Optimization of Molecular Composition Distribution of Slurry Oil by Supercritical Fluid Extraction to Improve the Structure and Performance of Mesophase Pitch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Supercritical Fluid Extraction (SFE)
2.3. Mesophase Pitch Preparation
2.4. Analytical Method
3. Results
3.1. Properties of SLO and SFEO
3.2. Structural Differences between SLO and SFEO
3.3. Effect of Supercritical Fluid Extraction on Mesophase Structure and Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, C.; Wang, J.; Chen, S.; Wang, Z.; Liu, H.; Chen, K.; Guo, A. Thermal treatment of fluid catalytic cracking slurry oil: Determination of the thermal stability and its correlation with the quality of derived cokes. J. Anal. Appl. Pyrolysis 2018, 135, 406–414. [Google Scholar] [CrossRef]
- Song, X.; Liu, D.; Lou, B.; Li, Z.; Guo, A.; Zhang, D.; Wang, L. Removal of catalyst particles from fluid catalytic cracking slurry oil by the simultaneous addition of a flocculants and a weighting agent. Chem. Eng. Res. Des. 2018, 132, 686–696. [Google Scholar] [CrossRef]
- Wang, G.; Eser, S. Molecular composition of the high-boiling components of needle coke feedstocks and mesophase development. Energy Fuels 2007, 21, 3563–3572. [Google Scholar] [CrossRef]
- Mochida, I.; Nakamo, S.; Oyama, T.; Nesumi, Y.; Todo, Y. Puffing and CTE of carbon rods prepared from hydrodesulfurized petroleum needle coke. Carbon 1988, 26, 751–754. [Google Scholar] [CrossRef]
- Mochida, I.; Fei, Q.Y.; Korai, Y.; Fujimoto, K.; Yamashita, R. Carbonization in the tube bomb leading to needle coke: III. Carbonization properties of several coal-tar pitches. Carbon 1989, 27, 375–380. [Google Scholar] [CrossRef]
- Qiao, G.; Eser, S. Porosity and Thermal Expansion of Calcined Cokes. 2015, pp. 68–69. Available online: https://www.researchgate.net/publication/266165791 (accessed on 1 September 2022).
- Wincek, R.T.; Abrahamson, J.P.; Eser, S. Hydrodesulfurization of fluid catalytic cracking decant oils in a laboratory flow reactor and effect of hydrodesulfurization on subsequent coking. Energy Fuels 2016, 30, 6281–6289. [Google Scholar] [CrossRef]
- Eser, S.; Wang, G. A laboratory study of a pretreatment approach to accommodate high-sulfur fcc decant oils as feedstocks for commercial needle coke. Energy Fuels 2007, 21, 3573–3582. [Google Scholar] [CrossRef]
- Filley, R.M.; Eser, S. Analysis of hydrocarbons and sulfur compounds in two fcc decant oils and their carbonization products. Energy Fuels 1997, 11, 623–630. [Google Scholar] [CrossRef]
- Zhang, H. Formation mechanism and carbonization conditions of needle coke. Carbon Technol. 2004, 23, 28–33. [Google Scholar] [CrossRef]
- Tekinalp, H.L.; Cervo, E.G.; Fathollahi, B.; Thies, M.C. The effect of molecular composition and structure on the development of porosity in pitch-based activated carbon fibers. Carbon 2013, 52, 267–277. [Google Scholar] [CrossRef]
- Eser, S.; Jenkins, R.G. Carbonization of petroleum feedstocks I: Relationships between chemical constitution of the feedstocks and mesophase development. Carbon 1989, 27, 877–887. [Google Scholar] [CrossRef]
- Taylor, G.H.; Pennock, G.M.; Gerald, J.D.F.; Brunckhorst, L.F. Influence of QI on mesophase structure. Carbon 1993, 31, 341–354. [Google Scholar] [CrossRef]
