Enhancement of Biogas Production in Anaerobic Digestion Using Microbial Electrolysis Cell Seed Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sludge Samples
2.2. Reactor Configuration and Operation
2.3. Analysis and Calculation
3. Results and Discussion
3.1. Biogas Production
3.2. pH, Alkalinity, VFAs Concentration, and COD Removal
3.3. Methane Yield
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, S.; Gao, J.; Dong, B. Bottlenecks of anaerobic degradation of proteins in sewage sludge and the potential targeted enhancing strategies. Sci. Total Environ. 2021, 759, 143573. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Liu, J.; Xiao, B. Bioelectrochemical enhancement of hydrogen and methane production from the anaerobic digestion of sewage sludge in single-chamber membrane-free microbial electrolysis cells. Int. J. Hydrogen Energy 2013, 38, 1342–1347. [Google Scholar] [CrossRef]
- Tuncay, S.; Akcakaya, M.; Icgen, B. Ozonation of sewage sludge prior to anaerobic digestion led to Methanosaeta dominated biomethanation. Fuel 2022, 313, 122690. [Google Scholar] [CrossRef]
- Bo, T.; Zhu, X.; Zhang, L.; Tao, Y.; He, X.; Li, D.; Yan, Z. A new upgraded biogas production process: Coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor. Electrochem. Commun. 2014, 45, 67–70. [Google Scholar] [CrossRef]
- Mayer, F.; Bhandari, R.; Gäth, S. Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. Sci. Total Environ. 2019, 672, 708–721. [Google Scholar] [CrossRef] [PubMed]
- Mo, H.; Wang, N.; Ma, Z.; Zhang, J.; Zhang, J.; Wang, L.; Dong, W.; Zang, L. Hydroxyapatite Fabrication for Enhancing Biohydrogen Production from Glucose Dark Fermentation. ACS Omega 2022, 7, 10550–10558. [Google Scholar] [CrossRef]
- Bhatt, A.H.; Ren, Z.; Tao, L. Value Proposition of Untapped Wet Wastes: Carboxylic Acid Production through Anaerobic Digestion. iScience 2020, 23, 101221. [Google Scholar] [CrossRef]
- Bhatt, A.H.; Tao, L. Economic Perspectives of Biogas Production via Anaerobic Digestion. Bioengineering 2020, 7, 74. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Wu, J. Enhancement of methane production in anaerobic digestion process: A review. Appl. Energy 2019, 240, 120–137. [Google Scholar] [CrossRef]
- Speece, R.E. Anaerobic Biotechnology and Odor/Corrosion Control for Municipalities and Industries; Archae Press: Nashville, TN, USA, 2007. [Google Scholar]
- Feng, Q.; Song, Y.-C.; Yoo, K.; Kuppanan, N.; Subudhi, S.; Lal, B. Influence of neutralization in acidic distillery wastewater on direct interspecies electron transfer for methane production in an upflow anaerobic bioelectrochemical reactor. Int. J. Hydrogen Energy 2017, 42, 27774–27783. [Google Scholar] [CrossRef]
- Sun, R.; Zhou, A.; Jia, J.; Liang, Q.; Liu, Q.; Xing, D.; Ren, N. Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells. Bioresour. Technol. 2015, 175, 68–74. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, W.; Shi, Y.; Wang, B.; Huang, C.; Liu, C.; Wang, A. Microbial electrolysis enhanced bioconversion of waste sludge lysate for hydrogen production compared with anaerobic digestion. Sci. Environ. 2021, 767, 144344. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, B.S.; Ranjan Dhar, B. An intermittent power supply scheme to minimize electrical energy input in a microbial electrolysis cell assisted anaerobic digester. Bioresour. Technol. 2021, 319, 124109. [Google Scholar] [CrossRef] [PubMed]
- De Vrieze, J.; Gildemyn, S.; Arends, J.B.A.; Vanwonterghem, I.; Verbeken, K.; Boon, N.; Verstraete, W.; Tyson, G.W.; Hennebel, T.; Rabaey, K. Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion. Water Res. 2014, 54, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.-C.; Feng, Q.; Ahn, Y. Performance of the Bio-electrochemical Anaerobic Digestion of Sewage Sludge at Different Hydraulic Retention Times. Energy Fuels 2016, 30, 352–359. [Google Scholar] [CrossRef]
- Wainaina, S.; Lukitawesa; Kumar Awasthi, M.; Taherzadeh, M.J. Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered 2019, 10, 437–458. [Google Scholar] [CrossRef]
