Experimental Study of Proppant Placement Characteristics in Curving Fractures
Abstract
:1. Introduction
2. Experimental System and Method
2.1. Experimental Method
2.2. Sands and Fluid
2.3. Experimental Parameters
3. Results and Analysis
3.1. Effect of the Angle, θ
3.2. Effect of the Distance Ratio, L1/L
3.3. Effect of the Reynolds Number, Re
3.4. Effect of the Shields Number, S
4. Discussion
5. Conclusions
- Due to the influence of the curving section, the liquid flow direction changes twice, leading to a change in particle settling behavior. The uneven deposition along the whole channel causes an irregular proppant dune. The large sand is prone to deposit at the front side of the dune, and small particles can move deeper into the curving fracture.
- The curving section has a hindering effect on sand placement. The dune in the curving fracture is closer to the inlet compared to the straight fracture. With the decrease in the bending angle, more large particles would be transported out of the channel, and a lower and smaller dune is built up in the fracture.
- As the curving section is farther away from the inlet, particles deposit near the inlet and form a larger proppant dune. In contrast, more particles flow through the curving section and deeper into the fracture. A large depleted zone is formed in the first and curving sections, significantly decreasing the fracture conductivity.
- The Reynolds number and Shields number can significantly affect particle–fluid flow in curving fractures. The increase in Reynolds number and Shields number would significantly improve particle transport capacity, leading to the reduction of the covered area of the particle dune.
- The proposed model, including four factors, can quantitatively predict the covered area of the proppant dune in curving fractures. The minor errors mean the high reliability of the equation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qu, H.; Tang, S.; Sheng, M.; Liu, Z.; Wang, R.; Hu, Y. Experimental investigation of the damage characteristics and breaking process of shale by abrasive waterjet impact. J. Pet. Sci. Eng. 2022, 211, 110165. [Google Scholar] [CrossRef]
- Qu, H.; Tang, S.; Liu, Z.; McLennan, J.; Wang, R. Experimental investigation of proppant particles transport in a tortuous fracture. Powder Technol. 2021, 382, 95–106. [Google Scholar] [CrossRef]
- Li, J.; Liu, P.; Kuang, S.; Yu, A. Visual lab tests: Proppant transportation in a 3D printed vertical hydraulic fracture with two-sided rough surfaces. J. Pet. Sci. Eng. 2021, 196, 107738. [Google Scholar] [CrossRef]
- Qu, H.; Wang, R.; Ao, X.; Xue, L.; Liu, Z.; Lin, H. The Investigation of Proppant Particle-Fluid Flow in the Vertical Fracture with a Contracted Aperture. SPE J. 2022, 27, 274–291. [Google Scholar] [CrossRef]
- Qu, H.; Liu, Y.; Zeng, S.; Xiao, H.; Lu, Y.; Liu, Z. Effect of Natural Fracture Characteristics on Proppant Transport and Placement in an Irregular, Nonplanar Fracture. SPE J. 2022, 27, 2208–2225. [Google Scholar] [CrossRef]
- Warpinski, N.R.; Teufel, L.W. Influence of Geologic Discontinuities on Hydraulic Fracture Propagation (includes associated papers 17011 and 17074). J. Pet. Technol. 1987, 39, 209–220. [Google Scholar] [CrossRef]
- Lee, H.; Olson, J.; Holder, J.; Gale, J.; Myers, R. The interaction of propagating opening mode fractures with preexisting discontinuities in shale: Shale vein-fracture interaction. J. Geophys. Res. Solid Earth 2014, 120, 169–181. [Google Scholar] [CrossRef]
- Fu, W.; Savitski, A.A.; Damjanac, B.; Bunger, A.P. Three-dimensional lattice simulation of hydraulic fracture interaction with natural fractures. Comput. Geotech. 2019, 107, 214–234. [Google Scholar] [CrossRef]
- Wu, X.; Huang, Z.; Cheng, Z.; Zhang, S.; Song, H.; Zhao, X. Effects of cyclic heating and LN2-cooling on the physical and mechanical properties of granite. Appl. Therm. Eng. 2019, 156, 99–110. [Google Scholar] [CrossRef]
- Wu, X.; Huang, Z.; Zhang, S.; Cheng, Z.; Li, R.; Song, H.; Wen, H.; Huang, P. Damage Analysis of High-Temperature Rocks Subjected to LN2 Thermal Shock. Rock Mech. Rock Eng. 2019, 52, 2585–2603. [Google Scholar] [CrossRef]