- Mochida, I.; Sone, Y.; Park, Y.D.; Korai, Y. Interaction among fractions in mesophase pitches derived from AlCl3-modified ethylene tar. J. Mater. Sci. 1985, 20, 3177–3183. [Google Scholar] [CrossRef]
- Alvarez, E.; Marroquín, G.; Trejo, F.; Centeno, G.; Ancheyta, J.; Díaz, J.A.I. Pyrolysis kinetics of atmospheric residue and its SARA fractions. Fuel 2011, 90, 3602–3607. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y.; Ran, N.; Gao, F. Co-carbonization effect of asphaltine and heavy oil in mesophase development. J. Mater. Sci. 2016, 51, 2558–2564. [Google Scholar] [CrossRef]
- Kumar, S.; Srivastava, M. Influence of presence/addition of asphaltenes on semi-coke textures and mesophase development in petroleum feed stocks. Fuel 2016, 173, 69–78. [Google Scholar] [CrossRef]
- Kumar, S.; Srivastava, M. Meliorate optical textures and mesophase contents by promising approach of deasphalting of petroleum residues. J. Ind. Eng. Chem. 2017, 48, 133–141. [Google Scholar] [CrossRef]
- Mochida, I.; Korai, Y.; Fujitsu, H.; Oyama, T.; Nesumi, Y. Evaluation of several petroleum residues as the needle coke feedstock using a tube bomb. Carbon 1987, 25, 259–264. [Google Scholar] [CrossRef]
- Yuan, G.; Jin, Z.; Zuo, X.; Xue, Z.; Yan, F.; Dong, Z.; Cong, Y.; Li, X. Effect of carbonaceous precursors on the structure of mesophase pitches and their derived cokes. Energy Fuels 2018, 32, 8329–8339. [Google Scholar] [CrossRef]
- Cervo, E.G.; Thies, M.C. Control of molecular weight distribution of petroleum pitches via multistage supercritical extraction. J. Supercrit. Fluids 2010, 51, 345–352. [Google Scholar] [CrossRef]
- Shi, T.P.; Hu, Y.X.; Xu, Z.M.; Su, T.; Wang, R.A. Characterizing petroleum vacuum residue by supercritical-fluid extraction and fractionation. Ind. Eng. Chem. Res. 1997, 36, 3988–3992. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, Z.; Xu, C.; Chung, K.H.; Wang, R. Systematic characterization of petroleum residua based on SFEF. Fuel 2005, 84, 635–645. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y.; Zhang, L.; Xu, Z.; Sun, X.; Zhao, S.; Xu, C. Supercritical fluid extraction of fluid catalytic cracking slurry oil: Bulk property and molecular composition of narrow fractions. Energy Fuels 2016, 30, 10064–10071. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z.; Shi, Q.; Sun, X.; Zhang, N.; Zhang, Y.; Chung, K.H.; Xu, C.; Zhao, S. Molecular characterization of polar heteroatom species in venezuela orinoco petroleum vacuum residue and its supercritical fluid extraction subfractions. Energy Fuels 2012, 26, 5795–5803. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, L.; Fang, X.; Xu, Z.; Sun, X.; Zhao, S. Enhancement of mesocarbon microbead (MCMB) preparation through supercritical fluid extraction and fractionation. Fuel 2019, 237, 753–762. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, L.; Yu, Y.; Zhang, L.; Xu, Z.; Sun, X.; Zhao, S. Mesocarbon microbead production from fluid catalytic cracking slurry oil: Improving performance through supercritical fluid extraction. Energy Fuels 2018, 32, 12477–12485. [Google Scholar] [CrossRef]
