Assessment of Thermal Comfort in Rooms Equipped with a Decentralised Façade Ventilation Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Research Subject
2.2. Methodology of Calculation
2.3. Characteristics of Used Measurements
2.4. Conditions for Research
3. Results and Discussion
3.1. Experimental Studies
3.2. Discussion
3.3. Statistical Analysis
3.4. Limitations of the Study
4. Conclusions
- Regardless of the type of heat recovery used in the decentralised façade ventilation unit, users experienced discomfort caused by the feeling of being slightly cool or cold;
- The obtained values of the PMV index resulted in the percentage of those dissatisfied with the feeling of thermal comfort increasing from 54.8% to 100%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allen, J.G.; Macomber, J.D. Healthy Buildings. How Indoor Spaces Drive Performance and Productivit; Hardvard University Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Jia, L.-R.; Han, J.; Chen, X.; Li, Q.-Y.; Lee, C.-C.; Fung, Y.-H. Interaction between Thermal Comfort, Indoor Air Quality and Ventilation Energy Consumption of Educational Buildings: A Comprehensive Review. Buildings 2021, 11, 591. [Google Scholar] [CrossRef]
- Lala, B.; Rizk, H.; Kala, S.M.; Hagishima, A. Multi-Task Learning for Concurrent Prediction of Thermal Comfort, Sensation and Preference in Winters. Buildings 2022, 12, 750. [Google Scholar] [CrossRef]
- Nico, M.A.; Liuzzi, S.; Stefanizzi, P. Evaluation of thermal comfort in university classrooms through objective approach and subjective preference analysis. Appl. Ergon. 2015, 48, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Ossama, A.A.; Gamal, M.E.K.; Amal, A.A. Correlation between indoor environmental quality and productivity in buildings. In Proceedings of the 19th of IAPS, Cairo, Egypt, 11–16 September 2006. [Google Scholar]
- Raimundo, A.M.; Virgílio, A.; Oliveira, M. Analyzing thermal comfort and related costs in buildings under Portuguese temperate climate. Build. Environ. 2022, 219, 109238. [Google Scholar] [CrossRef]
- Miranda, M.T.; Romero, P.; Valero-Amaro, V.; Arranz, J.I.; Montero, I. Ventilation conditions and their influence on thermal comfort in examination classrooms in times of COVID-19. A case study in a Spanish area with Mediterranean climate. Int. J. Hyg. Environ. Health 2021, 240, 113910. [Google Scholar] [CrossRef]
- Alonso, A.; Llanos, J.; Escandón, R.; Sendra, J.J. Effects of the COVID-19 Pandemic on Indoor Air Quality and Thermal Comfort of Primary Schools in Winter in a Mediterranean Climate. Sustainability 2021, 13, 2699. [Google Scholar] [CrossRef]
- Oh, S.; Song, S. Detailed Analysis of Thermal Comfort and Indoor Air Quality Using Real-Time Multiple Environmental Monitoring Data for a Childcare Center. Energies 2021, 14, 643. [Google Scholar] [CrossRef]
- Conceiçäo, E.; Awbi, H. Evaluation of Integral Effect of Thermal Comfort, Air Quality and Draught Risk for Desks Equipped with Personalized Ventilation Systems. Energies 2021, 14, 3235. [Google Scholar] [CrossRef]
- Nägele, F.; Kasper, T.; Girod, B. Turning up the heat on obsolete thermostats: A simulation-based comparison of intelligent control approaches for residential heating systems. Renew. Sustain. Energy Rev. 2017, 75, 1254–1268. [Google Scholar] [CrossRef]
- Alghamdi, S.; Tang, W.; Kanjanabootra, S.; Alterman, D. Effect of Architectural Building Design Parameters on Thermal Comfort and Energy Consumption in Higher Education Buildings. Buildings 2022, 12, 329. [Google Scholar] [CrossRef]
- Akili, Z.E.; Bouzidi, Y.; Merabtine, A.; Polidori, G.; Chkeir, A. Experimental Investigation of Adaptive Thermal Comfort in French Healthcare Buildings. Buildings 2021, 11, 551. [Google Scholar] [CrossRef]
- Grassi, B.; Piana, E.A.; Lezzi, A.M.; Pilotelli, M. A Review of Recent Literature on Systems and Methods for the Control of Thermal Comfort in Buildings. Appl. Sci. 2022, 12, 5473. [Google Scholar] [CrossRef]
- Frontczak, M.; Wargocki, P. Literature survey on how different factors influence human comfort in indoor environments. Build. Environ. 2011, 46, 922–937. [Google Scholar] [CrossRef]
- de Oliveira, C.C. Assessment of Air Quality Perception and Its Effects on Users’ Thermal Comfort in Office Buildings. Sci 2021, 3, 47. [Google Scholar] [CrossRef]
