef]
- Javed, K.; Gouriveau, R.; Zerhouni, N. State of the art and taxonomy of prognostics approaches, trends of prognostics applications and open issues towards maturity at different technology readiness levels. Mech. Syst. Signal Process. 2017, 94, 214–236. [Google Scholar] [CrossRef]
- Berghout, T.; Benbouzid, M. A Systematic Guide for Predicting Remaining Useful Life with Machine Learning. Electronics 2022, 11, 1125. [Google Scholar] [CrossRef]
- Lipu, M.H.; Hannan, M.; Hussain, A.; Hoque, M.; Ker, P.J.; Saad, M.; Ayob, A. A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations. J. Clean. Prod. 2018, 205, 115–133. [Google Scholar] [CrossRef]
- Khan, S.; Yairi, T. A review on the application of deep learning in system health management. Mech. Syst. Signal Process. 2018, 107, 241–265. [Google Scholar] [CrossRef]
- Lei, Y.; Li, N.; Guo, L.; Li, N.; Yan, T.; Lin, J. Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mech. Syst. Signal Process. 2017, 104, 799–834. [Google Scholar] [CrossRef]
- Zhao, R.; Yan, R.; Chen, Z.; Mao, K.; Wang, P.; Gao, R.X. Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process. 2019, 115, 213–237. [Google Scholar] [CrossRef]
- Roemer, M.; Hess, A.; Vachtsevanos, G.; Wu, B. Intelligent Fault Diagnosis and Prognosis for Engineering Systems; Wiley-Blackwell: Hoboken, NJ, USA, 2007; pp. 423–434. [Google Scholar]
- Mahamad, A.K.; Saon, S.; Hiyama, T. Predicting remaining useful life of rotating machinery based artificial neural net-work. Comput. Math. Appl. 2010, 60, 1078–1087. [Google Scholar] [CrossRef]
- Benkedjouh, T.; Medjaher, K.; Zerhouni, N.; Rechak, S. Fault prognostic of bearings by using support vector data description. In Proceedings of the 2012 IEEE Conference on Prognostics and Health Management, Denver, CO, USA, 18–21 June 2012; pp. 1–7. [Google Scholar]
- Lebold, M.; Thurston, M. Open standards for condition-based maintenance and prognostic systems. In Proceedings of the Maintenance and Reliability Conference (MARCON) (2001), Gatlinburg, TN, USA, 6–9 May 2001. [Google Scholar]
- Jardine, A.K.; Lin, D.; Banjevic, D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 2006, 20, 1483–1510. [Google Scholar] [CrossRef]
- Heng, A.; Zhang, S.; Tan, A.C.; Mathew, J. Rotating machinery prognostics: State of the art, challenges and opportunities. Mech. Syst. Signal Processing 2009, 23, 724–739.21. [Google Scholar] [CrossRef]
- Peng, Y.; Dong, M.; Zuo, M. Current status of machine prognostics in condition-based maintenance: A review. Int. J. Adv. Manuf. Technol. 2010, 50, 297–313. [Google Scholar] [CrossRef]
- Zio, E.; Di Maio, F. A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system. Reliab. Eng. Syst. Saf. 2010, 95, 49–57. [Google Scholar] [CrossRef]
- Sikorska, J.; Hodkiewicz, M.; Ma, L. Prognostic modelling options for remaining useful life estimation by industry. Mech. Syst. Signal Process. 2011, 25, 1803–1836. [Google Scholar] [CrossRef]
- Lee, J.; Wu, F.; Zhao, W.; Ghaffari, M.; Liao, L.; Siegel, D. Prognostics and health management design for rotary machinery systems reviews, methodology and applications. Mech. Syst. Signal Process. 2014, 42, 314–334. [Google Scholar] [CrossRef]
- Mosallam, A.F. Remaining Useful Life Estimation of Critical Components Based on Bayesian Approaches. Ph.D. Thesis, Université de Franche-Comté, Besançon, France, 2014. [Google Scholar]
- Liu, J.; Vitelli, V.; Seraoui, R.; Zio, E. Dynamic weighted psvr-based ensembles for prognostics of nuclear components. In Proceedings of the European Conference of the PHM Society, Aug 2014, João Pessoa, Brazil; pp. 1–9.
