Sustainable Construction—Technological Aspects of Ecological Wooden Buildings
Abstract
:1. Introduction
- (a)
- individual buildings and multi-family residential buildings at the level of: EP = 65 kWh/m2·year;
- (b)
- collective flat buildings at the level of: EP = 75 kWh/m2·year;
- (c)
- public buildings at the level of: EP = 45 kWh/m2·year.
2. Technology of Wooden Frame Houses
Characteristics of Construction of Wooden Frame House Technology
3. Materials and an Example of the Construction of a Building Based on a Wooden Frame
- (a)
- 6–13%—shrinkage for the tangential direction (cut tangent to the rings);
- (b)
- 3–5%—shrinkage for the radial direction (cutting in the plane perpendicular to the jars);
- (c)
- 0.1–0.8%—cutting along the fibers [73].
4. Development of Wooden Technology in European Countries According to Ecological Aspects
- ⇒
- 0.2 W/m2·K—external wall;
- ⇒
- 0.15 W/m2·K—roof, flat roof;
- ⇒
- 0.3 W/m2·K—floor on the ground;
- ⇒
- 0.9 W/m2·K—vertical windows;
- ⇒
- W/m2·K— roof windows;
- ⇒
- W/m2·K—exterior doors.
- ⇒
- E2—all-year house (U = 0.19 W/m2·K);
- ⇒
- E3—energy-saving house (U = 0.15 W/m2·K);
- ⇒
- E4—a perfectly insulated house (U = 0.10 W/m2·K).
- −
- wood, the basis of the frame construction;
- −
- earth (popular ‘mud-huts’ and buildings made in the ground; the ground is a natural thermal isolator);
- −
- straw (the heat transfer coefficient of pressed straw is similar to that of polystyrene and mineral wool, i.e., approx. 0.04 [W/(m2·K)];
- −
- insulation made of cellulose and cotton fibers; 80% of insulation is made of recycled materials. Cellulose fibers consist of newsprint with the addition of boron salts.
5. Economic Aspects of Traditional Timber Construction According to the Most Popular Skeleton Technology
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Desilver, D. Inflation has risen around the world, but the U.S. has seen one of the biggest increases. Pew Research Center. 24 November 2021. Available online: https://www.pewresearch.org/fact-tank/2021/11/24/inflation-has-risen-around-the-world-but-the-u-s-has-seen-one-of-the-biggest-increases/ (accessed on 2 October 2022).
- Available online: https://forsal.pl/gospodarka/inflacja/artykuly/8493084,inflacja-panstwa-swiat.html (accessed on 2 October 2022).
- Available online: https://worldpopulationreview.com/country-rankings/inflation-rate-by-country (accessed on 2 October 2022).
- Stepien, A.; Piotrowski, J.Z. Thermal insulation of autoclaved materials. J. Phys. Conf. Ser. 2021, 2069, 012037. [Google Scholar] [CrossRef]
- Available online: https://www.theweathernetwork.com/ca/news/article/carbon-dioxide-now-at-highest-level-in-human-history (accessed on 11 May 2022).
- Stefanidou, M.; Kamperidou, V.; Konstandinidis, A.; Koltsou, P.; Papadopoulos, P. 24-Rheological properties of biofibers in cementitious composite matrix. In Advances in Bio-Based Fiber; Moving towards a Green Society, The Textile Institute Book Series; Woodhead Publishing: Sawston, UK, 2022; pp. 553–573. [Google Scholar] [CrossRef]
- Available online: https://www.eea.europa.eu/pl/themes/human/about-environment-and-health (accessed on 2 October 2022).
- Neville, A.M.; Brooks, J.J. Concrete Technology; Pearson Education: London, UK, 2006; ISBN1 8131705366. ISBN2 9788131705360. [Google Scholar]
- Available online: http://www.understandconstruction.com/wood.html (accessed on 3 May 2022).
