Review on the Hydrogen Dispersion and the Burning Behavior of Fuel Cell Electric Vehicles
Abstract
:1. Introduction
2. Hydrogen Safety Concept for Fuel Cell Electric Vehicles
3. Hydrogen Leakage of Fuel Cell Electric Vehicles
3.1. Research Progress
3.2. The following Research Approach
4. Burning Behavior of Fuel Cell Electric Vehicles
4.1. Research Progress
4.2. The Following Research Approach
5. Standard and Regulations of the Fuel Cell Electric Vehicle Safety
5.1. Research Progress
5.2. The Following Research Approach
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jewell, J.; McCollum, D.; Emmerling, J.; Bertram, C.; Gernaat, D.E.H.J.; Krey, V.; Paroussos, L.; Berger, L.; Fragkiadakis, K.; Keppo, I.; et al. Limited emission reductions from fuel subsidy removal except in energy-exporting regions. Nature 2018, 554, 229–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hydrogen Roadmap Europe: A Sustainable Pathway for The European Energy Transition. Available online: https://www.fch.europa.eu/news/hydrogen-roadmap-europe-sustainable-pathway-european-energy-transition (accessed on 26 September 2022).
- Hydrogen Supply Chain for the Realization of a Decarbonized Hydrogen Society. Available online: https://www.env.go.jp/seisaku/list/ondanka_saisei/lowcarbon-h2-sc/en/index.html (accessed on 26 September 2022).
- Medium- and Long-Term Plan for the Development of Hydrogen Energy Industry (2021–2035). Available online: https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202203/t20220323_1320038.html?code=&state=123 (accessed on 26 September 2022).
- South Korea’s Hydrogen Industrial Strategy. Available online: https://www.csis.org/analysis/south-koreas-hydrogen-industrial-strategy (accessed on 26 September 2022).
- IEA. The Future of Hydrogen. 2019. Available online: https://www.iea.org/reports/the-future-of-hydrogen (accessed on 26 September 2022).
- Sánchez, A.L.; Williams, F.A. Recent advances in understanding of flammability characteristics of hydrogen. Prog. Energy Combust. Sci. 2014, 41, 1–55. [Google Scholar] [CrossRef]
- Tarkowski, R. Underground hydrogen storage: Characteristics and prospects. Renew. Sustain. Energy Rev. 2019, 105, 86–94. [Google Scholar] [CrossRef]
- Cariteau, B.; Brinster, J.; Tkatschenko, I. Experiments on the distribution of concentration due to buoyant gas low flow rate release in an enclosure. Int. J. Hydrogen Energy 2011, 36, 2505–2512. [Google Scholar] [CrossRef]
- Choi, J.; Hur, N.; Kang, S.; Lee, E.D.; Lee, K.-B. A CFD simulation of hydrogen dispersion for the hydrogen leakage from a fuel cell vehicle in an underground parking garage. Int. J. Hydrogen Energy 2013, 38, 8084–8091. [Google Scholar] [CrossRef]
- De Stefano, M.; Rocourt, X.; Sochet, I.; Daudey, N. Hydrogen dispersion in a closed environment. Int. J. Hydrogen Energy 2018, 44, 9031–9040. [Google Scholar] [CrossRef]
- Houf, W.; Evans, G.; Ekoto, I.; Merilo, E.; Groethe, M. Hydrogen fuel-cell forklift vehicle releases in enclosed spaces. Int. J. Hydrogen Energy 2012, 38, 8179–8189. [Google Scholar] [CrossRef]
- Pitts, W.M.; Yang, J.C.; Blais, M.; Joyce, A. Dispersion and burning behavior of hydrogen released in a full-scale residential garage in the presence and absence of conventional automobiles. Int. J. Hydrogen Energy 2012, 37, 17457–17469. [Google Scholar] [CrossRef]