- Aizpurua, J.; Catterson, V. Towards a Methodology for Design of Prognostic Systems. In Proceedings of the Annual Conference of the PHM Society, Coronado, CA, USA, 18–24 October 2015; Volume 7. [Google Scholar]
- Vachtsevanos, G.; Lewis, F.L.; Roemer, M.; Hess, A.; Wu, B. Intelligent Fault Prognosis for Engineering Systems; John Wiley and Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Li, Y.; Billington, S.; Zhang, C.; Kurfess, T.; Danyluk, S.; Liang, S. Adaptive prognostics for rolling element bearing con-dition. Mech. Syst. Signal Processing 1999, 13, 103–113. [Google Scholar] [CrossRef]
- Li, Y.; Kurfess, T.; Liang, S. Stochastic Prognostics for Rolling Element Bearings. Mech. Syst. Signal Process. 2000, 14, 747–762. [Google Scholar] [CrossRef]
- Li, C.; Choi, S. Spur gear root fatigue crack prognosis via crack diagnosis and fracture mechanics. In Proceedings of the 56th Meeting of the Society of Mechanical Failures Prevention Technology, Virginia Beach, VA, USA, 15–19 April 2002; pp. 311–320. [Google Scholar]
- Li, C.J.; Lee, H. Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics. Mech. Syst. Signal Process. 2005, 19, 836–846. [Google Scholar] [CrossRef]
- Joshi, R.; Reeves, C. Beyond the cox model: Artificial neural networks for survival analysis. In Proceedings of the 18th International Conference on Systems Engineering, Las Vegas, NV, USA, 16–18 August 2006; pp. 179–184. [Google Scholar]
- Orsagh, R.; Roemer, M.; Sheldon, J.; Klenke, C.J. A Comprehensive Prognostics Approach for Predicting Gas Turbine Engine Bearing Life. In Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air, Vienna, Austria, 14–17 June 2004; pp. 777–785. [Google Scholar] [CrossRef]
- Orsagh, R.F.; Sheldon, J.; Klenke, C.J. Prognostics/diagnostics for gas turbine engine bearings. In Proceedings of the 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652), Big Sky, MT, USA, 8–15 March 2003; pp. 3095–3103. [Google Scholar] [CrossRef]
- Kacprzynski, G.; Sarlashkar, A.; Roemer, M. Predicting rul by fusing the physics of failure modeling with diagnostics. J. Miner. Met. Mater. Soc. 2004, 56, 29–35. [Google Scholar]
- Marble, S.; Morton, B.P. Predicting rul of propulsion system bearings. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2006; pp. 1–8. [Google Scholar]
- Qiu, J.; Seth, B.B.; Liang, S.Y.; Zhang, C. Damage Mechanics Approach for Bearing Lifetime Prognostics. Mech. Syst. Signal Process. 2002, 16, 817–829. [Google Scholar] [CrossRef]
- Bressel, M.; Hilairet, M.; Hissel, D.; Bouamama, B.O. Extended Kalman Filter for prognostic of Proton Exchange Membrane Fuel Cell. Appl. Energy 2016, 164, 220–227. [Google Scholar] [CrossRef]
- Welch, G.; Bishop, G. An Introduction to the Kalman Filter; Technical Report; University of North Carolina at Chapel Hill: Chapel Hill, NC, USA, 1995. [Google Scholar]
- Wang, Y.; Binaud, N.; Gogu, C.; Bes, C.; Fu, J. Determination of Paris’ law constants and crack length evolution via ex-tended and unscented Kalman filter: An application to aircraft fuselage panels. Mech. Syst. Signal Process. 2016, 80, 262–281. [Google Scholar] [CrossRef]
- Haug, J.A. A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes; Defense Technical Information Center: Fort Belvoir, VA, USA, 2005; pp. 1–52. [Google Scholar]
- Daigle, M.; Saha, B.; Goebel, K. A comparison of filter-based approaches for model-based prognostics. In Proceedings of the 2012 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2012; pp. 1–10. [Google Scholar] [CrossRef]