- Available online: https://www.britannica.com/science/wood-plant-tissue/Bark-and-bark-products (accessed on 2 October 2021).
- Szałygin, J. Dziedzictwo drewnianej architektury w Polsce. Ochrona Zabytków 2013, 1–4, 281–298. Available online: https://ochronazabytkow.nid.pl/wp-content/uploads/2019/08/OZ_1-4_2013_17_Szalygin.pdf (accessed on 16 September 2022).
- Available online: https://www.muratorplus.pl/technika/izolacje/wspolczynnik-przewodzenia-ciepla-od-czego-zalezy-przewodnictwo-cieplne-materialow-aa-ft7i-XYum-5Wij.html (accessed on 10 October 2021).
- Available online: https://www.domyexpert.com/ (accessed on 5 May 2022).
- Available online: https://www.mwconstruction.group/en/blog/new-technical-conditions-WT-2021-check-what-is-changing (accessed on 1 October 2022).
- Available online: http://cieplej.pl/index_artykuly.php5?dzial=2&kat=8&art=168 (accessed on 5 November 2022).
- PN-EN ISO 6946; Polish and European Standards. Komponenty Budowlane i Elementy Budynku/Components and Emelents of Buildings. Opór Cieplny i Współczynnik Przenikania Ciepła. /Thermal Resistance and Heat Transfer Coefficient/. 2008. Available online: https://www.iso.org/standard/65708.html (accessed on 16 September 2022).
- Available online: https://receptynadom.pl/lepiej-ocieplac-sciany-zewnatrz-niz-wewnatrz/ (accessed on 3 October 2022).
- Department of Building and Safety. Wood Frame Prescriptive Provisions one Story Residential Construction Only. Information Bulletin/Public–Building Code Reference No.: LARC, Document No. P/BC 2020-004, Previously Issued As: P/BC 2017-004. Available online: https://www.ladbs.org/docs/default-source/publications/information-bulletins/building-code/wood-frame-prescriptive-provisions-one-story-residential-construction-only-ib-p-bc2011-004.pdf?sfvrsn=9798eb53_48 (accessed on 1 October 2022).
- Kozioł, W.; Baic, I. Kruszywa Naturalne w Polsce–Aktualny Stan i Przyszłość/Natural Aggregates in Poland—Current State and Future; Association of Mining Engineers and Technicians: Katowice, Poland, 2018; Volume 74, pp. 1–8. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-c90be74b-16a0-4e69-949c-44dc21ec40b1 (accessed on 26 October 2022).
- Available online: https://cembureau.eu/ (accessed on 3 July 2022).
- Available online: https://www.bta-czasopismo.pl/wydarzenia/uwolnic-budownictwo-z-kajdan-kongres-urbi (accessed on 3 October 2021).
- Available online: https://www.stambet-bud.pl/blog/czy-piasek-sie-kiedys-skonczy (accessed on 13 April 2022).
- Available online: https://wgospodarce.pl/informacje/40559-piasek-na-wyczerpaniu (accessed on 13 April 2022).
- Available online: https://www.polsatnews.pl/wiadomosc/2021-06-04/na-swiecie-moze-zabraknac-piasku-zniknely-juz-24-wyspy/ (accessed on 13 April 2022).
- Available online: https://www.rp.pl/biznes/art10117381-surowce-ziemi-zabraknie-piasku (accessed on 2 October 2022).
- Available online: https://businessinsider.com.pl/technologie/nauka/na-swiecie-konczy-sie-piasekwyczerpuja-sie-zasoby-naturalne/l989njv (accessed on 3 October 2021).
- Available online: https://www.rp.pl/polityka/art1250151-singapur-sie-powieksza-wiec-malezja-nie-sprzeda-mu-piasku (accessed on 3 October 2021).
- Available online: https://www.kieruneksurowce.pl/artykul,56090,czy-na-ziemi-zabraknie-piasku.html (accessed on 3 October 2021).
