Investigation on the Propagation Mechanisms of a Hydraulic Fracture in Glutenite Reservoirs Using DEM
Abstract
:1. Introduction
2. Computational Models
2.1. Parallel Bond Model
2.2. Failure Criterions
2.3. Implementation of Flow-DEM Coupling
2.4. Simulation Scheme
3. Results and Discussion
3.1. Effect of Geo-Stress Difference
3.2. Effect of Permeability
3.3. Effect of Gravel Strength
3.4. Effect of Injection Rate
3.5. Effect of Well Diameter
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbols | |
Fn | normal force (N) |
(Fn)0 | normal force at last time step (N) |
kn | normal stiffness (N/m) |
bonding area between adjacent particles (m2) | |
shear force between the particles (N) | |
(Fs)0 | shear force at last time step (N) |
ks | shear stiffness (N/m) |
inter-particle bending moment (N · m) | |
bending moment at last time step (N · m) | |
polar moment of inertia at the contact of adjacent particles (m4) | |
pb_ten | tensile strength limit (MPa) |
pb_coh | cohesion (MPa) |
Q | volume flow through the channel (m3/s) |
dp | pressure difference between two adjacent domains (MPa) |
L | channel length (m) |
K | fluid bulk modulus (Pa) |
Vd | domain volume (m3) |
w | channel aperture (m) |
w0 | residual aperture (m) |
F0 | normal force when the channel aperture reduces to half of its residual aperture (N) |
F | normal contact force of the particle (N) |
Greek Symbols | |
relative normal-displacement increment (m) | |
relative shear-displacement increment (m) | |
relative twist-rotation increment (m) | |
σt | tensile stress (MPa) |
τ | shear stress (MPa) |
σn | normal compressive stress (MPa) |
φ | internal friction angle (°) |
μ | fluid viscosity (Pa · s) |
Δp | pressure change caused by fluid exchange between the domains (Pa) |
Δt | time step (s) |
ΔVd | volume change of the domain (m3) |
References
- Liu, Z.; Bai, B.; Wang, Y.; Ding, Z.; Li, J.; Qu, H.; Jia, Z. Experimental study of friction reducer effect on dynamic and isotherm of methane desorption on Longmaxi shale. Fuel 2020, 288, 119733. [Google Scholar] [CrossRef]
- Liu, Z.; Bai, B.; Tang, J.; Xiang, Z.; Zeng, S.; Qu, H. Investigation of Slickwater Effect on Permeability of Gas Shale from Longmaxi Formation. Energy Fuels 2021, 35, 3104–3111. [Google Scholar] [CrossRef]
- Qu, H.; Tang, S.; Liu, Z.; Mclennan, J.; Wang, R. Experimental investigation of proppant particles transport in a tortuous fracture. Powder Technol. 2021, 382, 95–106. [Google Scholar] [CrossRef]
- Qu, H.; Liu, Y.; Zeng, S.; Xiao, H.; Lu, Y.; Liu, Z. Effect of Natural Fracture Characteristics on Proppant Transport and Placement in an Irregular, Nonplanar Fracture. SPE J. 2022, 27, 2208–2225. [Google Scholar] [CrossRef]
- Li, L.; Meng, Q.; Wang, S.; Li, G.; Tang, C. A numerical investigation of the hydraulic fracturing behaviour of conglomerate in Glutenite formation. Acta Geotech. 2013, 8, 597–618. [Google Scholar] [CrossRef]
- Guo, C.; Xu, J.; Wei, M.; Jiang, R. Experimental study and numerical simulation of hydraulic fracturing tight sandstone reservoirs. Fuel 2015, 159, 334–344. [Google Scholar] [CrossRef]
- Yushi, Z.; Shicheng, Z.; Tong, Z.; Xiang, Z.; Tiankui, G. Experimental Investigation into Hydraulic Fracture Network Propagation in Gas Shales Using CT Scanning Technology. Rock Mech. Rock Eng. 2016, 49, 33–45. [Google Scholar] [CrossRef]
- Bunger, A.P.; Kear, J.; Dyskin, A.V.; Pasternak, E. Sustained acoustic emissions following tensile crack propagation in a crystalline rock. Int. J. Fract. 2015, 193, 87–98. [Google Scholar] [CrossRef]
- Adachi, J.; Siebrits, E.; Peirce, A.; Desroches, J. Computer simulation of hydraulic fractures. Int. J. Rock Mech. Min. Sci. 2007, 44, 739–757. [Google Scholar] [CrossRef]
- Chen, Z. Finite element modelling of viscosity-dominated hydraulic fractures. J. Pet. Sci. Eng. 2012, 88, 136–144. [Google Scholar] [CrossRef]
- Eshiet, K.I.; Sheng, Y.; Ye, J. Microscopic modelling of the hydraulic fracturing process. Environ. Earth Sci. 2013, 68, 1169–1186. [Google Scholar] [CrossRef]
- Al-Busaidi, A.; Hazzard, J.F.; Young, R.P. Distinct element modeling of hydraulically fractured Lac du Bonnet granite. J. Geophys. Res. Earth Surf. 2005, 110, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Zhang, L.; Pan, Z.; Han, Z. Numerical studies of interactions between hydraulic and natural fractures by Smooth Joint Model. J. Nat. Gas Sci. Eng. 2017, 46, 592–602. [Google Scholar] [CrossRef]