- Dalal, M.; Ma, J.; He, D. Lithium-ion battery life prognostic health management system using particle filtering framework. Proc. Inst. Mech. Eng. Part O: J. Risk Reliab. 2011, 225, 81–90. [Google Scholar] [CrossRef]
- Xing, Y.; Ma, E.W.; Tsui, K.-L.; Pecht, M. An ensemble model for predicting the remaining useful performance of lithi-um-ion batteries. Microelectron. Reliab. 2013, 53, 811–820. [Google Scholar] [CrossRef]
- Miao, Q.; Xie, L.; Cui, H.; Liang, W.; Pecht, M. Remaining useful life prediction of lithium-ion battery with unscented particle filter technique. Microelectron. Reliab. 2012, 53, 805–810. [Google Scholar] [CrossRef]
- Moradi, R.; Groth, K.M. Modernizing risk assessment: A systematic integration of PRA and PHM techniques. Reliab. Eng. Syst. Saf. 2020, 204, 107194. [Google Scholar] [CrossRef]
- Tsui, K.; Chen, N.; Zhou, Q. Phm: A Review on Data Driven Approaches. Math. Probl. Eng. 2015, 2015, 793161. [Google Scholar] [CrossRef]
- Biagetti, T.; Sciubba, E. Automatic diagnostics and prognostics of energy conversion processes via knowledge-based sys-tems. Energy 2004, 29, 2553–2572. [Google Scholar] [CrossRef]
- Garga, A.; McClintic, K.; Campbell, R.; Yang, C.-C.; Lebold, M.; Hay, T.; Byington, C. Hybrid reasoning for prognostic learning in CBM systems. In Proceedings of the 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542), Big Sky, MT, USA, 10–17 March 2001; pp. 2957–2969. [Google Scholar] [CrossRef]
- Elghazel, W.; Bahi, J.; Guyeux, C.; Hakem, M.; Medjaher, K.; Zerhouni, N. Dependability of wireless sensor networks for industrial prognostics and health management. Comput. Ind. 2015, 68, 1–15. [Google Scholar] [CrossRef]
- Tahmasebi, P.; Hezarkhani, A. Application of a Modular Feedforward Neural Network for Grade Estimation. Nonrenewable Resour. 2011, 20, 25–32. [Google Scholar] [CrossRef]
- Jang, J.-S.R. Fuzzy modeling using generalized neural networks and alman filter algorithm. In Proceedings of the Ninth National Conference on Artificial Intelligence, Anaheim, CA, USA, 14–19 July 1991; Volume 2, pp. 762–767. [Google Scholar]
- Odeh, S.M.; Baareh, A.K.M. A comparison of classification methods as diagnostic system: A case study on skin lesions. Comput. Methods Programs Biomed. 2016, 137, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A. Adaptation of Fuzzy Inference System Using Neural Learning. In Granular Computing; Springer Science and Business Media LLC: Berlin, Germany, 2005; Volume 181, pp. 53–83. [Google Scholar] [CrossRef]
- Tahmasebi, P.; Hezarkhani, A. A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation. Comput. Geosci. 2012, 42, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Mathur, N.; Glesk, I.; Buis, A. Comparison of adaptive neuro-fuzzy inference system (ANFIS) and Gaussian processes for machine learning (GPML) algorithms for the prediction of skin temperature in lower limb prostheses. Med. Eng. Phys. 2016, 38, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- Si, X.-S.; Wang, W.; Hu, C.-H.; Zhou, D.-H. Remaining useful life estimation—A review on the statistical data driven approaches. Eur. J. Oper. Res. 2011, 213, 1–14. [Google Scholar] [CrossRef]
- Oppenheimer, C.H.; Loparo, K.A. Physically based diagnosis and prognosis of cracked rotor shafts. In Proceedings of the SPIE—The International Society for Optical Engineering, Orlando, FL, USA, 1–5 April 2002; pp. 122–132. [Google Scholar]