- Available online: https://www.washingtonpost.com/news/wonk/wp/2015/03/24/how-china-used-more-cement-in-3-years-than-the-u-s-did-in-the-entire-20th-century/ (accessed on 2 July 2021).
- Singh, S.; Singh, P.; Rangabhashiyam, S.; Srivastava, K.K. Global Climate Change, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2021; ISBN1 9780128230978. ISBN2 9780128229286. [Google Scholar]
- Available online: https://weatherspark.com/countries/CA (accessed on 26 September 2022).
- Available online: https://www.coastal.ca.gov/coastalvoices/resources/Biodiversity_Atlas_Climate_and_Topography.pdf (accessed on 16 September 2022).
- Available online: https://weatherspark.com/y/19863/Average-Weather-in-Toronto-Canada-Year-Round (accessed on 26 September 2022).
- Available online: https://weatherspark.com/y/52849/Average-Weather-in-Bergen-Norway-Year-Round (accessed on 26 September 2022).
- Available online: https://weatherspark.com/y/1705/Average-Weather-in-Los-Angeles-California-United-States-Year-Round (accessed on 26 September 2022).
- Available online: https://pl.fsc.org/pl-pl/certyfikacja-gospodarki-lesnej-fm (accessed on 2 October 2022).
- Stepien, A.; Potrzeszcz-Sut, B.; Prentice, D.P.; Oey, T.; Balonis, M. The Role of Glass Compounds in Autoclaved Bricks. Buildings 2020, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://domolubni.pl/ekologiczne-materialy-budowlane/ (accessed on 9 November 2022).
- Available online: https://dzienniknaukowy.pl/planeta/w-tybetanskim-lodowcu-odkryto-nieznane-nauce-wirusy-sprzed-15-tys-lat (accessed on 2 July 2021).
- Domínguez-Martín, M.A.; Sauer, P.V.; Kirst, H.; Sutter, M.; Bína, D.; Greber, B.J.; Nogales, E.; Polívka, T.; Kerfeld, C.A. Structures of a phycobilisome in light-harvesting and photoprotected states. Nature 2022, 609, 835–845. Available online: https://www.nature.com/articles/s41586-022-05156-4 (accessed on 22 September 2022). [CrossRef] [PubMed]
- Sant, G.; Rajabipour, F.; Weiss, J. The influence of temperature on electrical conductivity measurements and maturity predictions in cementitious materials during hydration. Indian Concr. J. 2008, 82, 7–16. [Google Scholar]
- Wang, B.; Krishnan, N.M.A.; Yu, Y.; Wang, M.; Le Pape, Y.; Sant, G.; Bauchy, M. Rradiation-induced topological transition in SiO2: Structural signature of networks’ rigidity. J. Non-Cryst. Solids 2017, 463, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Vance, K.; Falzone, G.; Pignatelli, I.; Bauchy, M.; Balonis, M.; Sant, G. Direct Carbonation of Ca(OH)2 Using Liquid and Supercritical CO2: Implications for Carbon-Neutral Cementation. Ind. Eng. Chem. Res. 2015, 54, 8908–8918. [Google Scholar] [CrossRef]
- Wei, Z.; Falzone, G.; Wang, B.; Thiele, A.; Puerta-Falla, G.; Pilon, L.; Neithalath, N. The durability of cementitious composites containing microencapsulated phase change materials. Cem. Concr. Compos. 2017, 81, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Oey, T.; Timmons, J.; Stutzman, P.; Bullard, J.W.; Balonis, M.; Bauchy, M.; Sant, G. An improved basis for characterizing suitability of fly ash as a cement replacement agent. J. Am. Ceram. Soc. 2017, 100, 4785–4800. [Google Scholar] [CrossRef]
- Krishnan, N.M.A.; Wang, B.; Le Pape, Y.; Sant, G.; Bauchy, M. Irradiation- vs. vitrification-induced disordering: The case of α-quartz and glassy silica. J. Chem. Phys. 2017, 146, 204502. [Google Scholar] [CrossRef]
- Available online: https://www.swedishwood.com/wood-facts/about-wood/from-log-to-plank/durability-and-resistance (accessed on 2 October 2022).
