Temperature Characteristic Analysis of the Output Intrinsically Safe Buck Converter and Its Design Consideration
Abstract
:1. Introduction
2. Theoretical Parameter Design of the Capacitor
2.1. Minimum Theoretical Capacitance
2.2. Maximum Theoretical Capacitance
2.3. Actual Value Range of Capacitance Considering Temperature Characteristics
3. Design of Minimum Switching Frequency
4. Optimization Design Method and Design Example
4.1. Optimization Design Method
4.2. Design Examples
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Meng, Q.; Tian, Y. Analysis of Potential Hazards of Analog Energy Storage Components in the Intrinsic Safety Circuits and their Intrinsic Safety Criteria. Trans. China Electrotech. Soc. 2022, 37, 676–685. [Google Scholar]
- Standardization Administration of China. Explosive Atmospheres—Part 4: Equipment Protection by Intrinsic Safety “i”:GB 3836.4-2010; China Standards Press: Beijing, China, 2021.
- Lu, W.; Li, Y. Research of the Key Technologies for Explosion-Proof and Intrinsically Safe High Voltage Frequency Converter. Appl. Mech. Mater. 2014, 494, 1552–1555. [Google Scholar] [CrossRef]
- Liu, S.; Wu, H.; Wang, C.; Nie, S.; Qi, L. Inner Intrinsically Safe Criterion and Design Considerations of Buck Converter Based on Equivalent Inductance. Electr. Power Compon. Syst. 2019, 47, 248–260. [Google Scholar] [CrossRef]
- Liu, S.; Wang, H.; Hu, C.; Zhang, H.; Wang, B. Analysis of the Optimal Operating Mode of Auxiliary Inductance and LC Parameter Optimization Design of Forward-Flyback Converter with Additional LC. Trans. China Electrotech. Soc. 2022, 37, 389–396. [Google Scholar]
- Cao, X.; Chen, W.; Ning, G.; Zhang, K.; Song, Z.; Qiao, G.; Sun, L. Optimization Design of High-power High-frequency Transformer Based on Multi-objective Genetic Algorithm. Proc. CSEE 2018, 38, 1348–1355. [Google Scholar]
- Liu, S.; Ma, Y.; Wen, X.; Qi, L. Research on the Most Dangerous Output Short-circuit Discharge Conditions of Output Intrinsic Safety Buck-Boost Converters. Trans. China Electrotech. Soc. 2015, 30, 253–260. [Google Scholar]
- Liu, S.L.; Cui, Q.; Li, Y. Output short-circuit spark discharging energy and output intrinsic safety criterion of Buck converters. Acta Phys. Sin. 2013, 62, 438–447. [Google Scholar]
- Shen, K.; Wang, J.; Ban, M.; Ji, Y.; Cai, X. Staircase modulation scheme based on PSO for modular multilevel converter. Electr. Power Autom. Equip. 2014, 34, 78–83, 89. [Google Scholar]
- Huang, Y.; Zhang, X.; Wu, L. Optimization of BBMC main circuit parameters based on particle swarm optimization. J. Hunan Univ. Sci. Technol. (Nat. Sci. Ed.) 2014, 29, 89–92. [Google Scholar]
- Zhao, B.; Wang, G.; Song, J.; Liu, Y. Optimal Design Method of the LCLC Resonant Converter Based on Particle-Swarm-Optimization Algorithm. J. Electron. Inf. Technol. 2021, 43, 1622–1629. [Google Scholar]
- Wang, K.; Zang, Q.-J. Application of MOPSO Algorithm in Optimal Design for Boost Converter. J. Yantai Univ. (Nat. Sci. Eng. Ed.) 2017, 30, 317–322. [Google Scholar]
- Nemec, M.; Ambrozic, V.; Rihar, A.; Zajec, P. DC Capacitor Testing Capability Intrinsic to Multi-leg Converters. In Proceedings of the 2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering, Setubal, Portugal, 8–10 July 2020; Volume 22, pp. 94–99. [Google Scholar]
- Huang, J.; Li, L.; Ren, S.; Liu, S. Analysis and Design of an Intrinsically Safe Buck-Boost Converter on Considering of the Filter Capacitor with Equivalent Series Resistance. Trans. China Electrotech. Soc. 2021, 36, 1658–1670. [Google Scholar]
- Liu, S.; Hao, Y.; Li, Y.; You, M. Design Methods of Intrinsically Safe Buck Converter Based on the Maximum Output Power. Trans. China Electrotech. Soc. 2021, 36, 542–551. [Google Scholar]
- Zhou, D.; Wang, H.; Blaabjerg, F. Mission profile based system-level reliability analysis of DC/DC converters for a backup power. Appl. IEEE Trans. Power Electron. 2018, 33, 8030–8039. [Google Scholar] [CrossRef] [Green Version]
- Corti1, F.; Reatti, A.; Patrizi, G.; Ciani, L.; Catelani, M.; Kazimierczuk, M.K. Probabilistic evaluation of power converters as support in their design. IET Power Electron. 2020, 13, 4542–4550. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Huang, M.; Zha, X.; Gong, J.; Sun, J. Reliability-oriented optimization of theLC filter in a buck DC-DC converter. IEEE Trans. Power Electron. 2017, 32, 6323–6337. [Google Scholar] [CrossRef] [Green Version]