- Pitts, W.M.; Yang, J.C.; Fernandez, M.G. Helium dispersion following release in a 1/4-scale two-car residential garage. Int. J. Hydrogen Energy 2012, 37, 5286–5298. [Google Scholar] [CrossRef]
- Prasad, K. High-pressure release and dispersion of hydrogen in a partially enclosed compartment: Effect of natural and forced ventilation. Int. J. Hydrogen Energy 2014, 39, 6518–6532. [Google Scholar] [CrossRef]
- Prasad, K.; Pitts, W.; Yang, J. Effect of wind and buoyancy on hydrogen release and dispersion in a compartment with vents at multiple levels. Int. J. Hydrogen Energy 2010, 35, 9218–9231. [Google Scholar] [CrossRef]
- Prasad, K.; Pitts, W.M.; Fernández, M.; Yang, J.C. Natural and forced ventilation of buoyant gas released in a full-scale garage: Comparison of model predictions and experimental data. Int. J. Hydrogen Energy 2012, 37, 17436–17445. [Google Scholar] [CrossRef]
- Matsuura, K.; Kanayamaa, H.; Tsukikawab, H.; Inouec, M. Numerical simulation of leaking hydrogen dispersion behavior in a partially open space. Int. J. Hydrogen Energy 2008, 33, 240–247. [Google Scholar] [CrossRef]
- Xie, H.; Li, X.; Christopher, D.M. Emergency blower ventilation to disperse hydrogen leaking from a hydrogen-fueled vehicle. Int. J. Hydrogen Energy 2015, 40, 8230–8238. [Google Scholar] [CrossRef]
- Ng, H.D.; Lee, J.H. Comments on explosion problems for hydrogen safety. J. Loss Prev. Process Ind. 2008, 21, 136–146. [Google Scholar] [CrossRef]
- Hajji, Y.; Bouteraa, M.; Elcafsi, A.; Belghith, A.; Bournot, P.; Kallel, F. Natural ventilation of hydrogen during a leak in a residential garage. Renew. Sustain. Energy Rev. 2015, 50, 810–818. [Google Scholar] [CrossRef]
- Ricci, M.; Bellaby, P.; Flynn, R. What do we know about public perceptions and acceptance of hydrogen? A critical review and new case study evidence. Int. J. Hydrogen Energy 2008, 33, 5868–5880. [Google Scholar] [CrossRef]
- Barilo, N.; Weiner, S.; James, C. Overview of the DOE hydrogen safety, codes and standards program part 2: Hydrogen and fuel cells: Emphasizing safety to enable commercialization. Int. J. Hydrogen Energy 2017, 42, 7625–7632. [Google Scholar] [CrossRef] [Green Version]
- ISO/IEC GUIDE 51:1999; Safety Aspects—Guidelines for Their Inclusion in Standards. ISO: Geneva, Switzerland, 1999.
- Worster, M.G.; Huppert, H.E. Time-dependent density profiles in a filling box. J. Fluid Mech. 1983, 132, 457–466. [Google Scholar] [CrossRef] [Green Version]
- Mukai, S.; Suzuki, J.; Mitsuishi, H.; Oyakawa, K.; Watanabe, S. CFD Simulation of Diffusion of Hydrogen Leakage Caused by Fuel Cell Vehicle Accident in Tunnel, Underground Parking Lot and Multistory Parking Garage; Japan Automobile Research Institute: Tsukuba, Japan, 2005; p. 9. [Google Scholar]
- Gupta, S.; Brinster, J.; Studer, E.; Tkatschenko, I. Hydrogen related risks within a private garage: Concentration measurements in a realistic full scale experimental facility. Int. J. Hydrogen Energy 2009, 34, 5902–5911. [Google Scholar] [CrossRef]
- Lacome, J.; Jamois, D.; Perrette, L.; Proust, C. Large-scale hydrogen release in an isothermal confined area. Int. J. Hydrogen Energy 2011, 36, 2302–2312. [Google Scholar] [CrossRef] [Green Version]
- Lach, A.; Gaathaug, A. Effect of Mechanical Ventilation on Accidental Hydrogen Releases—Large-Scale Experiments. Energies 2021, 14, 3008. [Google Scholar] [CrossRef]