- Standard SS-EN 350-2016; Durability of Wood and Wood-Based Products–Testing and Classification of the Durability to Biological Agents of Wood and Wood-Based Materials. 2016. Available online: https://standards.iteh.ai/catalog/standards/cen/b02d18a7-87ce-4a20-84c7-c0de641a2780/en-350-2016 (accessed on 2 October 2022).
- Available online: https://www.swedishwood.com/wood-facts/about-wood/wood-and-moisture/ (accessed on 3 October 2022).
- Nagarajappa, G.B.; Pandey, K.K. UV resistance and dimensional stability of wood modified with isopropenyl acetate. J Photochem. Photobiol B 2016, 155, 20–27. [Google Scholar] [CrossRef]
- Żenczykowski, W. Budownictwo Ogólne. T.1. Materiały i Wyroby Budowlane; Arkady: Warszawa, Poland, 1976. [Google Scholar]
- Żenczykowski, W. Budownictwo Ogólne–Tom 1–Materiały i Wyroby Budowlane; Arkady: Warszawa, Poland, 2005; ISBN 978-83-213-4334-1. [Google Scholar]
- Żenczykowski, W. Budownictwo Ogólne–Tom 3–Elementy Budynków, Podstawy Projektowania; Arkady: Warszawa, Poland, 2008; ISBN 978-83-213-4557-4. [Google Scholar]
- PN-EN Standards: 338; Drewno Konstrukcyjne-Klasy Wytrzymałości. /Wood Constructions-Wood Grades/. 2004. Available online: https://mann.eu.com/dane/cms/klasy_drewna_pn-en.pdf (accessed on 3 October 2022).
- Polyzois, D.; Kell, J.A. Repair and rehabilitation of wood utility poles with fibre-reinforced polymers. Can. J. Civ. Eng. 2011, 34. [Google Scholar] [CrossRef]
- Miller, D.J.; Jiang, D.; Ruest, K.L.; Dales, R.E. The impact of wood heating in houses on airborne endotoxin and sustainable heating in rural forested areas. In Proceedings of the 12th International Conference on Indoor Air Quality and Climate, Austin, TX, USA, 5–10 June 2011. [Google Scholar]
- Available online: https://muratordom.pl/budowa/domy-drewniane/domy-drewniane-zdrowe-i-szybkie-w-budowie-domy-z-drewna-aa-dPHc-F7BX-gKxM.html (accessed on 27 February 2022).
- Available online: https://www.drewhome.com.pl/technologia-historia (accessed on 26 February 2022).
- Matyskiewicz, J. Konstrukcja Budynków w Szkielecie Drewnianym; Amerykańsko-Polski Instytut Budownictwa/American-Polish Building Institute: Gdańsk, Poland, 1995. [Google Scholar]
- Available online: https://fachowydekarz.pl/analiza-porownawcza-przyporzadkowania-klas-wytrzymalosciowych-drewna-konstrukcyjnego-klasom-wizualnym-dawniej-i-dzis (accessed on 9 October 2022).
- Cmhc—Home To Canadians. Available online: https://chbanl.ca/wp-content/uploads/CMHC-Canadian-Wood-Frame-House-Construction.pdf (accessed on 2 October 2022).
- Available online: https://www.nrcan.gc.ca/our-natural-resources/forests/industry-and-trade/forest-products-applications/mass-timber-construction-canada/23428 (accessed on 2 October 2022).
- Available online: https://www.geni.com/people/George-W-Snow-inventor-balloon-frame-construction/6000000004957932184 (accessed on 27 February 2022).
- Available online: https://www.mgprojekt.com.pl/blog/dom-szkieletowy/ (accessed on 2 May 2022).
