Elliptical-Shaped Fresnel Lens Design through Gaussian Source Distribution
Abstract
:1. Introduction
2. Modeling of an Elliptical-Shaped Fresnel Lens
2.1. Analytical Method
2.2. Numerical Simulation Method
2.2.1. ESFL Modeling
2.2.2. Solar Source Modeling
2.2.3. Output Solar Distribution at the Focal Zone of the ESFL
2.2.4. Comparative Study of the ESFL Output Performance with the Measured Output Performance of a Fresnel Lens
2.2.5. Comparative Study of the ESFL Output Performance with Other Concentrators
Publications | Concentrator Type | Concentration | Focal Width (mm) | Lens Width (mm) | Focal Length(mm) | Grooves Per mm | Method |
---|---|---|---|---|---|---|---|
Nelson et al., 1975 [44] | Fresnel lens | 4.3–5.0 (ratio) | ~30 | 137 | 140 | ~0.1 | Analytical |
Cosby, 1977 [5] | Shaped Fresnel lens (linear) | ~70 (ratio) | ~20 | ~914 | ~509 | ~1.0 | Analytical |
Kritchman et al., 1979 [7] | Shaped Fresnel lens (linear) | 172 (ratio) | N/A | vary | vary | Infinitely small grooves | Analytical |
O’Neill et al., 1993 [6] | Shaped Fresnel lens (linear) | 0.065 (W/mm2) | ~30 | 850 | 726 | N/A | Experimental |
Flamant et al., 1999 [39] | Parabolic mirror | 16.0 (W/mm2) | ~16 ~10 (FWHM) | 2000 | 850 | N/A | Experimental |
Leutz et al., 2000 [43] | Shaped Fresnel lens (linear) | 0.045 (W/mm2) | ~20 ~5–6 (FWHM) | ~300 | ~150 | N/A | Experimental |
Ferriere et al., 2004 [36] | Flat Fresnel lens | 2.644 (W/mm2) | ~20 ~8.3 (FWHM) | 900 | 757 | 2.0 | Experimental |
Yeh, 2009, [24] | Shaped Fresnel lens (linear) | 0.060 (W/mm2) | ~5–6 (FWHM) | 300 | 446 | 1.0 | Analytical |
Pan et al., 2011 [32] | Fresnel lens | 1,367,704,600 (W/mm2) | <0.25 | 189 | 189 | N/A | Analytical |
Akisawa et al., 2012 [10] | Shaped Fresnel lens | 0.506 (W/mm2) | <1 | 45 | 60 | 4.0 | Analytical |
Cheng et al., 2013b [18] | Fresnel lens | N/A | <0.1 | 88 | 50 | 0.22 | Analytical |
Languy et al., 2013 [12] | Shaped Fresnel lens | 8500 (ratio) | <1 | N/A | N/A | N/A | Analytical |
Yeh, 2016 [21] | Shaped Fresnel lens (linear) | 0.070 (W/mm2) (at 1135 nm) | ~20 ~4 (FWHM) | 300 | 223 | 2.0 | Analytical |
Yeh et al., 2016 [22] | Shaped Fresnel lens | ~5.0 (W/mm2) | ~20 ~4 (FWHM) | 460 | 280 | 4.3 | Analytical |
Zhao et al., 2018 [33] | Shaped Fresnel lens (linear) | 40.6 (ratio) | 16 | 650 | 950 | N/A | Experimental |
Garcia et al., 2019 [28] | RAC 1 | 16.0 (W/mm2) | ~20 ~10 (FWHM) | 2000 | 500 | N/A | Analytical |
Liang et al., 2021 [42] | AFSCFL 2 | 46.7 (W/mm2) | <1 | 734 | 593 | N/A | Analytical |
Present work | Shaped Fresnel lens | 4.5 (W/mm2) | ~10.0 (FWHM) | 900 | 757 | 0.34 | Analytical |
3. Output Performance of the ESFL Regarding the Concentrated Solar Flux, the Optical Efficiency and the FWHM
3.1. ESFL Configurations with Fixed Total Height of 700 mm
3.2. Concentrated Solar Flux, Optical Efficiency and FWHM as a Function of the Aspect Ratio and Several Combinations of hf + hl
3.3. Influence of Size/Number of Grooves on the ESFL Output Performance
4. Comparison between ESFL and a Flat Fresnel Lens
4.1. Optimal Focal Position Analysis of Both the ESFL and a Flat Fresnel Lens
4.2. Temperature Analysis of Both the ESFL and the Flat Fresnel Lens
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Price, J.S.; Sheng, X.; Meulblok, B.M.; Rogers, J.A.; Giebink, N.C. Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics. Nat. Commun. 2015, 6, 6223. [Google Scholar] [CrossRef] [PubMed]