- Mui, K.W.; Tsang, T.W.; Wong, L.T. Bayesian updates for indoor thermal comfort models. J. Build. Eng. 2019, 29, 101117. [Google Scholar] [CrossRef]
- Kosiński, P.; Skotnicka-Siepsiak, A. Possibilities of Adapting the University Lecture Room to the Green University Standard in Terms of Thermal Comfort and Ventilation Accuracy. Energies 2022, 15, 3735. [Google Scholar] [CrossRef]
- Mumovic, D.; Palmer, J.; Davies, M.; Orme, M.; Ridley, I.; Oreszczyn, T.; Judd, C.; Critchlow, R.; Medina, H.; Pilmoor, G.; et al. Winter indoor air quality, thermal comfort and acoustic performance of newly built secondary schools in England. Build. Environ. 2009, 44, 1466–1477. [Google Scholar] [CrossRef]
- Shan, X.; Zhou, J.; Chang, V.W.-C.; Yang, E.-H. Comparing mixing and displacement ventilation in tutorial rooms: Students’ thermal comfort, sick building syndromes, and short-term performance. Build. Envirnment 2016, 102, 128–137. [Google Scholar] [CrossRef]
- Seo, Y.; Kim, J.-H. Differential Cutaneous Thermal Sensitivity in Humans: Method of Limit vs. Method of Sensation Magnitude. Int. J. Environ. Res. Public Health 2021, 18, 12576. [Google Scholar] [CrossRef]
- Kannan, T.; Lork, C.; Tushar, W.; Yuen, C.; Wong, N.; Tai, S. Energy Management Strategy for Zone Cooling Load Demand Reduction with Occupancy Thermal Comfort Margin. In Proceedings of the 2019 IEEE PES GTD Grand International Conference and Exposition Asia, GTD Asia 2019, Bangkok, Thailand, 19–23 March 2019; Institute of Electrical and Electronics Engineers Inc.: Bangkok, Thailand, 2019; pp. 247–252. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, Y.; Lin, Z. Coupled thermal comfort control of thermal condition profile of air distribution and thermal preferences. Build. Environ. 2020, 177, 106867. [Google Scholar] [CrossRef]
- Ratajczak, K.; Amanowicz, Ł.; Szczechowiak, E. Assessment of the air streams mixing in wall-type heat recovery units for ventilation of existing and refurbishing buildings toward low energy buildings. Energy Build 2020, 227, 110427. [Google Scholar] [CrossRef]
- Merzkirch, A.; Maas, S.; Scholzen, F.; Waldmann, D. Field tests of centralized and decentralized ventilation units in residential buildings—Specific fan power, heat recovery efficiency, shortcuts and volume flow unbalances. Energy Build 2016, 116, 376–383. [Google Scholar] [CrossRef]
- Lamberti, G.; Salvadori, G.; Leccese, F.; Fantozzi, F.; Bluyssen, P.M. Advancement on Thermal Comfort in Educational Buildings: Current Issues and Way Forward. Sustainability 2021, 13, 10315. [Google Scholar] [CrossRef]
- Silva, M.F.; Maas, S.; de Souza, H.A.; Gomes, A.P. Post-occupancy evaluation of residential buildings in Luxembourg with centralized and decentralized ventilation systems, focusing on indoor air quality (IAQ). Assessment by questionnaires and physical measurements. Energy Build 2017, 148, 119–127. [Google Scholar] [CrossRef]
- Manza, H.; Huberb, H.; Schälinc, A.; Webera, A.; Ferrazzinic, M.; Studera, M. Performance of single room ventilation units with recuperative or regenerative heat recovery. Energy Build 2000, 31, 37–47. [Google Scholar] [CrossRef]
- Zender-Świercz, E. Microclimate in Rooms Equipped with Decentralized Façade Ventilation Device. Atmosphere 2020, 11, 800. [Google Scholar] [CrossRef]
- Smith, K.M.; Svend Svendsen, S. The effect of a rotary heat exchanger in roombased ventilation on indoor humidity in existing apartments in temperate climates. Energy Build 2016, 116, 349–361. [Google Scholar] [CrossRef]
- Smith, K.M.; Svend Svendsen, S. Development of a plastic rotary heat exchanger for room-based ventilation in existing apartments. Energy Build 2015, 107, 1–10. [Google Scholar] [CrossRef]
- Van Hoof, J. Forty years of Fanger’s model of thermal comfort: Comfort for all? Indoor Air 2008, 18, 182–201. [Google Scholar] [CrossRef]
- Mamani, T.; Herrera, R.F.; Rivera, F.M.-L.; Atencio, E. Variables That Affect Thermal Comfort and Its Measuring Instruments: A Systematic Review. Sustainability 2022, 14, 1773. [Google Scholar] [CrossRef]
- Staiger, H.; Laschewski, G.; Matzarakis, A. Selection of appropriate thermal indices for applications in human biometeorological studies. Atmosphere 2019, 10, 18. [Google Scholar] [CrossRef]
- PN-EN ISO 7730:2006; Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. CEN: Brussels, Belgium, 2006.