- Available online: https://legacyusa.com/blog/truss-roof-vs-rafters/ (accessed on 2 October 2022).
- Available online: https://www.glessnerhouse.org/story-of-a-house/tag/George+Washington+Snow (accessed on 5 December 2021).
- Available online: http://domykanadyjskie.com/historia-technologii/ (accessed on 9 August 2021).
- Available online: http://www.drevohaus.pl/?drev=technologia_produkcji (accessed on 5 September 2022).
- PN-B-02361; Polish and European Standards. Pochylenia Połaci Dachowych./Roof Pitch/. 2010. Available online: https://sklep.pkn.pl/pn-b-02361-2010p.html (accessed on 16 September 2022).
- Piróg, M.; Chądzyński, A. Development Prospects for Traditional Construction Wooden/Perspektywy Rozwoju Tradycyjnego Budownictwa Drewnianego. Teka Kom. Arch. Urb. Stud. Krajobr.-OL PAN 2010, 6, 73–78. Available online: http://old-panol.ipan.lublin.pl/wydawnictwa/TArch6/Pirog.pdf (accessed on 16 September 2022).
- Available online: https://ratajewski.com/www/dom_szkieletowy_po_szwedzku_czy_kanadyjsku/ (accessed on 5 December 2021).
- Available online: https://www.domoweklimaty.pl/czytelnia/plyty-pilsniowe-i-wiorowe-wady-i-zalety-rodzaje-plyt-budowlanych-wielowarstwowych (accessed on 10 November 2022).
- Available online: http://www.tyble.pl/index.php/porady/192-wilgotnosc-drewna-1.html (accessed on 4 May 2022).
- Available online: https://www.finehomebuilding.com/project-guides/framing/laying-out-and-detailing-wall-plates (accessed on 2 October 2022).
- Available online: https://www.engineersedge.com/thermodynamics/overall_heat_transfer-table.htm (accessed on 3 October 2022).
- Available online: https://weatherspark.com/y/87583/Average-Weather-in-Warsaw-Poland-Year-Round (accessed on 3 October 2022).
- Soteris, A. Kalogirou Solar Energy Engineering. Process. Syst. 2009, 121–217. [Google Scholar] [CrossRef]
- Available online: https://www.instalacjebudowlane.pl/10838-33-68-standard-wt-2021--wymagania-warunki-techniczne.html (accessed on 8 September 2022).
- Available online: https://www.drewno.pl/artykuly/12103,domy-drewniane-moga-w-przyszlosci-stanowic-w-polsce-nawet-jedna-piata-budynkow.html (accessed on 9 October 2022).
- Available online: https://ozeprojekt.pl/standard-wt-2021-wymagania/ (accessed on 8 September 2022).
- Available online: https://www.leafscore.com/eco-friendly-living-products/the-best-materials-for-eco-friendly-insulation/ (accessed on 10 November 2022).
- Dominik Jabłoński Wood Industry Increase in the Price of Saw Blades in the USA Causes Difficult Deliveries in Poland. Drewno.pl. Available online: https://www.drewno.pl/artykuly/12061,wzrost-cen-tarcicy-w-usa-powoduje-trudnosci-z-dostawami-w-polsce.html (accessed on 8 September 2022).