- Ahmadzadeh, F.; Lundberg, J. Remaining useful life estimation: Review. Int. J. Syst. Assur. Eng. Manag. 2013, 5, 461–474. [Google Scholar] [CrossRef]
- Goode, K.B.; Moore, J.; Roylance, B.J. Plant machinery working life prediction method utilizing reliability and condi-tion-monitoring data. Part E J. Process Mech. Eng. 2000, 214, 109–122. [Google Scholar] [CrossRef]
- Van Noortwijk, J. A survey of the application of gamma processes in maintenance. Reliab. Eng. Syst. Saf. 2009, 94, 2–21. [Google Scholar] [CrossRef]
- Sundin, P.; Montgomery, N.; Jardine, A. Pulp mill on-site implementation of cbm decision support software. In Proceedings of the International Conference of Maintenance Societies, 2007. [Google Scholar]
- Schomig, K.A.; Rose, O. On the suitability of the weibull distribution for the approximation of machine failures. In Proceedings of the Industrial Engineering Research Conference, Portland, OR, USA, 17–21 May 2003; p. 26. [Google Scholar]
- Banjevic, D.; Jardine, A.K.S. Calculation of reliability function and remaining useful life for a Markov failure time process. IMA J. Manag. Math. 2006, 17, 115–130. [Google Scholar] [CrossRef]
- Maguluri, G.; Zhang, C.-H. Estimation in the Mean Residual Life Regression Model. J. R. Stat. Soc. Ser. B 1994, 56, 477–489. [Google Scholar] [CrossRef]
- Weidl, G.; Madsen, A.; Israelson, S. Applications of object-oriented Bayesian networks for condition monitoring, root cause analysis and decision support on operation of complex continuous processes. Comput. Chem. Eng. 2005, 29, 1996–2009. [Google Scholar] [CrossRef]
- Dey, S.; Stori, J. A Bayesian network approach to root cause diagnosis of process variations. Int. J. Mach. Tools Manuf. 2005, 45, 75–91. [Google Scholar] [CrossRef]
- Kallen, M.; van Noortwijk, J. Optimal maintenance decisions under imperfect inspection. Reliab. Eng. Syst. Saf. 2005, 90, 177–185. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, L.; Sun, Y.; Mathew, J. Asset health reliability estimation based on condition data. In Proceedings of the World Congress on Engineering Asset Management; Harrogate, UK; pp. 2195–2204.
- Gebraeel, N.Z.; Lawley, M.A.; Li, R.; Ryan, J. Residual-life distributions from component degradation signals: A Bayesian approach. IIE Trans. 2005, 37, 543–557. [Google Scholar] [CrossRef]
- Chen, N.; Tsui, K.L. Condition monitoring and remaining useful life prediction using degradation signals: Revisited. IIE Trans. 2013, 45, 939–952. [Google Scholar] [CrossRef]
- Bouaziz, M.F.; Zamai, E.; Duvivier, F. Towards Bayesian network methodology for predicting the equipment health factor of complex semiconductor systems. Int. J. Prod. Res. 2013, 51, 4597–4617. [Google Scholar] [CrossRef]
- Bian, L.; Gebraeel, N.; Kharoufeh, J.P. Degradation modeling for real-time estimation of residual lifetimes in dynamic environments. IIE Trans. 2015, 47, 471–486. [Google Scholar] [CrossRef]
- Rausand, M.; Hoyland, A. System Reliability Theory: Models, Statistical Methods and Applications; Wiley-Interscience: Hoboken, NJ, USA, 2004. [Google Scholar]
- Lugtigheid, D.; Jardine, A.K.S.; Jiang, X. Optimizing the performance of a repairable system under a maintenance and repair contract. Qual. Reliab. Eng. Int. 2007, 23, 943–960. [Google Scholar] [CrossRef]
- Carlin, B.P.; Chib, S. Bayesian Model Choice Via Markov Chain Monte Carlo Methods. J. R. Stat. Soc. Ser. B 1995, 57, 473–484. [Google Scholar] [CrossRef]