- PN-EN 13141-8:2022; Ventilation for Buildings—Performance Testing of Components/Products for Residential Ventilation—Part 8: Performance Testing of Un-Ducted Mechanical Supply and Exhaust Ventilation Units (Including Heat Recovery) for Mechanical Ventilation Systems Intended for Single Room. CEN: Brussels, Belgium, 2022.
- Han, H.; Kwon, Y.-I. Inhaling/exhaling heat recovery ventilator using the concept of alternating-current ventilation. HVACR Res. 2006, 12, 843–859. [Google Scholar] [CrossRef]
- Merckx, M.; Bruyneel, G.; Pollet, I.; Laverge, J. Temperature, draft and ventilation efficiency of room based decentralised heat recovery ventilation systems. In Proceedings of the 39th AIVC Conference “Smart Ventilation for Buildings”, Antibes Juan-LesPins, France, 18–19 September 2018; pp. 838–847. [Google Scholar]
- Mikola, A.; Simon, R.; Kurnitski, J. The impact of air pressure conditions on the performance of single room ventilation units in multi-story buildings. Energies 2019, 12, 2633. [Google Scholar] [CrossRef]
- Ganesh, G.A.; Sinha, S.L.; Verma, T.N.; Dewangan, S.K. Numerical simulation for energy consumption and thermal comfort in a naturally ventilated indoor environment under different orientations of inlet diffuser. Build. Environ. 2022, 217, 109071. [Google Scholar] [CrossRef]
- Faria, L.C.d.; Romero, M.d.A.; Porras-Amores, C.; Pirró, L.F.d.S.; Saez, P.V. Prediction of the Impact of Air Speed Produced by a Mechanical Fan and Operative Temperature on the Thermal Sensation. Buildings 2022, 12, 101. [Google Scholar] [CrossRef]
- PN EN 16798-1:2019-06; Energy Performance of Buildings—Ventilation for Buildings—Part 1: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics—Module M1-6. CEN: Brussels, Belgium, 2019.
- CIBSE. CIBSE Guide A: Environmental Design; Chartered Institution of Building Services Engineers: London, UK, 2006. [Google Scholar]
- ANSI/ASHARE Standard 55-2020; Thermal Environmental Conditions for Human Occupancy. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc.: Atlanta, GA, USA, 2020.