- Krechowicz, M.; Piotrowski, J.Z. Comprehensive Risk Management in Passive Buildings Projects. Energies 2021, 14, 6830. [Google Scholar] [CrossRef]
Material | Price [zł] | Price per m2 [zł] |
---|---|---|
Plasterboard A13 1200 × 2600 × 12.5 mm | 27.99 | 8.97 |
Gypsum plasterboard HA13 1200 × 2600 × 12.5 mm | 38.87 | 12.46 |
Ursa Mineral Wool Standard 50 mm 16.8 m 2 | 151.03 | 8.99 |
Polmar Styrofoam plate Roof/Floor 040 50 mm | 95.99 | 16.00 |
Masterplast Grid Fiberglass Masternet A-145 | 105.00 | 2.10 |
Atlas Mineral plaster 25 kg | 47.48 | 5.32 |
Ceresit CT 48 Silicone Paint 15 l | 363.10 | 7.26 |
Atlas Grawis S styrofoam adhesive 25 kg | 21.99 | 4.40 |
Adhesive for expanded polystyrene and mesh Atlas Grawis U, 25 kg | 29.99 | 5.99 |
Koelner connector for styrofoam, long: 120 mm (250 pcs.) | 75.00 | - |
Cekol Smoothing coat GS 200 20 kg | 37.80 | 5.67 |
OSB 3 plate, dim. 12 mm × 1250 mm × 2500 mm | 109.31 | 34.97 |
Universal acrylic primer Magnolia 10 l | 19.99 | - |
Color of nature—113 Paint, 5 l | 79.00 | 1.13 |
Façade board PHASE thickness: 1.9 × width: 14 × length: 300 cm | 33.95 | 33.95 |
PINE paneling thickness: 1.2 × width: 9.7 × length: 240 cm | 49.88 | 49.88 |
Layers of the External Wall | The Amount of Material | Cost of Material [zl] | Labor/Assembly Cost [zl] |
---|---|---|---|
Silicone paint | 100 m2 | 726.20 | 7500 |
Mineral plaster | 280 kg | 569.76 | |
Adhesive for the grid | 500 kg | 599.80 | |
Net | 100 m2 | 210.00 | |
Styrofoam 50 mm | 100 m2 | 1600.00 | |
Styrofoam adhesive | 500 kg | 439.80 | |
Pegs/dowels | 240 pcs | 75.00 | |
OSB board12 mm | 100 m2 | 3497.92 | 4275 |
G-K board 12.5 mm | 95 m2 | 852.15 | 6650 |
Filling + cleaning | 95 m2 | 1077.30 | 3325 |
Priming | 2 × 95 m2 | 39.98 | 950 |
Painting | 2 × 95 m2 | 316.00 | 2660 |
The total cost of material and work: | 35,363.91 |
Layers of the External Wall | The Amount of Material [m2] | Cost of Material [zl] | Labor/Assembly Cost [zl] |
---|---|---|---|
Wooden facing | 100 | 3395.00 | 35,600 |
Strips 40 × 60 | 168 | 924.00 | |
Waterproof G-K board 12.5 mm | 100 | 1246.00 | |
50 mm mineral wool | 50 | 764.15 | |
Vertical and horizontal distances every 60 cm | 346.5 | 1836.45 | |
Wooden paneling | 95 | 4738.60 | |
The total cost of material and work: | 48,004.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepien, A.; Piotrowski, J.Z.; Munik, S.; Balonis, M.; Kwiatkowska, M.; Krechowicz, M. Sustainable Construction—Technological Aspects of Ecological Wooden Buildings. Energies 2022, 15, 8823. https://doi.org/10.3390/en15238823
Stepien A, Piotrowski JZ, Munik S, Balonis M, Kwiatkowska M, Krechowicz M. Sustainable Construction—Technological Aspects of Ecological Wooden Buildings. Energies. 2022; 15(23):8823. https://doi.org/10.3390/en15238823
Chicago/Turabian StyleStepien, Anna, Jerzy Zbigniew Piotrowski, Sławomir Munik, Magdalena Balonis, Milena Kwiatkowska, and Maria Krechowicz. 2022. "Sustainable Construction—Technological Aspects of Ecological Wooden Buildings" Energies 15, no. 23: 8823. https://doi.org/10.3390/en15238823
APA StyleStepien, A., Piotrowski, J. Z., Munik, S., Balonis, M., Kwiatkowska, M., & Krechowicz, M. (2022). Sustainable Construction—Technological Aspects of Ecological Wooden Buildings. Energies, 15(23), 8823. https://doi.org/10.3390/en15238823