- Maeda, Y.; Itoi, H.; Tamura, Y.; Suzuki, J.; Watanabe, S. Diffusion and Ignition Behavior on the Assumption of Hydrogen Leakage from a Hydrogen-Fueled Vehicle. SAE Trans. 2007, 2007-01-0428, 232–239. [Google Scholar] [CrossRef]
- Kaplan, S.; Garrick, B.J.; Apostolakis, G. Advances in Quantitative Risk Assessment—The Maturing of a Discipline. IEEE Trans. Nucl. Sci. 1981, 28, 944–946. [Google Scholar] [CrossRef]
- Rodionov, A.; Wilkening, H.; Moretto, P. Risk assessment of hydrogen explosion for private car with hydrogen-driven engine. Int. J. Hydrogen Energy 2011, 36, 2398–2406. [Google Scholar] [CrossRef]
- Dadashzadeh, M.; Kashkarov, S.; Makarov, D.; Molkov, V. Risk assessment methodology for onboard hydrogen storage. Int. J. Hydrogen Energy 2018, 43, 6462–6475. [Google Scholar] [CrossRef]
- Swain, M.R. Fuel leak simulation. In Proceedings of the 2001 DOE Hydrogen Program Review, NREL/CP-570-30535, Baltimore, MA, USA, 17–19 April 2001. [Google Scholar]
- Maeda, Y.; Takahashi, M.; Tamura, Y.; Suzuki, J.; Watanabe, S. Test of Vehicle Ignition Due to Hydrogen Gas Leakage. SAE Trans. 2006, 2006-01-0126, 73–79. [Google Scholar] [CrossRef]
- Raj, P.K. A review of the criteria for people exposure to radiant heat flux from fires. J. Hazard. Mater. 2008, 159, 61–71. [Google Scholar] [CrossRef]
- Tamura, Y.; Takabayashi, M.; Takeuchi, M. The spread of fire from adjoining vehicles to a hydrogen fuel cell vehicle. Int. J. Hydrogen Energy 2014, 39, 6169–6175. [Google Scholar] [CrossRef]
- Shen, Y.; Zheng, T.; Lv, H.; Zhou, W.; Zhang, C. Numerical Simulation of Hydrogen Leakage from Fuel Cell Vehicle in an Outdoor Parking Garage. World Electr. Veh. J. 2021, 12, 118. [Google Scholar] [CrossRef]
- Tamura, Y.; Takeuchi, M.; Sato, K. Effectiveness of a blower in reducing the hazard of hydrogen leaking from a hydrogen-fueled vehicle. Int. J. Hydrogen Energy 2014, 39, 20339–20349. [Google Scholar] [CrossRef]
- Liu, W.; Christopher, D.M. Dispersion of hydrogen leaking from a hydrogen fuel cell vehicle. Int. J. Hydrogen Energy 2015, 40, 16673–16682. [Google Scholar] [CrossRef]
- Merilo, E.; Groethe, M.; Colton, J.; Chiba, S. Experimental study of hydrogen release accidents in a vehicle garage. Int. J. Hydrogen Energy 2011, 36, 2436–2444. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, J.; Zhang, H.; Breitung, W.; Travis, J.; Kuznetsov, M.; Jordan, T. Numerical analysis of hydrogen release, dispersion and combustion in a tunnel with fuel cell vehicles using all-speed CFD code GASFLOW-MPI. Int. J. Hydrogen Energy 2020, 46, 12474–12486. [Google Scholar] [CrossRef]
- NFPA 2 Hydrogen Technologies Code. Available online: https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=2 (accessed on 26 September 2022).
- European Union. Regulation No 134 Uniform Provisions Concerning the Approval of Motor Vehicles and Their Components with Regard to the Safety-Related Performance of Hydrogen-Fuelled Vehicles (HFCV); European Union: Luxembourg, Luxembourg, 2019. [Google Scholar]
- UN GTR No. 13 Global Technical Regulation Concerning the Hydrogen and Fuel Cell Vehicles. Available online: https://www.interregs.com/catalogue/details/ece-gtr13/global-technical-regulation-no-13/hydrogen-and-fuel-cell-vehicles/ (accessed on 26 September 2022).