- Saratale, R.G.; Saratale, G.D.; Pugazhendhi, A.; Zhen, G.; Kumar, G.; Kadier, A.; Sivagurunathan, P. Microbiome involved in microbial electrochemical systems (MESs): A review. Chemosphere 2017, 177, 176–188. [Google Scholar] [CrossRef]
- Lim, S.S.; Fontmorin, J.-M.; Izadi, P.; Wan Daud, W.R.; Scott, K.; Yu, E.H. Impact of applied cell voltage on the performance of a microbial electrolysis cell fully catalysed by microorganisms. Int. J. Hydrogen Energy 2020, 45, 2557–2568. [Google Scholar] [CrossRef]
- Wang, X.-T.; Zhang, Y.-F.; Wang, B.; Wang, S.; Xing, X.; Xu, X.-J.; Liu, W.-Z.; Ren, N.-Q.; Lee, D.-J.; Chen, C. Enhancement of methane production from waste activated sludge using hybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) process—A review. Bioresour. Technol. 2022, 346, 126641. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Quan, X.; Zhao, H. Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell. Bioresour. Technol. 2016, 200, 235–244. [Google Scholar] [CrossRef]
- An, Z.; Feng, Q.; Zhao, R.; Wang, X. Bioelectrochemical Methane Production from Food Waste in Anaerobic Digestion Using a Carbon-Modified Copper Foam Electrode. Processes 2020, 8, 416. [Google Scholar] [CrossRef]
- Wang, X.-T.; Zhao, L.; Chen, C.; Chen, K.-Y.; Yang, H.; Xu, X.-J.; Zhou, X.; Liu, W.-Z.; Xing, D.-F.; Ren, N.-Q.; et al. Microbial electrolysis cells (MEC) accelerated methane production from the enhanced hydrolysis and acidogenesis of raw waste activated sludge. Chem. Eng. J. 2021, 413, 127472. [Google Scholar] [CrossRef]
- Yu, Z.; Leng, X.; Zhao, S.; Ji, J.; Zhou, T.; Khan, A.; Kakde, A.; Liu, P.; Li, X. A review on the applications of microbial electrolysis cells in anaerobic digestion. Bioresour. Technol. 2018, 255, 340–348. [Google Scholar] [CrossRef]
- Ahn, Y.; Im, S.; Chung, J.-W. Optimizing the operating temperature for microbial electrolysis cell treating sewage sludge. Int. J. Hydrogen Energy 2017, 42, 27784–27791. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y.; Chen, S.; Quan, X. Enhanced production of methane from waste activated sludge by the combination of high-solid anaerobic digestion and microbial electrolysis cell with iron–graphite electrode. Chem. Eng. J. 2015, 259, 787–794. [Google Scholar] [CrossRef]
- Feng, Q.; Song, Y.-C.; Bae, B.-U. Influence of applied voltage on the performance of bioelectrochemical anaerobic digestion of sewage sludge and planktonic microbial communities at ambient temperature. Bioresour. Technol. 2016, 220, 500–508. [Google Scholar] [CrossRef]
- Baird, R.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Anderson, G.K.; Yang, G. Determination of bicarbonate and total volatile acid concentration in anaerobic digesters using a simple titration. Water Environ. Res. 1992, 64, 53–59. [Google Scholar] [CrossRef]
- Call, D.; Logan, B.E. Hydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane. Environ. Sci. Technol. 2008, 42, 3401–3406. [Google Scholar] [CrossRef]
- Gong, L.; Yang, X.; Wang, Z.; Zhou, J.; You, X. Impact of hydrothermal pre-treatment on the anaerobic digestion of different solid–liquid ratio sludges and kinetic analysis. RSC Adv. 2019, 9, 19104–19113. [Google Scholar] [CrossRef]
- Feng, Q.; Song, Y.-C.; Ahn, Y. Electroactive microorganisms in bulk solution contribute significantly to methane production in bioelectrochemical anaerobic reactor. Bioresour. Technol. 2018, 259, 119–127. [Google Scholar] [CrossRef]
- Carrillo-Peña, D.; Escapa, A.; Hijosa-Valsero, M.; Paniagua-García, A.I.; Díez-Antolínez, R.; Mateos, R. Bioelectrochemical enhancement of methane production from exhausted vine shoot fermentation broth by integration of MEC with anaerobic digestion. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Villano, M.; Scardala, S.; Aulenta, F.; Majone, M. Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell. Bioresour. Technol. 2013, 130, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Jijai, S.; Siripatana, C. Kinetic Model of Biogas Production from Co-digestion of Thai Rice Noodle Wastewater (Khanomjeen) with Chicken Manure. Energy Procedia 2017, 138, 386–392. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Quan, X.; Chen, S. Effects of ferric iron on the anaerobic treatment and microbial biodiversity in a coupled microbial electrolysis cell (MEC)—Anaerobic reactor. Water Res. 2013, 47, 5719–5728. [Google Scholar] [CrossRef]