- Rabiner, L. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 1989, 77, 257–286. [Google Scholar] [CrossRef]
- Baruah, P.; Chinnam, R.B. Hmms for diagnostics and prognostics in machining processes. Int. J. Prod. Res. 2005, 43, 1275–1293. [Google Scholar] [CrossRef]
- Dong, M.; He, D. A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology. Mech. Syst. Signal Process. 2007, 21, 2248–2266. [Google Scholar] [CrossRef]
- He, D.; Wu, S.; Banerjee, P.; Bechhoefer, E. Probabilistic Model Based Algorithms for Prognostics. In Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2006. [Google Scholar] [CrossRef]
- Moghaddass, R.; Zuo, M.J.; Liu, Y.; Huang, H.-Z. Predictive analytics using a nonhomogeneous semi-Markov model and inspection data. IIE Trans. 2014, 47, 505–520. [Google Scholar] [CrossRef]
- Kwan, C.; Zhang, X.; Xu, R.; Haynes, L. A novel approach to fault diagnostics and prognostics. IEEE Int. Conf. Robot. Autom. 2003, 1, 604–609. [Google Scholar]
- Irvine, T. Rainflow Cycle Counting in Fatigue Analysis. Semantic Scholar. 2011, pp. 1–5, Webinar by Tom Irvine.
- Marsh, G.; Wignall, C.; Thies, P.R.; Barltrop, N.; Incecik, A.; Venugopal, V.; Johanning, L. Review and application of Rainflow residue processing techniques for accurate fatigue damage estimation. Int. J. Fatigue 2016, 82, 757–765. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.-G.; Ono, T. A general procedure for first/second-order reliabilitymethod (FORM/SORM). Struct. Saf. 1999, 21, 95–112. [Google Scholar] [CrossRef]
- Fiessler, B.; Neumann, H.-J.; Rackwitz, R. Quadratic Limit States in Structural Reliability. J. Eng. Mech. Div. 1979, 105, 661–676. [Google Scholar] [CrossRef]
- Elattar, H.M.; Elminir, H.K.; Riad, A.M. Prognostics: A literature review. Complex Intell. Syst. 2016, 2, 125–154. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G. Time Series Analysis, Forecasting and Control; Holden-Day, Inc.: Oakland, CA, USA, 1990. [Google Scholar]
- Lewis, F.L. Applied Optimal Control and Estimation, 1st ed.; Prentice Hall PTR: Hoboken, NJ, USA, 1992. [Google Scholar]
- Tsay, R.S. Time series and forecasting: Brief history and future research. J. Am. Stat. Assoc. 2000, 95, 638–643. [Google Scholar] [CrossRef]
- Wu, W.; Hu, J.; Zhang, J. Prognostics of Machine Health Condition using an Improved ARIMA-based Prediction method. In Proceedings of the 2007 2nd IEEE Conference on Industrial Electronics and Applications, Harbin, China, 23–25 May 2007; pp. 1062–1067. [Google Scholar] [CrossRef]
- Yan, J.; Koc, M.; Lee, J. A prognostic algorithm for machine performance assessment and its application. Prod. Plan. Control 2004, 15, 796–801. [Google Scholar] [CrossRef]
- Wang, T. Trajectory Similarity Based Prediction for Remaining Useful Life Estimation. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, USA, 2010. [Google Scholar]
- Wang, Q.; Fang, Y.; Zhou, Z.; Zuo, J.; Xiao, Q.; Zhou, S. Reliability assessment of the vertical roller mill based on ARIMA and multi-observation HMM. Cogent Eng. 2017, 4, 1270703. [Google Scholar] [CrossRef]
- Wang, T.; Yu, J.; Siegel, D.; Lee, J. A similarity-based prognostics approach for remaining useful life estimation of engineered systems. In Proceedings of the 2008 International Conference on Prognostics and Health Management PHM 2008, Denver, CO, USA, 6–9 October 2008. [Google Scholar]
- Liu, Z.-H.; Meng, X.-D.; Wei, H.-L.; Chen, L.; Lu, B.-L.; Wang, Z.-H.; Chen, L. A Regularized LSTM Method for Predicting Remaining Useful Life of Rolling Bearings. Int. J. Autom. Comput. 2021, 18, 581–593. [Google Scholar] [CrossRef]