- Fatahi, H.; Hossain, M.; Sarmadivaleh, M. Numerical and experimental investigation of the interaction of natural and propagated hydraulic fracture. J. Nat. Gas Sci. Eng. 2017, 37, 409–424. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Zou, Y.; Li, N.; Chen, M.; Zhang, Y.; Liu, Z. Experimental study on the mechanism of hydraulic fracture growth in a glutenite reservoir. J. Struct. Geol. 2017, 97, 37–47. [Google Scholar] [CrossRef]
- Liu, P.; Ju, Y.; Ranjith, P.; Zheng, Z.; Chen, J. Experimental investigation of the effects of heterogeneity and geostress difference on the 3D growth and distribution of hydrofracturing cracks in unconventional reservoir rocks. J. Nat. Gas Sci. Eng. 2016, 35, 541–554. [Google Scholar] [CrossRef]
- Li, N.; Zhang, S.; Ma, X.; Zou, Y.; Chen, M.; Li, S.; Zhang, Y. Experimental study on the propagation mechanism of hydraulic fracture in glutenite formations. Chin. J. Rock Mech. Eng. 2017, 36, 2383–2392. (In Chinese) [Google Scholar]
- Rui, Z.; Guo, T.; Feng, Q.; Qu, Z.; Qi, N.; Gong, F. Influence of gravel on the propagation pattern of hydraulic fracture in the glutenite reservoir. J. Pet. Sci. Eng. 2018, 165, 627–639. [Google Scholar] [CrossRef]
- Li, L.; Li, G.; Meng, Q.; Wang, H.; Wang, Z. Numerical simulation of propagation of hydraulic fractures in glutenite formation. Rock Soil Mech. 2013, 34, 1501–1507. (In Chinese) [Google Scholar]
- Shimizu, H.; Murata, S.; Ishida, T. The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution. Int. J. Rock Mech. Min. Sci. 2011, 48, 712–727. [Google Scholar] [CrossRef]
- Ju, Y.; Liu, P.; Chen, J.; Yang, Y.; Ranjith, P. CDEM-based analysis of the 3D initiation and propagation of hydrofracturing cracks in heterogeneous glutenites. J. Nat. Gas Sci. Eng. 2016, 35, 614–623. [Google Scholar] [CrossRef]
- Zhang, X.P.; Wong, L.N.Y. Crack initiation, propagation and coalescence in rock-like material containing two flaws: A numerical study based on bonded-particle model approach. Rock Mech. Rock Eng. 2013, 46, 1001–1021. [Google Scholar] [CrossRef]
- Potyondy, D.O.; Cundall, P. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Cundall, P. Fluid Formulation for PFC2D; Itasca Consulting Group: Minneapolis, Minnesota, 2000. [Google Scholar]
- White, F. Fluid Mechanics, 7th ed.; McGraw-Hill: New York, NY, USA, 2009. [Google Scholar]
- Zhang, G.; Sun, S.; Chao, K.; Niu, R.; Liu, B.; Li, Y.; Wang, F. Investigation of the nucleation, propagation and coalescence of hydraulic fractures in glutenite reservoirs using a coupled fluid flow-DEM approach. Powder Technol. 2019, 354, 301–313. [Google Scholar] [CrossRef]
- RosIN, P. Laws governing the fineness of powdered coal. J. Inst. Fuel 1933, 7, 29–36. [Google Scholar]
- Bush, M. The interaction between a crack and a particle cluster. Int. J. Fract. 1997, 88, 215–232. [Google Scholar] [CrossRef]
- Li, R.; Chudnovsky, A. Variation of the energy release rate as a crack approaches and passes through an elastic inclusion. Int. J. Fract. 1993, 59, 69–74. [Google Scholar] [CrossRef]
Model Properties | Value |
---|---|
Particle density (kg/m3) | 2600 |
Young’s modulus of matrix (GPa) | 22.29 |
Young’s modulus of gravel (GPa) | 43.8 |
Friction coefficient of particles in matrix | 0.57 |
Friction coefficient of particles in gravel | 0.57 |
Friction angle of particles in matrix (°) | 26.13 |
Friction angle of particles in gravel (°) | 50 |
Shear/normal spring stiffness ratio | 2.5 |
Contact-bond tensile strength of matrix (MPa) | 15 |
Contact-bond tensile strength of gravel (MPa) | 25 |
Contact-bond cohesion of matrix (MPa) | 52.44 |
Contact-bond cohesion of gravel (MPa) | 100 |
Bulk modulus of injection fluid (GPa) | 2.0 |
Fluid viscosity (mPa · s) | 1.0 |
Principal Stress | Model 1 | Model 2 | Model 3 | Model 4 |
---|---|---|---|---|
σ1/MPa | 3 | 6 | 8 | 10 |
σ2/MPa | 5 | 5 | 5 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Liu, B.; Zhang, G. Investigation on the Propagation Mechanisms of a Hydraulic Fracture in Glutenite Reservoirs Using DEM. Energies 2022, 15, 7709. https://doi.org/10.3390/en15207709
Tang J, Liu B, Zhang G. Investigation on the Propagation Mechanisms of a Hydraulic Fracture in Glutenite Reservoirs Using DEM. Energies. 2022; 15(20):7709. https://doi.org/10.3390/en15207709
Chicago/Turabian StyleTang, Jing, Bingjie Liu, and Guodong Zhang. 2022. "Investigation on the Propagation Mechanisms of a Hydraulic Fracture in Glutenite Reservoirs Using DEM" Energies 15, no. 20: 7709. https://doi.org/10.3390/en15207709
APA StyleTang, J., Liu, B., & Zhang, G. (2022). Investigation on the Propagation Mechanisms of a Hydraulic Fracture in Glutenite Reservoirs Using DEM. Energies, 15(20), 7709. https://doi.org/10.3390/en15207709