- Shi, Q.; Pan, N.; Long, H.; Cui, D.; Guo, X.; Long, Y.; Chung, K.H.; Zhao, S.; Xu, C.; Hsu, C.S. Characterization of middle-temperature gasification coal tar. part 3: Molecular composition of acidic compounds. Energy Fuels 2013, 27, 108–117. [Google Scholar] [CrossRef]
- Li, C.; Xu, Z.; Qiao, M.; Zhao, S.; Xu, Z.; Sun, X. Quantitative study on thermal condensation of supercritical fluid extraction components of FCC slurry to produce mesophase pitch. J. Pet. Process. 2015, 31, 145–152. [Google Scholar] [CrossRef]
- Wang, G. Molecular Composition of Needle coke Feedstocks and Mesophase Development during Carbonization. Ph.D. Thesis, The Pennsylvania State University, Pittsburgh, PA, USA, 2005; pp. 29–32. [Google Scholar]
- Eser, S.; Wang, G.; Clemons, J. Molecular constitution, carbonization reactivity, and mesophase development from fcc decant oil and its derivatives. Am. Chem. Soc. 2005, 895, 95–111. [Google Scholar]
- Mochida, I.; Korai, Y.; Oyama, T. Semi-quantitative correlation between optical anisotropy and CTE of needle-like coke grains. Carbon 1987, 25, 273–278. [Google Scholar] [CrossRef]
- Brown, J.K.; Ladner, W.R. A study of the hydrogen distribution in coal-like materials by high-resolution nuclear resonance spectroscopy Ⅱ. A comparison with infra-red measurement and the conversion to carbon structure. Fuel 1960, 39, 87–96. [Google Scholar]
- Mochida, I.; Maeda, K.; Takeshita, K.; Kaji, N.; Suetsugu, Y.; Yoshida, T. Desulfurization of petroleum residues and their carbonization properties. Fuel Process. Technol. 1978, 1, 103–115. [Google Scholar] [CrossRef]
- Kipling, J.J.; Shooter, P.V.; Young, R.N. The effect of sulphur on the graphitization of carbons derived from polyvinyl chloride-sulphur systems. Carbon 1966, 4, 333–341. [Google Scholar] [CrossRef]
- Mochida, I.; Nakamura, E.; Maeda, K.; Takeshita, K.; Hoshino, T. Carbonization of aromatic hydrocarbons-V: Microscopic features of carbons obtained by the aid of catalysts. Carbon 1976, 14, 341–344. [Google Scholar] [CrossRef]
- Mochida, I.; Ando, T.; Maeda, K.; Fujitsu, H.; Takeshita, K. Catalytic carbonization of aromatic hydrocarbons-X: Cocarbonization of heterocyclic compounds with anthracene and 9,10-dihydroanthracene catalyzed by aluminium chloride. Carbon 1980, 18, 319–328. [Google Scholar] [CrossRef]
- Qian, S. The molecular structure nature and formation pathway of soluble intermediate phase. New Carbon Mater. 1994, 2, 1–3, (CNKI:SUN:XTCL.0.1994-02-000). [Google Scholar]
- Lefrank, P.A.; Hoff, S.L.; Stefanelli, J.J. Correlation of structural SEM data of cokes with graphite electrode performance. Carbon 1989, 27, 945–949. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, H.; Xu, Y.; Hu, C.; Zhao, C.; Cheng, J.; Chen, X.; Zhao, X. Preparation and characterization of coal pitch based needle coke (Part Ⅲ): The effects of quinoline insoluble in coal tar pitch. Energy Fuels 2020, 34, 8676–8684. [Google Scholar] [CrossRef]
- He, X.; Liu, X.; Nie, B.; Song, D. FTIR and Raman spectroscopy characterization of functional groups in various rank coals. Fuel 2017, 206, 555–563. [Google Scholar] [CrossRef]
- White, J.L.; Price, R.J. The formation of mesophase microstructures during the pyrolysis of selected coker feedstocks. Carbon 1974, 12, 321–333. [Google Scholar] [CrossRef]