- Lan, L.; Wargocki, P.; Lian, Z. Quantitative measurement of productivity loss due to thermal discomfort. Energy Build. Int. 2011, 43, 1057–1062. [Google Scholar] [CrossRef]
- Zhang, J.; Li, P.; Ma, M. Thermal Environment and Thermal Comfort in University Classrooms during the Heating Season. Buildings 2022, 12, 912. [Google Scholar] [CrossRef]
- Pao, S.-L.; Wu, S.-Y.; Liang, J.-M.; Huang, I.-J.; Guo, L.-Y.; Wu, W.-L.; Liu, Y.-G.; Nian, S.-H. A Physiological-Signal-Based Thermal Sensation Model for Indoor Environment Thermal Comfort Evaluation. Int. J. Environ. Res. Public Health 2022, 19, 7292. [Google Scholar] [CrossRef]
- Auffenberg, F.; Snow, S.; Stein, S.; Rogers, A. A comfort-based approach to smart heating and air conditioning. ACM Trans. Intell. Syst. Technol. 2018, 9, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Zheng, P.; Wu, H.; Liu, Y.; Ding, Y.; Yang, L. Thermal comfort in temporary buildings: A review. Build. Env. 2022, 221, 109262. [Google Scholar] [CrossRef]
- Tardioli, G.; Filho, R.; Bernaud, P.; Ntimos, D. An Innovative Modelling Approach Based on Building Physics and Machine Learning for the Prediction of Indoor Thermal Comfort in an Office Building. Environ. Sci. Proc. 2021, 11, 25. [Google Scholar] [CrossRef]
- Tardioli, G.; Filho, R.; Bernaud, P.; Ntimos, D. An Innovative Modelling Approach Based on Building Physics and Machine Learning for the Prediction of Indoor Thermal Comfort in an Office Building. Buildings 2022, 12, 475. [Google Scholar] [CrossRef]
- Brik, B.; Esseghir, M.; Merghem-Boulahia, L.; Hentati, A. Providing Convenient Indoor Thermal Comfort in Real-Time Based on Energy-Efficiency IoT Network. Energies 2022, 15, 808. [Google Scholar] [CrossRef]
- Krechowicz, M. Qualitative Risk Assessment of Passive House Design and Construction Processes. In Proceedings of the 5th World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium—WMCAUS, Prague, Czech Republic, 15–19 June 2020; IOP Publishing: Bristol, UK, 2020; p. 042068. [Google Scholar] [CrossRef]
- Krechowicz, M. Effective Risk Management in Innovative Projects: A Case Study of the Construction of Energy efficient, Sustainable Building of the Laboratory of Intelligent Building in Cracow. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 062006. [Google Scholar] [CrossRef]
- Krechowicz, M. Risk Management in Complex Construction Projects that Apply Renewable Energy Sources: A Case Study of the Realization Phase of the Energis Educational and Research Intelligent Building. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 062007. [Google Scholar] [CrossRef]
- Boudier, K.; Hoffmann, S. Analysis of the Potential of Decentralized Heating and Cooling Systems to Improve Thermal Comfort and Reduce Energy Consumption through an Adaptive Building Controller. Energies 2022, 15, 1100. [Google Scholar] [CrossRef]
- Ovando-Chacon, G.E.; Rodríguez-León, A.; Ovando-Chacon, S.L.; Hernández-Ordoñez, M.; Díaz-González, M.; Pozos-Texon, F.d.J. Computational Study of Thermal Comfort and Reduction of CO2 Levels inside a Classroom. Int. J. Environ. Res. Public Health 2022, 19, 2956. [Google Scholar] [CrossRef]