- Bampoula, X.; Siaterlis, G.; Nikolakis, N.; Alexopoulos, K. A Deep Learning Model for Predictive Maintenance in Cyber-Physical Production Systems Using LSTM Autoencoders. Sensors 2021, 21, 972. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Mao, Z. Deep-Convolution-Based LSTM Network for Remaining Useful Life Prediction. IEEE Trans. Ind. Informatics 2020, 17, 1658–1667. [Google Scholar] [CrossRef]
- Sbarufatti, C.; Corbetta, M.; Giglio, M.; Cadini, F. Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks. J. Power Sources 2017, 344, 128–140. [Google Scholar] [CrossRef]
- Tian, Z.; Jin, T.; Wu, B.; Ding, F. Condition based maintenance optimization for wind power generation systems under continuous monitoring. Renew. Energy 2011, 36, 1502–1509. [Google Scholar] [CrossRef]
- Lee, J.; Ni, J.; Djurdjanovic, D.; Qiu, H.; Liao, H. Intelligent prognostics tools and e-maintenance. Comput. Ind. 2006, 57, 476–489. [Google Scholar] [CrossRef]
- Yam, R.C.M.; Tse, P.; Li, L.; Tu, P. Intelligent Predictive Decision Support System for Condition-Based Maintenance. Int. J. Adv. Manuf. Technol. 2001, 17, 383–391. [Google Scholar] [CrossRef]
- Heimes, F.O. Recurrent neural networks for remaining useful life estimation. In Proceedings of the International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 October 2008; pp. 1–6. [Google Scholar]
- Guo, L.; Li, N.; Jia, F.; Lei, Y.; Lin, J. A recurrent neural network based health indicator for remaining useful life prediction of bearings. Neurocomputing 2017, 240, 98–109. [Google Scholar] [CrossRef]
- Zemouri, R.; Racoceanu, D.; Zerhouni, N. Recurrent radial basis function network for time-series prediction. Eng. Appl. Artif. Intell. 2003, 16, 453–463. [Google Scholar] [CrossRef]
- Fink, O.; Wang, Q.; Svens´en, M.; Dersin, P.; Lee, W.-J.; Ducoffe, M. Potential, challenges and future directions for deep learning in prognostics and health management applications. Eng. Appl. Artif. Intell. 2020, 92, 103678. [Google Scholar] [CrossRef]
- Rezaeianjouybari, B.; Shang, Y. Deep learning for prognostics and health management: State of the art, challenges, and opportunities. Measurement 2020, 163, 107929. [Google Scholar] [CrossRef]
- Schwartz, S.; Jimenez, J.J.M.; Salaün, M.; Vingerhoeds, R. A fault mode identification methodology based on self-organizing map. Neural Comput. Appl. 2020, 32, 13405–13423. [Google Scholar] [CrossRef]
- Xu, X. Machine tool 4.0 for the new era of manufacturing. Int. J. Adv. Manuf. Technol. 2017, 92, 1893–1900. [Google Scholar] [CrossRef]
- Gittler, T.; Gontarz, A.; Weiss, L.; Wegener, K. A fundamental approach for data acquisition on machine tools as enabler for analytical Industrie 4.0 applications. Procedia CIRP 2019, 79, 586–591. [Google Scholar] [CrossRef]
- Spendla, L.; Kebisek, M.; Tanuska, P.; Hrcka, L. Concept of predictive maintenance of production systems in accordance with industry 4. In Proceedings of the IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI), Herl’any, Slovakia, 26–28 January 2017; pp. 000405–000410. [Google Scholar]
- Wang, S.; Jin, S.; Bai, D.; Fan, Y.; Shi, H.; Fernandez, C. A critical review of improved deep learning methods for the re-maining useful life prediction of lithium-ion batteries. Energy Rep. 2021, 7, 5562–5574. [Google Scholar] [CrossRef]