- SAE J2579; Standard for Fuel Systems in Fuel Cell and Other Hydrogen Vehicles. SAE International: Warrendale, PA, USA, 2018.
- GB/T 24549—2020; Fuel Cell Electric Vehicles—Safety Requirements. SAC: Beijing, China, 2020.
- Hao, D.; Wang, X.; Zhang, Y.; Wang, R.; Chen, G.; Li, J. Experimental Study on Hydrogen Leakage and Emission of Fuel Cell Vehicles in Confined Spaces. Automot. Innov. 2020, 3, 111–122. [Google Scholar] [CrossRef]
Release Traffic | Case 1 | Case 2 | Case 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Release Position | Top | Upside | Lateral Down | Top | Upside | Lateral Down | Top | Upside | Lateral Down |
X-axis direction (m) | 0.17 | 0 | 0 | 0.17 | 0 | 0 | 0.17 | 0 | 0 |
Y-axis direction (m) | 0.165 | 0.165 | 0.165 | 0.165 | 0.165 | 0.165 | 0.165 | 0.165 | 0.165 |
Z-axis direction (m) | 0.2 | 0.13 | 0.01 | 0.2 | 0.13 | 0.01 | 0.2 | 0.13 | 0.01 |
Release direction | −z | x | x | −z | x | x | −z | x | x |
Flow rate (Nm3 h−1) | 5.4 | 1.8 | 0.1 | ||||||
Duration (s) | 1 | 3 | 46 | ||||||
Re | 4500 | 1500 | 83 | ||||||
Ri | 1.27 × 10−6 | 1.14 × 10−5 | 3.70 × 10−3 | ||||||
ls (m) | 2.41 | 0.8 | 0.045 |
Subprojects | Test 1 | Test 2 | Test 3 | Test 4 |
---|---|---|---|---|
Volumetric flow rate (NL/min) | 668 | 668 | 18 | 18 |
Mass flow rate (g/s) | 1.99 | 1.99 | 0.05 | 0.05 |
x-axis direction (m) | 2.88 | 2.88 | 2.88 | 2.88 |
y-axis direction (m) | 1.48 | 1.48 | 1.48 | 1.48 |
z-axis direction (m) | 0.22 | 0.22 | 0.22 | 0.22 |
Diameter (mm) | 20.7 | 20.7 | 5 | 29.7 |
Garage temperature (°C) | 20 | 20 | 20 | 20 |
Release speed (m/s) | 35.5 | 35.5 | 16.4 | 0.5 |
Release direction | Vertically upwards | Vertically upwards | Vertically upwards | Vertically upwards |
Release type | Uninterrupted release | Uninterrupted release | Uninterrupted release | Uninterrupted release |
Release time (s) | 121 | 500 | 3740 | 3740 |
Release hydrogen volume (Nm3) | 1.35 | 5.57 | 1.12 | 1.12 |
Release hydrogen mass (g) | 240 | 994 | 200 | 200 |
Target concentration (%) | 3.53% | 14.6% | 2.94% | 2.94% |
Re0 (20 °C) | 6150 | 6150 | 686 | 115 |
Ri0 (20 °C) | 9.9 × 10-4 | 9.9 × 10-4 | 1.1 × 10-3 | 8.3 |
Serial Number | Nozzle Diameter (mm) | ACH Setpoint (1/h) | Outlet Pressure (bar) | Mass Flow (g/s) | Release Time (s) | Outlet Temperature (°C). |
---|---|---|---|---|---|---|
1 | 0.5 | 10 | 120 | 1.1 | 30 | −1 |
2 | 0.5 | 10 | 120 | 0.8 | 60 | −1 |
3 | 0.5 | 10 | 160 | 1.1 | 60 | −1 |
4 | 0.5 | 6 | 160 | 1.0 | 60 | −3 |