- Ferdyn-Grygierek, J.; Grydierek, K.; Gumińska, A.; Krawiec, P.; Oćwieja, A.; Poloczek, R.; Szkarłat, J.; Zawartka AZobczyńska, D.; Żukowska-Tejsen, D. Passive Cooling Solutions to Improve Thermal Comfort in Polish Dwellings. Energies 2021, 14, 3648. [Google Scholar] [CrossRef]
- Humphreys, M.A.; Nicol, J.F. The validity of ISO-PMV for predicting comfort votes in every-day thermal environments. Energy Build 2002, 34, 667–684. [Google Scholar] [CrossRef]
Parameter | Measurement Range | Resolution of Indications | Unit | Accuracy |
---|---|---|---|---|
Air velocity | 0 ÷ 5 | 0.01 | m∙s−1 | ±0.05 + 0.05 × Va for 0–1 m∙s−1 ±5% for 1–5 m∙s−1 |
Radiant temperature | −30 ÷ +60 | 0.01 | °C | ±0.4 °C |
Parameter | Measurement Range | Resolution of Indications | Unit | Accuracy |
---|---|---|---|---|
Temperature | 10 ÷ 45 | 0.1 | °C | ±0.5 |
Parameter | Measurement Range | Resolution of Indications | Unit | Accuracy |
---|---|---|---|---|
Volumetric flow rate | 42–4250 | 1 | m3∙h−1 | ±3% read out value ±12 m³∙h−1 > 85 m³∙h−1 |
Air speed | 0.125–12.5 | 0.01 | m∙s | ±3% read out value ±0.04 m∙s−1 > 0.25 m∙s−1 |
Temperature | −40–121 | 0.1 | °C | ±0.3% °C |
Humidity | 5–95 | 0.1 | % | ±3% RH |
Ceramic | Jojoba Oil 10 mm | Jojoba Oil 25 mm | Jojoba Oil 40 mm | Coconut Oil 10 mm | Coconut Oil 25 mm | Coconut Oil 40 mm | |
---|---|---|---|---|---|---|---|
Efficiency (%) | 85 | 67.4 | 47.6 | 42.5 | 64.2 | 44 | 41.2 |
tN (°C) 2 min | 12 | 8 | 4 | 3 | 8 | 8 | 3 |
tN (°C) 10 min | 13 | 9 | 5 | 3 | 8 | 4 | 3 |
Tukey Grouping | Average of PMV Index | n | Efficiency of Heat Recovery (%) |
---|---|---|---|
A | −1.7 | 78 | 85.0 |
B | −2.3 | 78 | 67.4 |
C | −3.0 | 78 | 47.6 |
D | −3.1 | 78 | 42.5 |
E | −2.3 | 78 | 64.2 |
D | −3.1 | 78 | 44.0 |
D | −3.1 | 78 | 41.2 |
Comparison of PMV Index for Pairs of Heat Recovery Efficiency (%) | Difference between Avg. Values of PMV Index | Simultaneous 95% Confidence Intervals | |
---|---|---|---|
Lower Limit of the Confidence Interval | Upper Limit of the Confidence Interval | ||
85–67.4 | 0.60 | 0.56 | 0.64 |
67.4–85 | −0.60 | −0.64 | −0.56 |
85–47.6 | 1.22 | 1.17 | 1.26 |
47.6–85 | −1.22 | −1.26 | −1.17 |
85–42.5 | 1.37 | 1.33 | 1.41 |
42.5–85 | −1.37 | −1.41 | −1.33 |
85–64.2 | 0.60 | 0.56 | 0.64 |
64.2–85 | −0.60 | −0.64 | −0.56 |
85–44 | 1.37 | 1.33 | 1.41 |
44–85 | −1.37 | −1.41 | −1.33 |
85–41.2 | 1.37 | 1.33 | 1.41 |
41.2–85 | −1.37 | −1.41 | −1.33 |
67.4–47.6 | 0.61 | 0.57 | 0.65 |
47.6–67.4 | −0.61 | −0.65 | −0.57 |
67.4–42.5 | 0.77 | 0.72 | 0.81 |
42.5–67.4 | −0.77 | −0.81 | −0.72 |
67.4–64.2 | 0.00 | −0.04 | 0.04 |
64.2–67.4 | 0.00 | −0.04 | 0.04 |
67.4–44 | 0.77 | 0.72 | 0.81 |
44–67.4 | −0.77 | −0.81 | −0.72 |
67.4–41.2 | 0.77 | 0.72 | 0.81 |
41.2–67.4 | −0.77 | −0.81 | −0.72 |
47.6–42.5 | 0.15 | 0.11 | 0.19 |
42.5–47.6 | −0.15 | −0.19 | −0.11 |
47.6–64.2 | −0.61 | −0.65 | −0.57 |
64.2–47.6 | 0.61 | 0.57 | 0.65 |
47.6–44 | 0.15 | 0.11 | 0.19 |
44–47.6 | −0.15 | −0.19 | −0.11 |
47.6–41.2 | 0.15 | 0.11 | 0.19 |
41.2–47.6 | −0.15 | −0.19 | −0.11 |
42.5–64.2 | −0.77 | −0.81 | −0.72 |
64.2–42.5 | 0.77 | 0.72 | 0.81 |
42.5–44 | 0.00 | −0.04 | 0.04 |
44–42.5 | 0.00 | −0.04 | 0.04 |