- Liou, T.-M.; Tzeng, Y.-Y.; Chen, C.-C. Fluid Flow in a 180 deg Sharp Turning Duct with Different Divider Thicknesses. J. Turbomach. 1999, 121, 569–576. [Google Scholar] [CrossRef]
- Zhang, Y.; Chai, J. Effect of surface morphology on fluid flow in rough fractures: A review. J. Nat. Gas Sci. Eng. 2020, 79, 103343. [Google Scholar] [CrossRef]
- Sahai, R.; Moghanloo, R.G. Proppant transport in complex fracture networks—A review. J. Pet. Sci. Eng. 2019, 182, 106199. [Google Scholar] [CrossRef]
- Kern, L.; Perkins, T.; Wyant, R. The mechanics of sand movement in fracturing. J. Pet. Technol. 1959, 11, 55–57. [Google Scholar] [CrossRef]
- Babcock, R.; Prokop, C.; Kehle, R. Distribution of propping agent in vertical fractures. In Drilling and Production Practice; American Petroleum Institute: New York, NY, USA, 1967. [Google Scholar]
- Wang, J.; Joseph, D.D.; Patankar, N.A.; Conway, M.; Barree, R.D. Bi-power law correlations for sediment transport in pressure driven channel flows. Int. J. Multiph. Flow 2003, 29, 475–494. [Google Scholar] [CrossRef]
- Woodworth, T.R.; Miskimins, J.L. Extrapolation of Laboratory Proppant Placement Behavior to the Field in Slickwater Fracturing Applications. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, College Station, TX, USA, 29–31 January 2007; Society of Petroleum Engineers: College Station, TX, USA, 2007; p. 12. [Google Scholar]
- Hu, X.; Wu, K.; Li, G.; Tang, J.; Shen, Z. Effect of proppant addition schedule on the proppant distribution in a straight fracture for slickwater treatment. J. Pet. Sci. Eng. 2018, 167, 110–119. [Google Scholar] [CrossRef]
- Tong, S.; Mohanty, K.K. Proppant transport study in fractures with intersections. Fuel 2016, 181, 463–477. [Google Scholar] [CrossRef]
- Fjaestad, D.; Tomac, I. Experimental investigation of sand proppant particles flow and transport regimes through narrow slots. Powder Technol. 2019, 343, 495–511. [Google Scholar] [CrossRef]
- Zeng, H.; Jin, Y.; Qu, H.; Lu, Y.-H. Experimental investigation and correlations for proppant distribution in narrow fractures of deep shale gas reservoirs. Pet. Sci. 2021, 19, 619–628. [Google Scholar] [CrossRef]
- Tong, S.; Singh, R.; Mohanty, K.K. A visualization study of proppant transport in foam fracturing fluids. J. Nat. Gas Sci. Eng. 2018, 52, 235–247. [Google Scholar] [CrossRef]
- Hou, L.; Sun, B.; Wang, Z.; Li, Q. Experimental study of particle settling in supercritical carbon dioxide. J. Supercrit. Fluids 2015, 100, 121–128. [Google Scholar] [CrossRef]
- Wen, Q.; Wang, S.; Duan, X.; Li, Y.; Wang, F.; Jin, X. Experimental investigation of proppant settling in complex hydraulic-natural fracture system in shale reservoirs. J. Nat. Gas Sci. Eng. 2016, 33, 70–80. [Google Scholar] [CrossRef]
- Sahai, R.; Miskimins, J.L.; Olson, K.E. Laboratory Results of Proppant Transport in Complex Fracture Systems. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 4–6 February 2014; Society of Petroleum Engineers: The Woodlands, TX, USA, 2014; p. 26. [Google Scholar]
- Li, N.Y.; Li, J.; Zhao, L.Q.; Luo, Z.F.; Liu, P.L.; Guo, Y.J. Laboratory Testing on Proppant Transport in Complex-Fracture Systems. SPE Prod. Oper. 2017, 32, 382–391. [Google Scholar] [CrossRef]
- Fan, L.F.; Wang, H.D.; Wu, Z.J.; Zhao, S.H. Effects of angle patterns at fracture intersections on fluid flow nonlinearity and outlet flow rate distribution at high Reynolds numbers. Int. J. Rock Mech. Min. Sci. 2019, 124, 104136. [Google Scholar] [CrossRef]
- Wang, X.; Yao, J.; Gong, L.; Sun, H.; Liu, W. Numerical simulations of proppant deposition and transport characteristics in hydraulic fractures and fracture networks. J. Pet. Sci. Eng. 2019, 183, 106401. [Google Scholar] [CrossRef]
- Yue, M.; Zhang, Q.; Zhu, W.; Zhang, L.; Song, H.; Li, J. Effects of proppant distribution in fracture networks on horizontal well performance. J. Pet. Sci. Eng. 2020, 187, 106816. [Google Scholar] [CrossRef]