- Owen, H.; Wilson, T.; Feng, S.; Lee, F. A computer-aided design procedure for flyback step-up DC-to-DC converters. IEEE Trans. Magn. 1972, 8, 289–291. [Google Scholar] [CrossRef]
- Yang, Y.; Qi, L.; Li, L. Analysis of Output Ripple Voltage of Essential Safety for Interleaving Magnetics Buck Converter. Trans. China Electrotech. Soc. 2014, 29, 181–188. [Google Scholar]
- Gizatullin, F.-A.; Salikhov, R.-M.; Efimenko, N.-V.; Karimova, A.G.; Demin, A.U. Instrumentation for modeling of discharge processes in ignition capacitive systems. J. Theor. Appl. Phys. 2019, 13, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Hasanpour, S.; Siwakoti, Y.; Blaabjerg, F. Analysis of a New Soft-Switched Step-Up Trans-Inverse DC/DC Converter Based on Three-Winding Coupled-Inductor. IEEE Trans. Power Electron. 2022, 37, 2203–2215. [Google Scholar] [CrossRef]
- Liu, S.; Liu, J.; Kou, L.; Zhong, J. Analysis of Output Ripple Voltage of Buck DC/DC Converter and Its Application. Trans. China Electrotech. Soc. 2007, 2, 91–97. [Google Scholar]
- Kang, Q.; Xu, C.; Tian, M.; Song, J. Design of high-power intrinsically safe power supply based on fault current change rate. Ind. Mine Autom. 2021, 47, 6–12. [Google Scholar]
- Liu, J.; Liu, S.; Yang, Y.; Zhang, Y.-M. Output Intrinsically Safe Behavior of Buck Converters and Its Optimal Design. Proc. CSEE 2005, 19, 52–57. [Google Scholar]
- Yu, Y.; Xie, D.Y.; Li, S.G.; Wu, X.J. Summary of Intrinsic Safety Electric Circuit Technology. Coal Sci. Technol. 2011, 39, 61–65. [Google Scholar]
- Corporation TDK. Aluminum Electrolytic Capacitors General Technical Information. Tokyo, Japan. 2021. Available online: https://www.tdk-electronics.tdk.com.cn/download/540988/6ad5ed9e1ff4f727c328cb92da2adf2b/pdf-generaltechnicalinformation.pdf (accessed on 23 April 2021).
Experimental Group | ΔC (μF) | Parameter | Calculated Value (Value Range) | Actual Value (Value Range) |
---|---|---|---|---|
Group 1 | 5 | C (μF) | (42.4, 47.4) | (43, 47) |
f (kHz) | 78 | 80 | ||
L (μH) | 14.1 | 15 | ||
Group 2 | 20 | C (μF) | (27.4, 47.4) | (28, 47) |
f (kHz) | 120.7 | 120 | ||
L (μH) | 9.4 | 10 | ||
Group 3 | 30 | C (μF) | (17.4, 47.4) | (18, 47) |
f (kHz) | 190.1 | 190 | ||
L (μH) | 5.9 | 7 |
Design Method | Parameter | Vpp/mV | |||
---|---|---|---|---|---|
−25 °C | 25 °C | 85 °C | |||
Considering temperature characteristics | Group 1 | f = 80 kHz C = 43 μF L = 15 μH | 173 | 150 | 112 |
Group 2 | f = 120 kHz C = 28 μF L = 10 μH | 159 | 142 | 108 | |
Group 3 | f = 190 kHz C = 18 μF L = 7 μH | 152 | 138 | 106 | |
Without considering Temperature characteristics | Group 4 | f = 80 kHz C = 35 μF L = 16 μH | 191 | 172 | 166 |
Group 5 | f = 80 kHz C = 48 μF L = 16 μH | 158 | 131 | 122 |
Design Method | Parameter | Safety Spark Test | |||
---|---|---|---|---|---|
−25 °C | 25 °C | 85 °C | |||
Considering temperature characteristics | Group 1 | f = 80 kHz C = 47 μF L = 15 μH | safe | safe | safe |
Group 2 | f = 120 kHz C = 47 μF L = 10 μH | ||||
Group 3 | f = 190 kHz C = 47 μF L = 7 μH | ||||
Without considering temperature characteristics | Group 4 | f = 80 kHz C = 35 μF L = 16 μH | safe | safe | safe |
Group 5 | f = 80 kHz C = 48 μF L = 16 μH | safe | safe | unsafe |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, S.; Liang, Z.; Zhang, Y.; Shen, Y. Temperature Characteristic Analysis of the Output Intrinsically Safe Buck Converter and Its Design Consideration. Energies 2022, 15, 7308. https://doi.org/10.3390/en15197308
Li Y, Liu S, Liang Z, Zhang Y, Shen Y. Temperature Characteristic Analysis of the Output Intrinsically Safe Buck Converter and Its Design Consideration. Energies. 2022; 15(19):7308. https://doi.org/10.3390/en15197308
Chicago/Turabian StyleLi, Yan, Shulin Liu, Zhenqin Liang, Yuqing Zhang, and Yijun Shen. 2022. "Temperature Characteristic Analysis of the Output Intrinsically Safe Buck Converter and Its Design Consideration" Energies 15, no. 19: 7308. https://doi.org/10.3390/en15197308
APA StyleLi, Y., Liu, S., Liang, Z., Zhang, Y., & Shen, Y. (2022). Temperature Characteristic Analysis of the Output Intrinsically Safe Buck Converter and Its Design Consideration. Energies, 15(19), 7308. https://doi.org/10.3390/en15197308