- Coughenour, B.M.; Stalcup, T.; Wheelwright, B.; Geary, A.; Hammer, K.; Angel, R. Dish-based high concentration PV system with Köhler optics. Opt. Express 2014, 22, A211–A224. [Google Scholar] [CrossRef] [PubMed]
- El Majid, B.; Motahhir, S.; El Ghzizal, A. Parabolic bifacial solar panel with the cooling system: Concept and challenges. SN Appl. Sci. 2019, 1, 1176. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.T.; Dai, Y.J.; Wang, R.Z.; Sumathy, K. Concentrated solar energy applications using Fresnel lenses: A review. Renew. Sustain. Energy Rev. 2011, 15, 2588–2606. [Google Scholar] [CrossRef]
- Cosby, R.M. Solar Concentration by Curved-Base Fresnel Lenses; Ball State University: Muncie, IN, USA, 1977. [Google Scholar]
- Neill, M.J.O.; McDanal, A.J. Manufacturing Technology Improvements for a Line-Focus Concentrator Module. In Proceedings of the Twenty Third IEEE Photovoltaic Specialists Conference—1993, Conference Record (Cat. No.93CH3283-9). Louisville, KY, USA, 10–14 May 1993; pp. 1082–1089. [Google Scholar]
- Kritchman, E.M.; Friesem, A.A.; Yekutieli, G. Highly Concentrating Fresnel Lenses. Appl. Opt. 1979, 18, 2688–2695. [Google Scholar] [CrossRef]
- Leutz, R.; Suzuki, A.; Akisawa, A.; Kashiwagi, T. Design of a nonimaging Fresnel lens for solar concentrators. Sol. Energy 1999, 65, 379–387. [Google Scholar] [CrossRef]
- Yeh, N. Analysis of spectrum distribution and optical losses under Fresnel lenses. Renew. Sustain. Energy Rev. 2010, 14, 2926–2935. [Google Scholar] [CrossRef]
- Akisawa, A.; Hiramatsu, M.; Ozaki, K. Design of dome-shaped non-imaging Fresnel lenses taking chromatic aberration into account. Sol. Energy 2012, 86, 877–885. [Google Scholar] [CrossRef]
- Romero, M.; Steinfeld, A. Concentrating solar thermal power and thermochemical fuels. Energy Environ. Sci. 2012, 5, 9234–9245. [Google Scholar] [CrossRef]
- Languy, F.; Habraken, S. Nonimaging achromatic shaped Fresnel lenses for ultrahigh solar concentration. Opt. Lett. 2013, 38, 1730–1732. [Google Scholar] [CrossRef]
- Ma, X.; Zheng, H.; Tian, M. Optimize the shape of curved-Fresnel lens to maximize its transmittance. Sol. Energy 2016, 127, 285–293. [Google Scholar] [CrossRef]
- Leutz, R.; Suzuki, A. Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Kalogirou, S. Solar Energy Engineering Processes and Systems; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Rabl, A. Active Solar Collectors and Their Applications; Oxford University Press on Demand: Oxford, UK, 1985. [Google Scholar]
- Winston, R. Principles of Solar Concentrators of a Novel Design. Sol. Energy 1974, 16, 89–95. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, X.D.; Zhang, G.X. Design and machining of Fresnel solar concentrator surfaces. Int. J. Precis. Technol. 2013, 3, 354–369. [Google Scholar] [CrossRef]
- Zheng, H.; Feng, C.; Su, Y.; Dai, J.; Ma, X. Design and experimental analysis of a cylindrical compound Fresnel solar concentrator. Sol. Energy 2014, 107, 26–37. [Google Scholar] [CrossRef]
- Viera-González, P.M.; Sánchez-Guerrero, G.E.; Martínez-Guerra, E.; Ceballos-Herrera, D.E. Mathematical Analysis of Nonimaging Fresnel Lenses Using Refractive and Total Internal Reflection Prisms for Sunlight Concentration. Math. Probl. Eng. 2018, 2018, 4654795. [Google Scholar] [CrossRef]