- Whittaker, M.P.; Grindstaff, L.I. Formation mechanisms of selected isotropic petroleum cokes. Carbon 1972, 10, 165–171. [Google Scholar] [CrossRef]
Anisotropic Texture | Abbreviation | Size (μm) |
---|---|---|
Fine Mosaic | FM | <5 |
Coarse Mosaic | CM | Between 5 and 20 |
Flow | F | Between 20 and 60 |
Flow Domain (short) | FD(s) | Between 60 and 300 |
Flow Domain (long) | FD(l) | ≥300 |
Sample | Pressure (Mpa) | Solvent/Oil Ratio | SFELO (wt %) | SFEO (wt %) | SFER (wt %) |
---|---|---|---|---|---|
SLO-LH | 5 | 4 | 5.14 | 87.91 | 7.01 |
SLO-SH | 5 | 4 | 8.22 | 62.55 | 29.23 |
Property | RC * wt % | Ash | Viscosity mPa·s | Density g/cm3 | Mn | Elemental Content wt % | H/C | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
μg/g | C | H | S | N | O | ||||||
SLO–LH | 8.16 | 0.16 | 34.66 | 0.9909 | 486 | 88.16 | 10.93 | 0.37 | 0.3 | <0.3 | 1.48 |
SFEO–LH | 6.69 | 0 | 31.46 | 0.9694 | 475 | 88.1 | 11.15 | 0.35 | 0.32 | <0.1 | 1.51 |
SLO–SH | 16.08 | 0.32 | 42.06 | 1.0941 | 341 | 90.4 | 7.98 | 0.51 | 0.5 | <0.3 | 1.05 |
SFEO–SH | 7.97 | 0 | 14 | 1.0098 | 360 | 89.39 | 9.29 | 0.42 | 0.42 | <0.1 | 1.24 |
Structural Parameter | SLO–LH | SFEO–LH | SLO–SH | SFEO–SH |
---|---|---|---|---|
fA | 0.33 | 0.33 | 0.63 | 0.50 |
fP | 0.45 | 0.49 | 0.14 | 0.25 |
fN | 0.22 | 0.18 | 0.23 | 0.26 |
HAU/CA | 0.72 | 0.79 | 0.75 | 0.72 |
RA | 2.47 | 2.33 | 3.57 | 2.83 |
RN | 1.93 | 1.57 | 1.47 | 1.71 |
RT | 4.39 | 3.91 | 5.04 | 4.54 |
CA | 11.86 | 11.33 | 16.26 | 13.33 |
CN | 7.71 | 6.29 | 5.90 | 6.83 |
CP | 16.10 | 17.22 | 3.51 | 6.64 |
Sample | LC/nm | La/nm | d002/nm | Resistivity/mΩ·m | ID/IG |
---|---|---|---|---|---|
MP–LH | 2.9612 | 1.7498 | 0.3474 | 19.959 | 1.82 |
MP–LHSFEO | 2.9484 | 1.2546 | 0.3470 | 16.805 | 1.48 |
MP–LHSFER | 2.6938 | 1.4335 | 0.3475 | 1340.910 | 2.07 |
MP–SH | 3.0452 | 1.3407 | 0.3469 | 13.121 | 1.64 |
MP–SHSFEO | 2.9700 | 2.2157 | 0.3444 | 10.135 | 1.35 |
MP–SHSFER | 2.8214 | 1.2974 | 0.3470 | 1131.1 | 1.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, X.; Ma, Y.; Zhang, L.; Xu, Z.; Sun, X.; Zhao, S. Optimization of Molecular Composition Distribution of Slurry Oil by Supercritical Fluid Extraction to Improve the Structure and Performance of Mesophase Pitch. Energies 2022, 15, 7041. https://doi.org/10.3390/en15197041
Dai X, Ma Y, Zhang L, Xu Z, Sun X, Zhao S. Optimization of Molecular Composition Distribution of Slurry Oil by Supercritical Fluid Extraction to Improve the Structure and Performance of Mesophase Pitch. Energies. 2022; 15(19):7041. https://doi.org/10.3390/en15197041
Chicago/Turabian StyleDai, Xiaoyu, Yuanen Ma, Linzhou Zhang, Zhiming Xu, Xuewen Sun, and Suoqi Zhao. 2022. "Optimization of Molecular Composition Distribution of Slurry Oil by Supercritical Fluid Extraction to Improve the Structure and Performance of Mesophase Pitch" Energies 15, no. 19: 7041. https://doi.org/10.3390/en15197041
APA StyleDai, X., Ma, Y., Zhang, L., Xu, Z., Sun, X., & Zhao, S. (2022). Optimization of Molecular Composition Distribution of Slurry Oil by Supercritical Fluid Extraction to Improve the Structure and Performance of Mesophase Pitch. Energies, 15(19), 7041. https://doi.org/10.3390/en15197041