5 | 0.5 | 6 | 120 | 0.7 | 60 | −3 |
6 | 0.5 | 6 | 60 | 0.4 | 60 | −3 |
7 | 1.0 | 6 | 160 | 6.0 | 60 | −3 |
8 | 1.0 | 10 | 160 | 6.0 | 60 | −3 |
9 | 1.0 | 10 | 120 | 5.2 | 60 | −3 |
10 | 1.0 | 10 | 120 | 4.2 | 60 | −3 |
11 | 1.0 | 6 | 120 | 4.2 | 60 | −1 |
12 | 1.0 | 6 | 60 | 2.2 | 60 | −1 |
13 | 1.0 | 10 | 60 | 2.2 | 60 | −1 |
14 | 1.0 | 10 | 140 | 5.3 | 1000 | −1 |
15 | 0.5 | 10 | 700 | 7.9 | 1000 | −5 |
16 | 0.5 | 6 | 700 | 7.8 | 1000 | −3 |
17 | 0.5 | 6 | 360 | 4.2 | 1000 | −4 |
18 | 0.5 | 6 | 207 | 2.5 | 1000 | −2 |
19 | 0.5 | 10 | 360 | 4.2 | 1000 | −3 |
Serial Number | Garage Inside | Release Speed (kg/h) | Release Hydrogen Mass (g) | Theoretical Outlet Speed | Lm (m) | Fr | Release Time (min) | Ventilation Air Volume |
---|---|---|---|---|---|---|---|---|
1 | Empty | 9.22 | 3.07 | 668 | 18.7 | 667 | 20 | Natural ventilation |
2 | There is a car | 9.04 | 3.01 | 653 | 18.3 | 648 | 20 | Natural ventilation |
3 | There is a car | 0.88 | 0.44 | 63 | 1.8 | 62 | 30 | Natural ventilation |
4 | Empty | 3.3 | 2.2 | 240 | 6.7 | 238 | 40 | 0.12 |
5 | Empty | 3.33 | 2.22 | 247 | 6.9 | 245 | 40 | 0.19 |
6 | Empty | 3.27 | 2.18 | 241 | 6.8 | 240 | 40 | 0.42 |
7 | Empty | 6.70 | 4.47 | 502 | 14.1 | 499 | 40 | 0.1 |
8 | Empty | 1.65 | 1.10 | 124 | 3.5 | 123 | 40 | 0.1 |
9 | Empty | 1.52 | 1.01 | 113 | 3.2 | 112 | 40 | 0.2 |
10 | Empty | 1.55 | 1.03 | 116 | 3.2 | 115 | 40 | 0.38 |
11 | Empty | 4.92 | 3.28 | 367 | 10.3 | 365 | 40 | 0.1 |
12 | Empty | 4.98 | 3.32 | 361 | 10.1 | 359 | 40 | 0.19 |
13 | Empty | 4.92 | 3.28 | 360 | 10.1 | 357 | 40 | 0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, H.; Wang, G.; Zhao, K.; He, Y.; Zheng, T. Review on the Hydrogen Dispersion and the Burning Behavior of Fuel Cell Electric Vehicles. Energies 2022, 15, 7295. https://doi.org/10.3390/en15197295
Lan H, Wang G, Zhao K, He Y, Zheng T. Review on the Hydrogen Dispersion and the Burning Behavior of Fuel Cell Electric Vehicles. Energies. 2022; 15(19):7295. https://doi.org/10.3390/en15197295
Chicago/Turabian StyleLan, Hao, Guiyun Wang, Kun Zhao, Yuntang He, and Tianlei Zheng. 2022. "Review on the Hydrogen Dispersion and the Burning Behavior of Fuel Cell Electric Vehicles" Energies 15, no. 19: 7295. https://doi.org/10.3390/en15197295
APA StyleLan, H., Wang, G., Zhao, K., He, Y., & Zheng, T. (2022). Review on the Hydrogen Dispersion and the Burning Behavior of Fuel Cell Electric Vehicles. Energies, 15(19), 7295. https://doi.org/10.3390/en15197295