42.5–41.2 | 0.00 | −0.04 | 0.04 |
41.2–42.5 | 0.00 | −0.04 | 0.04 |
64.2–44 | 0.77 | 0.72 | 0.81 |
44–64.2 | −0.77 | −0.81 | −0.72 |
64.2–41.2 | 0.77 | 0.72 | 0.81 |
41.2–64.2 | −0.77 | −0.81 | −0.72 |
44–41.2 | 0.00 | −0.04 | 0.04 |
41.2–44 | 0.00 | −0.04 | 0.04 |
Tukey Grouping | Average of PMV Index | n | The Efficiency of Heat Recovery (%) |
---|---|---|---|
A | −1.7 | 300 | 85.0 |
B | −2.3 | 300 | 67.4 |
C | −2.9 | 300 | 47.6 |
D | −3.2 | 300 | 42.5 |
E | −2.4 | 300 | 64.2 |
F | −3.1 | 300 | 44.0 |
D | −3.2 | 300 | 41.2 |
Comparison of PMV Index for Pairs of Heat Recovery Efficiency (%) | Difference between Avg. Values | Simultaneous 95% Confidence Intervals | |
---|---|---|---|
Lower Limit of the Confidence Interval | Upper Limit of the Confidence Interval | ||
85–67.4 | 0.61 | 0.58 | 0.63 |
67.4–85 | −0.61 | −0.63 | −0.58 |
85–47.6 | 1.23 | 1.20 | 1.25 |
47.6–85 | −1.23 | −1.25 | −1.20 |
85–42.5 | 1.54 | 1.51 | 1.56 |
42.5–85 | −1.54 | −1.56 | −1.51 |
85–64.2 | 0.76 | 0.74 | 0.79 |
64.2–85 | −0.76 | −0.79 | −0.74 |
85–44 | 1.38 | 1.36 | 1.41 |
44–85 | −1.38 | −1.41 | −1.36 |
85–41.2 | 1.54 | 1.51 | 1.56 |
41.2–85 | −1.54 | −1.56 | −1.51 |
67.4–47.6 | 0.62 | 0.59 | 0.64 |
47.6–67.4 | −0.62 | −0.64 | −0.59 |
67.4–42.5 | 0.93 | 0.90 | 0.95 |
42.5–67.4 | −0.93 | −0.95 | −0.90 |
67.4–64.2 | 0.15 | 0.13 | 0.18 |
64.2–67.4 | −0.15 | −0.18 | −0.13 |
67.4–44 | 0.77 | 0.75 | 0.80 |
44–67.4 | −0.77 | −0.80 | −0.75 |
67.4–41.2 | 0.93 | 0.90 | 0.95 |
41.2–67.4 | −0.93 | −0.95 | −0.90 |
47.6–42.5 | 0.31 | 0.28 | 0.34 |
42.5–47.6 | −0.31 | −0.34 | −0.28 |
47.6–64.2 | −0.46 | −0.49 | −0.44 |
64.2–47.6 | 0.46 | 0.44 | 0.49 |
47.6–44 | 0.16 | 0.13 | 0.18 |
44–47.6 | −0.16 | −0.18 | −0.13 |
47.6–41.2 | 0.31 | 0.28 | 0.34 |
41.2–47.6 | −0.31 | −0.34 | −0.28 |
42.5–64.2 | −0.77 | −0.80 | −0.75 |
64.2–42.5 | 0.77 | 0.75 | 0.80 |
42.5–44 | −0.15 | −0.18 | −0.13 |
44–42.5 | 0.15 | 0.13 | 0.18 |
42.5–41.2 | 0.00 | −0.03 | 0.03 |
41.2–42.5 | 0.00 | −0.03 | 0.03 |
64.2–44 | 0.62 | 0.59 | 0.64 |
44–64.2 | −0.62 | −0.64 | −0.59 |
64.2–41.2 | 0.77 | 0.75 | 0.80 |
41.2–64.2 | −0.77 | −0.80 | −0.75 |
44–41.2 | 0.15 | 0.13 | 0.18 |
41.2–44 | −0.15 | −0.18 | −0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zender-Świercz, E.; Telejko, M.; Galiszewska, B.; Starzomska, M. Assessment of Thermal Comfort in Rooms Equipped with a Decentralised Façade Ventilation Unit. Energies 2022, 15, 7032. https://doi.org/10.3390/en15197032
Zender-Świercz E, Telejko M, Galiszewska B, Starzomska M. Assessment of Thermal Comfort in Rooms Equipped with a Decentralised Façade Ventilation Unit. Energies. 2022; 15(19):7032. https://doi.org/10.3390/en15197032
Chicago/Turabian StyleZender-Świercz, Ewa, Marek Telejko, Beata Galiszewska, and Mariola Starzomska. 2022. "Assessment of Thermal Comfort in Rooms Equipped with a Decentralised Façade Ventilation Unit" Energies 15, no. 19: 7032. https://doi.org/10.3390/en15197032
APA StyleZender-Świercz, E., Telejko, M., Galiszewska, B., & Starzomska, M. (2022). Assessment of Thermal Comfort in Rooms Equipped with a Decentralised Façade Ventilation Unit. Energies, 15(19), 7032. https://doi.org/10.3390/en15197032