- Ma, J.; Frear, C.; Wang, Z.-w.; Yu, L.; Zhao, Q.; Li, X.; Chen, S. A simple methodology for rate-limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio. Bioresour. Technol. 2013, 134, 391–395. [Google Scholar] [CrossRef]
- Park, J.; Lee, B.; Shin, W.; Jo, S.; Jun, H. Application of a rotating impeller anode in a bioelectrochemical anaerobic digestion reactor for methane production from high-strength food waste. Bioresour. Technol. 2018, 259, 423–432. [Google Scholar] [CrossRef]
- Li, L.; Peng, X.; Wang, X.; Wu, D. Anaerobic digestion of food waste: A review focusing on process stability. Bioresour. Technol. 2018, 248, 20–28. [Google Scholar] [CrossRef]
- Mottet, A.; François, E.; Latrille, E.; Steyer, J.P.; Déléris, S.; Vedrenne, F.; Carrère, H. Estimating anaerobic biodegradability indicators for waste activated sludge. Chem. Eng. J. 2010, 160, 488–496. [Google Scholar] [CrossRef]
- Huq, N.A.; Hafenstine, G.R.; Huo, X.; Nguyen, H.; Tifft, S.M.; Conklin, D.R.; Stück, D.; Stunkel, J.; Yang, Z.; Heyne, J.S.; et al. Toward net-zero sustainable aviation fuel with wet waste—Derived volatile fatty acids. Proc. Natl. Acad. Sci. USA 2021, 118, e2023008118. [Google Scholar] [CrossRef]
Parameter | Primary Sewage Sludge | Seed Sludge | |
---|---|---|---|
AD | MEC | ||
Total solid (TS, g/L) | 52.4 ± 14.9 | 25.7 | 25.8 ± 1.4 |
Volatile solid (VS, g/L) | 38.9 ± 12.2 | 17.2 | 16.6 ± 0.7 |
Total chemical oxygen demand (TCOD, g/L) | 56.1 ± 18.7 | 20.7 | 25.8 ± 1.8 |
Soluble chemical oxygen demand (SCOD, g/L) | 1.3 ± 0.6 | 1.3 | 1.2 ± 0.4 |
pH | 5.7 ± 0.5 | 8.3 | 7.8 |
Alkalinity (mg/L as CaCO3) | 1226.3 ± 605 | 5945 | 5124.2 ± 364.7 |
Total volatile fatty acid (TVFAs, mg/L as HAc) | 1307.4 ± 1244 | 1030 | 1150.6 ± 453.8 |
Parameter | AD | MEC-0.3V Cycle | MEC-OCV Cycle |
---|---|---|---|
Electrodes | empty | 4 sets | 4 sets |
Voltage (v) | 0 | 0.3 | 0 |
Inoculated sludge | Anaerobic digestion sludge | Pre-adapted sludge from an MEC (0.3 V) | Pre-adapted sludge from an MEC (0.3 V) |
Substrate | Primary sewage sludge | Primary sewage sludge | Primary sewage sludge |
Batch cycles | 1 cycle | 3 cycles | 3 cycles |
Operation duration (day) | 36 | 36 (13 + 9 + 12) | 36 (13 + 9 + 12) |
Parameter | AD | MEC-0.3V | MEC-OCV | ||||
---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 1st | 2nd | 3rd | ||
λ (day) | 5.68 | 1.07 | 1.00 | 1.06 | 1.04 | 1.15 | 1.29 |
P (mL/g CODr) | 157.25 | 257.21 | 151.40 | 187.03 | 263.08 | 152.7 | 79.15 |
Rm (mL/g CODr/day) | 5.25 | 58.62 | 31.98 | 29.82 | 56.17 | 31.37 | 21.33 |
R2 | 0.9837 | 0.9986 | 0.9987 | 0.9992 | 0.9983 | 0.9985 | 0.9846 |
Parameter | AD | MEC-0.3 V Cycle | MEC-OCV Cycle | ||||
---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 1st | 2nd | 3rd | ||
pH | 7.57 | 7.49 | 7.61 | 7.75 | 7.57 | 7.63 | 7.61 |
Alkalinity (mg/L as CaCO3) | 5100 | 3980 | 3980 | 3965 | 4550 | 4120 | 3975 |
TVFAs (mg/L as HAc) | 1317 | 917 | 373 | 808 | 1018 | 1315 | 761 |
TVFAs/alkalinity ratio | 0.258 | 0.230 | 0.094 | 0.204 | 0.224 | 0.319 | 0.191 |
COD removal efficiency (%) | 38.54 | 33.24 | 40.08 | 48.22 | 34.01 | 41.41 | 43.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.E.; Ahn, Y.; Shin, S.G.; Chung, J.W. Enhancement of Biogas Production in Anaerobic Digestion Using Microbial Electrolysis Cell Seed Sludge. Energies 2022, 15, 7042. https://doi.org/10.3390/en15197042
Lee ME, Ahn Y, Shin SG, Chung JW. Enhancement of Biogas Production in Anaerobic Digestion Using Microbial Electrolysis Cell Seed Sludge. Energies. 2022; 15(19):7042. https://doi.org/10.3390/en15197042
Chicago/Turabian StyleLee, Myoung Eun, Yongtae Ahn, Seung Gu Shin, and Jae Woo Chung. 2022. "Enhancement of Biogas Production in Anaerobic Digestion Using Microbial Electrolysis Cell Seed Sludge" Energies 15, no. 19: 7042. https://doi.org/10.3390/en15197042
APA StyleLee, M. E., Ahn, Y., Shin, S. G., & Chung, J. W. (2022). Enhancement of Biogas Production in Anaerobic Digestion Using Microbial Electrolysis Cell Seed Sludge. Energies, 15(19), 7042. https://doi.org/10.3390/en15197042