- Miskimins, J. Hydraulic Fracturing: Fundamentals and Advancements; Society of Petroleum Engineers: Danbury, CT, USA, 2020. [Google Scholar]
- Fernández, M.E.; Sánchez, M.; Pugnaloni, L.A. Proppant transport in a scaled vertical planar fracture: Vorticity and dune placement. J. Pet. Sci. Eng. 2019, 173, 1382–1389. [Google Scholar] [CrossRef]
- Chhabra, R.P. Bubbles, Drops, and Particles in Non-Newtonian Fluids, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Zohuri, B. Dimensional Analysis and Self-Similarity Methods for Engineers and Scientists; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Mack, M.; Sun, J.; Khadilkar, C. Quantifying Proppant Transport in Thin Fluids: Theory and Experiments. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 4–6 February 2014; Society of Petroleum Engineers: The Woodlands, TX, USA, 2014; p. 14. [Google Scholar]
- Morsi, S.A.; Alexander, A.J. An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 1972, 55, 193–208. [Google Scholar] [CrossRef]
- Miller, M.C.; McCave, I.N.; Komar, P.D. Threshold of sediment motion under unidirectional currents. Sedimentology 1977, 24, 507–527. [Google Scholar] [CrossRef]
- McClure, M. Bed load proppant transport during slickwater hydraulic fracturing: Insights from comparisons between published laboratory data and correlations for sediment and pipeline slurry transport. J. Pet. Sci. Eng. 2018, 161, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y. Settling and Hydrodynamic Retardation of Proppants in Hydraulic Fractures. Ph.D. Thesis, University of Texas at Austin, Austin, TX, USA, 2006. [Google Scholar]
- Joseph, H.; Spurk, N.A. Fluid Mechanics; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Anschutz, D.A.; Lowrey, T.A.; Stribling, M.; Wildt, P.J. An In-Depth Study of Proppant Transport and Placement with Various Fracturing Fluids. In Proceedings of the SPE Annual Technical Conference and Exhibition, Calgary, AB, Canada, 30 September–2 October 2019; Society of Petroleum Engineers: Calgary, AB, Canada, 2019; p. 27. [Google Scholar]
Particle | Mesh | Size Range (mm) | Average Diameter d50 (mm) | Apparent Density ρp (kg/m3) | Repose Angle θr (°) |
---|---|---|---|---|---|
Sand | 10/20 | 2/0.84 | 1.41 | 2650 | 34.8 |
20/40 | 0.84/0.42 | 0.633 | 2650 | 33.5 | |
40/70 | 0.42/0.212 | 0.311 | 2650 | 37.3 | |
70/140 | 0.212/0.053 | 0.155 | 2650 | 40.2 |
Case | Fluid Phase | Particle Phase | Dimensionless Number | |||
---|---|---|---|---|---|---|
vi (m/s) | d50 (mm) | L1/L | θ (°) | Re | S | |
1 | 0.42 | 0.311 | 0.5 | 45/90/135/180 | 3311 | 0.16 |
2 | 0.42 | 0.311 | 0.16/0.33/0.5/0.66 | 90 | 3311 | 0.16 |
3 | 0.12 | 0.311 | 0.5 | 45/90/135/180 | 946 | 0.05 |
4 | 0.12 | 0.311 | 0.16/0.33/0.5/0.66 | 90 | 946 | 0.05 |
5 | 0.21 | 0.311 | 0.5 | 45/90/135/180 | 1655 | 0.08 |
6 | 0.21 | 0.311 | 0.16/0.33/0.5/0.66 | 90 | 1655 | 0.08 |
7 | 0.5 | 0.311 | 0.5 | 45/90/135/180 | 3942 | 0.2 |
8 | 0.5 | 0.311 | 0.16/0.33/0.5/0.66 | 90 | 3942 | 0.2 |
9 | 0.42 | 0.155 | 0.5 | 45/90/135/180 | 3311 | 0.32 |
10 | 0.42 | 0.155 | 0.16/0.33/0.5/0.66 | 90 | 3311 | 0.32 |
11 | 0.42 | 0.633 | 0.5 | 45/90/135/180 | 3311 | 0.08 |
12 | 0.42 | 0.633 | 0.16/0.33/0.5/0.66 | 90 | 3311 | 0.08 |
13 | 0.42 | 1.41 | 0.5 | 45/90/135/180 | 3311 | 0.04 |
14 | 0.42 | 1.41 | 0.16/0.33/0.5/0.66 | 90 | 3311 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Wu, C.; Zhou, L. Experimental Study of Proppant Placement Characteristics in Curving Fractures. Energies 2022, 15, 7169. https://doi.org/10.3390/en15197169
Wu Z, Wu C, Zhou L. Experimental Study of Proppant Placement Characteristics in Curving Fractures. Energies. 2022; 15(19):7169. https://doi.org/10.3390/en15197169
Chicago/Turabian StyleWu, Zhiying, Chunfang Wu, and Linbo Zhou. 2022. "Experimental Study of Proppant Placement Characteristics in Curving Fractures" Energies 15, no. 19: 7169. https://doi.org/10.3390/en15197169
APA StyleWu, Z., Wu, C., & Zhou, L. (2022). Experimental Study of Proppant Placement Characteristics in Curving Fractures. Energies, 15(19), 7169. https://doi.org/10.3390/en15197169