- Chen, Z.; Shang, L.; Zhou, M. A FP-CNN method for aircraft fault prognostics. In Proceedings of the 2018 3rd International Conference on Automation, Mechanical Control and Computational Engineering; Atlantis Press: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Toma, R.N.; Kim, C.-H.; Kim, J.-M. Bearing Fault Classification Using Ensemble Empirical Mode Decomposition and Convolutional Neural Network. Electronics 2021, 10, 1248. [Google Scholar] [CrossRef]
- Liang, Y.C.; Li, W.D.; Lu, X.; Wang, S. Fog computing and convolutional neural network enabled prognosis for machining process optimization. J. Manuf. Syst. 2019, 52, 32–42. [Google Scholar] [CrossRef]
- Deutsch, J.; He, D. Using deep learning-based approaches for bearing remaining useful life prediction. In Proceedings of the Annual Conference of the PHM Society, Denver, CO, USA, 3 October 2016; pp. 1–7. [Google Scholar]
- Ma, J.; Su, H.; Zhao, W.-L.; Liu, B. Predicting the Remaining Useful Life of an Aircraft Engine Using a Stacked Sparse Autoencoder with Multilayer Self-Learning. Complexity 2018, 2018, 3813029. [Google Scholar] [CrossRef]
- Wu, Y.; Yuan, M.; Dong, S.; Lin, L.; Liu, Y. Remaining useful life estimation of engineered systems using vanilla LSTM neural networks. Neurocomputing 2018, 275, 167–179. [Google Scholar] [CrossRef]
- Ramasso, E.; Rombaut, M.; Zerhouni, N. Joint Prediction of Continuous and Discrete States in Time-Series Based on Belief Functions. IEEE Trans. Cybern. 2012, 43, 37–50. [Google Scholar] [CrossRef]
- Eker, O.F.; Camci, F.; Jennions, I.K. A similarity-based prognostics approach for remaining useful life prediction. In Proceedings of the European Conference of the PHM Society, Nantes, France, 8–10 July 2014; pp. 1–5. [Google Scholar]
- Ramasso, E.; Rombaut, M.; Zerhouni, N. Prognostic by Classification of Predictions Combining Similarity-Based Estimation and Belief Functions; Springer: Berlin, Germany, 2012; pp. 61–68. [Google Scholar] [CrossRef]
- Pecht, M.; Jaai, R. A prognostics and health management roadmap for information and electronics-rich systems. Microelectron. Reliab. 2010, 50, 317–323. [Google Scholar] [CrossRef]
- Soualhi, A.; Razik, H.; Clerc, G.; Doan, D.D. Prognosis of Bearing Failures Using Hidden Markov Models and the Adaptive Neuro-Fuzzy Inference System. IEEE Trans. Ind. Electron. 2013, 61, 2864–2874. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Q.; Mu, C. A Hybrid LSSVR-HMM Based Prognostics Approach. In Proceedings of the 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, Nanchang, China, 26–27 August 2012; pp. 275–278. [Google Scholar] [CrossRef]
- Hu, C.; Youn, B.D.; Wang, P.; Yoon, J.T. Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life. Reliab. Eng. Syst. Saf. 2012, 103, 120–135. [Google Scholar] [CrossRef]
- Baraldi, P.; Compare, M.; Sauco, S.; Zio, E. Ensemble neural network-based particle filtering for prognostics. Mech. Syst. Signal Process. 2013, 41, 288–300. [Google Scholar] [CrossRef]
- Baraldi, P.; Mangili, F.; Gola, G.; Nystad, B.; Zio, E. A hybrid ensemble-based approach for process parameter estimation and degradation assessment in offshore oil platforms. Int. J. Perform. Eng. 2014, 10, 497–509. [Google Scholar]
- Liao, L.; Köttig, F. A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction. Appl. Soft Comput. 2016, 44, 191–199. [Google Scholar] [CrossRef]
- Baraldi, P.; Mangili, F.; Zio, E. A Kalman Filter-Based Ensemble Approach with Application to Turbine Creep Prognostics. IEEE Trans. Reliab. 2012, 61, 966–977. [Google Scholar] [CrossRef]