- Yeh, N. Illumination uniformity issue explored via two-stage solar concentrator system based on Fresnel lens and compound flat concentrator. Energy 2016, 95, 542–549. [Google Scholar] [CrossRef]
- Yeh, N.; Yeh, P. Analysis of point-focused, non-imaging Fresnel lenses’ concentration profile and manufacture parameters. Renew. Energy 2016, 85, 514–523. [Google Scholar] [CrossRef]
- Ma, X.; Jin, R.; Liang, S.; Zheng, H. Ideal shape of Fresnel lens for visible solar light concentration. Opt. Express 2020, 28, 18141–18149. [Google Scholar] [CrossRef]
- Yeh, N. Optical geometry approach for elliptical Fresnel lens design and chromatic aberration. Sol. Energy Mater. Sol. Cells 2009, 93, 1309–1317. [Google Scholar] [CrossRef]
- Fresneltech Brochure. Available online: https://www.fresneltech.com/fresnel-lenses (accessed on 17 June 2021).
- Garcia-Segura, A.; Fernandez-Garcia, A.; Ariza, M.J.; Sutter, F.; Valenzuela, L. Durability studies of solar reflectors: A review. Renew. Sustain. Energy Rev. 2016, 62, 453–467. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Duan, X.; Zhao, Y.; Feng, J. An analytical flux density distribution model with a closed-form expression for a flat heliostat. Appl. Energy 2019, 251, 113310. [Google Scholar] [CrossRef]
- Garcia, D.; Liang, D.; Tibúrcio, B.D.; Almeida, J.; Vistas, C.R. A three-dimensional ring-array concentrator solar furnace. Sol. Energy 2019, 193, 915–928. [Google Scholar] [CrossRef]
- Lv, H.; Huang, X.; Li, J.; Huang, W.; Li, Y.; Su, Y. Non-uniform sizing of PV cells in the dense-array module to match the non-uniform illumination in dish-type CPV systems. Int. J. Low-Carbon Technol. 2020, 15, 565–573. [Google Scholar] [CrossRef]
- Garcia, D.; Liang, D.; Almeida, J.; Tibúrcio, B.D.; Costa, H.; Catela, M.; Vistas, C.R. Analytical and numerical analysis of a ring-array concentrator. Int. J. Energy Res. 2021, 45, 15110–15123. [Google Scholar] [CrossRef]
- Yeh, P.; Yeh, N. Design and analysis of solar-tracking 2D Fresnel lens-based two staged, spectrum-splitting solar concentrators. Renew. Energy 2018, 120, 1–13. [Google Scholar] [CrossRef]
- Pan, J.-W.; Huang, J.-Y.; Wang, C.-M.; Hong, H.-F.; Liang, Y.-P. High concentration and homogenized Fresnel lens without secondary optics element. Opt. Commun. 2011, 284, 4283–4288. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, H.; Sun, B.; Li, C.; Wu, Y. Development and performance studies of a novel portable solar cooker using a curved Fresnel lens concentrator. Sol. Energy 2018, 174, 263–272. [Google Scholar] [CrossRef]
- Shen, F.; Huang, W. Study on the Optical Properties of the Point-Focus Fresnel System. Sustainability 2021, 13, 10367. [Google Scholar] [CrossRef]
- Vittitoe, C.N.; Biggs, F. Six-gaussian representation of the angular-brightness distribution for solar radiation. Sol. Energy 1981, 27, 469–490. [Google Scholar] [CrossRef]
- Ferriere, A.; Rogriguez, G.; Sobrino, J. Flux Distribution Delivered by a Fresnel Lens Used for Concentrating Solar Energy. J. Sol. Energy Eng. 2004, 126, 654–660. [Google Scholar] [CrossRef]
- ASTM International Standard Tables for Reference Solar Spectral Irradiance at Air Mass 1.5: Direct Normal and Hemispherical for a 37 Degree Tilted Surface. Available online: https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html (accessed on 21 December 2021).