- Rodger, J.A. Toward reducing failure risk in an integrated vehicle health maintenance system: A fuzzy multi-sensor data fusion Kalman filter approach for IVHMS. Expert Syst. Appl. 2012, 39, 9821–9836. [Google Scholar] [CrossRef]
- Yoon, J.; He, D. Development of an Efficient Prognostic Estimator. J. Fail. Anal. Prev. 2014, 15, 129–138. [Google Scholar] [CrossRef]
2001 | Lebold and Thurston [14] | Data-based prognosis Model-based prognosis Experience based prognosis |
2006 | Jardine et al. [15] | Prognosis based on statistical tools Prognosis using artificial intelligence tools Model-based prognosis |
2009 | Heng et al. [16] | Data-based prognosis Model-based prognosis Experience based prognosis Experience and data-based prognosis |
2010 | Peng et al. [17] | Knowledge-based prognosis Model fusion-based prognosis |
2010 | Zio and Di Maio [18] | Data-based prognosis Model-based prognosis |
2011 | Sikorska et al. [19] | Prognosis using artificial intelligence tools Knowledge-based prognosis Model-based prognosis RUL model-based prognosis |
2014 | Lee et al. [20] | Data-based prognosis Model-based prognosis Hybrid based prognosis |
Prognosis Category | Hybrid-Based | Data-Based | Model-Based | |
---|---|---|---|---|
Criteria | ||||
System model | necessary | useful | necessary | |
Failure history | useful | not necessary | useful | |
Past conditions | useful | not necessary | necessary | |
Current conditions | necessary | necessary | necessary | |
Fault recognition method | necessary | necessary | necessary | |
Historic of maintenance | useful | not necessary | useful | |
General need | sensor and model | sensors, no model | sensors and model |
Prognostic Approaches | Advantages | Inconveniences |
---|---|---|
Model-based approach | Accurate Better prognostic performances obtained Flexibility of approach Interpretable | Difficult to obtain the mathematical model. The phenomenon of degradation is not exhaustive Each component has its own model or reliability lawsRequires knowledge related to the degradation mechanism |
Date-driven approach | Suitable for any type of instrumented application Knowledge of degradation mechanisms directly included in the data Does not require knowledge of analytical models of degradation | Necessity of training data Requires degradation scenarios for different operational conditions |
Hybrid approach | Higher performance, accuracy Better computational complexity More flexible and robust | Requires training data Results depend on the combination of the methods |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soualhi, A.; Lamraoui, M.; Elyousfi, B.; Razik, H. PHM SURVEY: Implementation of Prognostic Methods for Monitoring Industrial Systems. Energies 2022, 15, 6909. https://doi.org/10.3390/en15196909
Soualhi A, Lamraoui M, Elyousfi B, Razik H. PHM SURVEY: Implementation of Prognostic Methods for Monitoring Industrial Systems. Energies. 2022; 15(19):6909. https://doi.org/10.3390/en15196909
Chicago/Turabian StyleSoualhi, Abdenour, Mourad Lamraoui, Bilal Elyousfi, and Hubert Razik. 2022. "PHM SURVEY: Implementation of Prognostic Methods for Monitoring Industrial Systems" Energies 15, no. 19: 6909. https://doi.org/10.3390/en15196909
APA StyleSoualhi, A., Lamraoui, M., Elyousfi, B., & Razik, H. (2022). PHM SURVEY: Implementation of Prognostic Methods for Monitoring Industrial Systems. Energies, 15(19), 6909. https://doi.org/10.3390/en15196909