- MEÉSU Procédés. MSSF horizontal—PROMES. Available online: https://www.promes.cnrs.fr/index.php?page=mssf-horizontal (accessed on 7 March 2019).
- Flamant, G.; Ferriere, A.; Laplaze, D.; Monty, C. Solar Processing of Materials: Opportunities and New Frontiers. Sol. Energy 1999, 66, 117–132. [Google Scholar] [CrossRef]
- Ferriere, A.; Sanchez Bautista, C.; Rodriguez, G.P.; Vazquez, A.J. Corrosion resistance of stainless steel coatings elaborated by solar cladding process. Sol. Energy 2006, 80, 1338–1343. [Google Scholar] [CrossRef]
- Gineste, J.M.; Flamant, G.; Olalde, G. Incident solar radiation data at Odeillo solar furnaces. J. Phys. IV 1999, 9, Pr3-623–Pr3-628. [Google Scholar] [CrossRef]
- Liang, K.; Zhang, H.; Chen, H.; Gao, D.; Liu, Y. Design and test of an annular fresnel solar concentrator to obtain a high-concentration solar energy flux. Energy 2021, 214, 118947. [Google Scholar] [CrossRef]
- Leutz, R.; Suzuki, A.; Akisawa, A.; Kashiwagi, T. Shaped nonimaging Fresnel lenses. J. Opt. A Pure Appl. Opt. 2000, 2, 112–116. [Google Scholar] [CrossRef]
- Nelson, D.T.; Evans, D.L.; Bansal, R.K. Linear Fresnel Lens Concentrators. Sol. Energy 1975, 17, 285–289. [Google Scholar] [CrossRef]
- Sierra, C.; Vázquez, A. NiAl coatings on carbon steel by self-propagating high-temperature synthesis assisted with concentrated solar energy: Mass influence on adherence and porosity. Sol. Energy Mater. Sol. Cells 2005, 86, 33–42. [Google Scholar] [CrossRef]
- An, W.; Ruan, L.M.; Qi, H.; Liu, L.H. Finite element method for radiative heat transfer in absorbing and anisotropic scattering media. J. Quant. Spectrosc. Radiat. Transf. 2005, 96, 409–422. [Google Scholar] [CrossRef]
- Li, B.; Oliveira, F.A.C.; Rodriguez, J.; Fernandes, J.C.; Rosa, L.G. Numerical and experimental study on improving temperature uniformity of solar furnaces for materials processing. Sol. Energy 2015, 115, 95–108. [Google Scholar] [CrossRef]
- Rinker, G.; Solomon, L.; Qiu, S.G. Optimal placement of radiation shields in the displacer of a Stirling engine. Appl. Therm. Eng. 2018, 144, 65–70. [Google Scholar] [CrossRef]
- Radiant Zemax. Zemax Manual; Radiant Zemax: Sacramento, CA, USA, 2014; Volume 13. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, D.; Liang, D.; Almeida, J.; Tibúrcio, B.D.; Costa, H.; Catela, M.; Vistas, C.R. Elliptical-Shaped Fresnel Lens Design through Gaussian Source Distribution. Energies 2022, 15, 668. https://doi.org/10.3390/en15020668
Garcia D, Liang D, Almeida J, Tibúrcio BD, Costa H, Catela M, Vistas CR. Elliptical-Shaped Fresnel Lens Design through Gaussian Source Distribution. Energies. 2022; 15(2):668. https://doi.org/10.3390/en15020668
Chicago/Turabian StyleGarcia, Dário, Dawei Liang, Joana Almeida, Bruno D. Tibúrcio, Hugo Costa, Miguel Catela, and Cláudia R. Vistas. 2022. "Elliptical-Shaped Fresnel Lens Design through Gaussian Source Distribution" Energies 15, no. 2: 668. https://doi.org/10.3390/en15020668
APA StyleGarcia, D., Liang, D., Almeida, J., Tibúrcio, B. D., Costa, H., Catela, M., & Vistas, C. R. (2022). Elliptical-Shaped Fresnel Lens Design through Gaussian Source Distribution. Energies, 15(2), 668. https://doi.org/10.3390/en15020668